Mathematics
http://www.aimspress.com/journal/Math

Research article

On an extension of $\mathbf{K U}$-algebras

Ali N. A. Koam, Azeem Haider and Moin A. Ansari*
Department of Mathematics, College of Science, Post Box 2097, New Campus, Jazan University, Jazan, KSA

* Correspondence: Email: maansari @jazanu.edu.sa.

Abstract

In this article we define an extension of KU-algebra and call it an extended KU-algebra. We study basic properties of this extended KU-algebra and its ideals. We also discuss the relations between extended KU -algebras and KU -algebras.

Keywords: KU-algebras; KU-subalgebras; KU-ideals; extended KU-algebras
Mathematics Subject Classification: 06F35, 03G25

1. Introduction

Prabpayak and Leerawat introduced KU-algebras in [9], basic properties of KU-algebras and its ideals are discussed in [9, 10]. After that many authors widely studied KU-algebras in different directions e.g. in fuzzy, in neutrosophic and in intuitionistic context [17], soft and rough sense etc. Naveed et al. [15] introduced the concept of cubic KU-ideals of KU-algebras whereas Mostafa et al. [7] defined fuzzy ideals of KU-algebras. Further Mostafa et al. [8] studied Interval valued fuzzy KU-ideals in KU-algebras. Recently Moin and Ali introduced roughness in KU-algebras [1]. Ali et al. [4] introduced pseudo-metric on KU-algebras. Senapati and Shum [16] defined Atanassovs intuitionistic fuzzy bi-normed KU-ideals of a KU-algebra. The study on n -ary block codes on KU-algebras are discussed in [3]. Moreover, (α, β) soft sets are explored on KU -algebras in [2].

Imai and Iseki [14] introduced two classes of abstract algebras namely BCK/BCI algebras as an extension of the concept of set-theoretic difference and proportional calculi. Then onwards many works been done based on this logical algebras. Subrahmanya defined and shown results based on Commutative extended BCK-algebra. Farag and Babiker [5] studied Quasi-ideals and Extensions of BCK-algebras.

Extensions of different algebraic structures whether in classical or logical algebras are intensively studied by many researchers in recent years. Motivated by works based on extension, we have studied
an extension of KU-algebras. Some recent work based on extension and generalization of logical algebras can be seen in [11-13].

In this article, definitions, examples and basic properties of KU-algebras are given in Section 2. In section 3, extended KU-algebras are defined with examples and related results. In section 4, ideals of extended KU-algebras are studied and section 5 concludes the whole work.

2. Preliminaries

In this section, we shall give definitions and related terminologies on KU -algebras, KU -subalgebras, KU -ideals with examples and some results based on them.
Definition 1. [9] By a $K U$-algebra we mean an algebra $(X, \circ, 1)$ of type $(2,0)$ with a single binary operation \circ that satisfies the following propoerties: for any $x, y, z \in X$,
$(\mathrm{ku} 1)(x \circ y) \circ[(y \circ z) \circ(x \circ z)]=1$,
(ku2) $x \circ 1=1$,
(ku3) $1 \circ x=x$,
(ku4) $x \circ y=y \circ x=1$ implies $x=y$.
In what follows, let $(X, \circ, 1)$ denote a KU-algebra unless otherwise specified. For brevity we also call X a KU-algebra. The element 1 of X is called constant which is the fixed element of X. Partial order " $\leq "$ in X is denoted by the condition $x \leq y$ if and only if $y \circ x=1$.
Lemma 1. [9] ($X, \circ, 1$) is a KU-algebra if and only if it satisfies:
(ku5) $x \circ y \leq(y \circ z) \circ(x \circ z)$,
(ku6) $x \leq 1$,
(ku7) $x \leq y, y \leq x$ implies $x=y$,
Lemma 2. In a $K U$-algebra, the following properties are true:
(1) $z \circ z=1$,
(2) $z \circ(x \circ z)=1$,
(3) $z \circ(y \circ x)=y \circ(z \circ x)$, for all $x, y, z \in X$,
(4) $y \circ[(y \circ x) \circ x]=1$.

Example 1. [7] Let $X=\{1,2,3,4,5\}$ in which \circ is defined by the following table

\circ	1	2	3	4	5
1	1	2	3	4	5
2	1	1	3	4	5
3	1	2	1	4	4
4	1	1	3	1	3
5	1	1	1	1	1

It is easy to see that X is a $K U$-algebra.
Definition 2. A non-empty subset K of a $K U$-algebra X is called a $K U$-ideal of X if it satisfies the following conditions:
(1) $1 \in K$,
(2) $x \in K$ and $x \circ y \in K$ implies $y \in K$, for all $x, y \in X$.

Example 2. [1] Let $X=\{1,2,3,4,5,6\}$ in which \circ is defined by the following table:

\circ	1	2	3	4	5	6
1	1	2	3	4	5	6
2	1	1	3	3	5	6
3	1	1	1	2	5	6
4	1	1	1	1	5	6
5	1	1	1	2	1	6
6	1	1	2	1	1	1

Clearly $(X, \circ, 1)$ is a $K U$-algebra. It is easy to show that $K_{1}=\{1,2\}$ and $K_{2}=\{1,2,3,4,5\}$ are $K U$-ideals of X.

3. Extended KU-Algebras

In this section, we give a definition of an extension of KU-algebras and related results. In the whole text by (kue) we mean an extended KU-algebras as defined below.

Definition 3. For a non-empty set X, we define an extended $K U$-algebra corresponding to a non-empty subset K of X as an algebra $\left(X_{K} ; \circ, K\right)$ such that \circ is a binary operation on X_{K} satisfies the following axioms:
(kue1) $(x \circ y) \circ[(y \circ z) \circ(x \circ z)] \in K$,
(kue2) $x \circ K=\{x \circ k: k \in K\} \subseteq K$,
(kue3) $K \circ x=\{k \circ x: k \in K\}=\{x\}$,
(kue4) $x \circ y \in K$ and $y \circ x \in K$ implies $x=y$ or $x, y \in K$ for any $x, y, z \in X$.
For simplicity we will denote simply X_{K} as an extended $K U$-algebra $\left(X_{K}, \circ, K\right)$ in the later text.
Example 3. Let $X=\{1,2,3,4\}$ and $K=\{1,2\}$. Then we can see in the following table that X_{K} is an extended $K U$-algebra.

\circ	1	2	3	4
1	1	2	3	4
2	1	2	3	4
3	2	1	2	2
4	1	2	4	1

Example 4. Let $X=\{1,2,3,4,5\}$ and $K=\{1,2\}$. Then we can see in the following table that X_{K} is an extended $K U$-algebra.

\circ	1	2	3	4	5
1	1	2	3	4	5
2	1	2	3	4	5
3	1	1	1	1	5
4	1	1	4	1	5
5	1	1	2	1	1

Now we have the following properties and basic results of an extended KU-algebra X_{K}.

Theorem 1. Every $K U$ algebra is an extended $K U$-algebra and converse holds if and only if K is a singleton set.

Proof. Clearly, any KU-algebra ($X, \circ, 1$) is an extended KU -algebra X_{K} by considering $K=\{1\}$. If X_{K} is an extended KU -algebra with $K=\{k\}$, then $\left(X_{K}, \circ, 1:=k\right)$ is a KU -algebra.
Conversely, we suppose that an extended KU -algebra X_{K} is a KU -algebra. Take $k_{1}, k_{2} \in K$, then by (kue3) $k_{1} \circ k_{1}=k_{1}$ and $k_{2} \circ k_{2}=k_{2}$. Also, by considering X_{K} as a KU-algebra, we get that $k_{1} \circ k_{1}=k_{2} \circ k_{2}=1$ using Lemma 2(1). We conclude that $k_{1}=k_{2}=1$ and hence $K=\{1\}$.

Lemma 3. Each extended $K U$-algebra X_{K}, satisfies the following properties for all $x, y, z \in X$:
(i) $z \circ z \in K$,
(ii) $z \circ(x \circ z) \in K$,
(iii) $y \circ[(y \circ z) \circ z] \in K$,
(iv) $z \circ(y \circ x)=y \circ(z \circ x)$,
(v) $(z \circ x) \circ[(y \circ z) \circ(y \circ x)] \in K$ for all $x, y, z \in X$.

Proof. (i), (ii) and (iii) directly follow from the Definition 4.
(iv) Taking $x:=z, y:=(z \circ x) \circ x$ and $z:=y \circ x$ in (kue1) we get,

$$
[z \circ((z \circ x) \circ x)] \circ[(((z \circ x) \circ x) \circ(y \circ x)) \circ(z \circ(y \circ x))] \in K .
$$

Since $z \circ((z \circ x) \circ x) \in K$ by part (3) and using (kue3) in above equation we get,

$$
\begin{equation*}
(((z \circ x) \circ x) \circ(y \circ x)) \circ(z \circ(y \circ x)) \in K . \tag{3.1}
\end{equation*}
$$

Considering (kue1) with $x:=y, y:=z \circ x$ and $z:=x$ we obtain,

$$
\begin{equation*}
(y \circ(z \circ x)) \circ[((z \circ x) \circ x) \circ(y \circ x)] \in K . \tag{3.2}
\end{equation*}
$$

Again put $x:=y \circ(z \circ x), y:=((z \circ x) \circ x) \circ(y \circ x)$ and $z:=z \circ(y \circ x)$ in (kue1) we get, $[(y \circ(z \circ x)) \circ(((z \circ x) \circ x) \circ(y \circ x))]$ $\circ[((((z \circ x) \circ x) \circ(y \circ x)) \circ(z \circ(y \circ x))) \circ((y \circ(z \circ x)) \circ(z \circ(y \circ x)))] \in K$.
Using Eqs (3.1) and (3.2) with (kue3) in above relation we get,

$$
\begin{equation*}
(y \circ(z \circ x)) \circ(z \circ(y \circ x)) \in K . \tag{3.3}
\end{equation*}
$$

Interchange y and z in Eq (3.3), we get that,

$$
\begin{equation*}
(z \circ(y \circ x)) \circ(y \circ(z \circ x)) \in K . \tag{3.4}
\end{equation*}
$$

Combining Eqs (3.3) and (3.4) and using (kue4) we obtain,

$$
z \circ(y \circ x)=y \circ(z \circ x) .
$$

(v) It follows from (kue1) and part (4).

Definition 4. We define a binary relation \leq on an extended $K U$-algebra X_{K} as, $x \leq y$ if and only if either $x=y$ or $y \circ x \in K$ and $y \notin K$.

Note that if $y \in K$ and $y \circ x \in K$ for any $x \in X$, then by (kue3) we get, $x=y \circ x \in K$ and $x \circ y=y \in K \Rightarrow x=y$.

Definition 5. A non-empty subset K of a $K U$-algebra X is called the minimal set in $\left(X_{K}, \leq\right)$ if $x \leq k$ implies $x=k$, for any $x, y, z \in X$ and $k \in K$.

Lemma 4. An extended $K U$-algebra X_{K} with binary relation \leq is a partial ordered set with a minimal set K.

Proof. It follows from the definition of \leq and Lemma 3 (i) that $x \leq x$.
Let $x \leq y$ and $y \leq x$. If $x=y$, then we are done, otherwise by the definition of \leq we get, $y \circ x \in K$ and $x \circ y \in K$ which implies $x=y$ by (kue4).
Moreover, if $x=y$ or $y=z$, then $x \leq z$. Otherwise by the definition of \leq we get, $y \circ x \in K$ and $z \circ y \in K$. Now,

$$
(z \circ y) \circ[(y \circ x) \circ(z \circ x)] \in K \Rightarrow z \circ x \in K \Rightarrow x \leq z, \text { by (kue1) and (kue3). }
$$

Since $x \leq k \in K$, therefore it directly follows from the Definition 4 that $x=k$ and hence K is a minimal set.

Taking $\left(X_{K}, \leq\right)$ as a partial ordered set we obtain the following properties:
Theorem 2. Let X_{K} be an extended $K U$-algebra with partial order \leq. Then
(i) $x \leq y$ implies $z \circ x \leq z \circ y$ or $z \circ x, z \circ y \in K$,
(ii) $x \leq y$ implies $y \circ z \leq x \circ z$ or $y \circ z, x \circ z \in K$,
(iii) either $x \circ k \in K$ for all $k \in K$ or $x \circ k_{1}=x \circ k_{2}$, for all $k_{1}, k_{2} \in K$,
(iv) $((x \circ y) \circ y) \circ y=x \circ y$ or $x \circ y \in K$,
(v) $(y \circ x) \circ k=(y \circ k) \circ(x \circ k)$ or $(y \circ x) \circ k \in K$,
(vi) $x \circ k \in K$ and $y \circ k \in K$ implies $(y \circ x) \circ k \in K$ and $(x \circ y) \circ k \in K$,
(vii) $x \circ(y \circ x) \in K$,
(viii) if $x, y \notin K$, then $(y \circ x) \circ x \leq x$ and $(y \circ x) \circ x \leq y$ for all $x, y, z \in X$ and $k \in K$.

Proof. (i) Let $x \leq y$. If $x=y$, then the proof is clear. Otherwise $y \circ x \in K$ and then by Lemma 3(v) and (kue3), $(z \circ y) \circ(z \circ x)=(y \circ x) \circ((z \circ y) \circ(z \circ x)) \in K$ implies $z \circ x \leq z \circ y$ if $z \circ y \notin K$ or if $z \circ y \in K$, then $(z \circ y) \circ(z \circ x)=z \circ x \in K$.
(ii) Similar to (i).
(iii) Let $k_{1}, k_{2} \in K$ and $x \in X$. Then by Lemma 3(v) and (kue3), we get $\left(x \circ k_{2}\right) \circ\left(x \circ k_{1}\right)=\left(k_{2} \circ k_{1}\right) \circ$ $\left(\left(x \circ k_{2}\right) \circ\left(x \circ k_{1}\right)\right) \in K$. Similarly $\left(x \circ k_{1}\right) \circ\left(x \circ k_{2}\right)=\left(k_{1} \circ k_{2}\right) \circ\left(\left(x \circ k_{1}\right) \circ\left(x \circ k_{2}\right)\right) \in K$. Now by (kue4), $x \circ k_{1} ; x \circ k_{2} \in K$ or $x \circ k_{1}=x \circ k_{2}$ for all $k_{1}, k_{2} \in K$.
(iv) Since $(x \circ y) \circ(((x \circ y) \circ y) \circ y)=((x \circ y) \circ y) \circ((x \circ y) \circ y) \in K$ by Lemma 3 .

Taking (kue1) with $x:=x, y:=(x \circ y) \circ y$ and $z:=y$ we get that, $(x \circ((x \circ y) \circ y)) \circ[(((x \circ y) \circ y) \circ y) \circ(x \circ y)] \in$ K and so $((x \circ y) \circ(x \circ y)) \circ[(((x \circ y) \circ y) \circ y) \circ(x \circ y)] \in K$. Hence $(((x \circ y) \circ y) \circ y) \circ(x \circ y) \in K$ by Lemma 3.
Thus by (kue4), either $(((x \circ y) \circ y) \circ y)=x \circ y$ or $x \circ y \in K$ and $(((x \circ y) \circ y) \circ y) \in K$.
(v) If $x \circ k \notin K$, then by Lemma 3(i) and part (iii), we get $x \circ k=x \circ((y \circ x) \circ(y \circ x))$. By Lemma 3(iv) and (kue2),

$$
(y \circ k) \circ(x \circ k)=(y \circ k) \circ(x \circ((y \circ x) \circ(y \circ x)))
$$

$$
\begin{aligned}
& =(y \circ k) \circ((y \circ x) \circ(x \circ(y \circ x))) \\
& =(y \circ x) \circ((y \circ k) \circ(y \circ(x \circ x))) \\
& =(y \circ x) \circ\left((y \circ k) \circ\left(y \circ k^{\prime}\right)\right) \\
& =(y \circ x) \circ k^{\prime \prime} \in K \text { for some } k^{\prime}, k^{\prime \prime} \in K .
\end{aligned}
$$

Now by part (iv) either $(y \circ x) \circ k^{\prime \prime}=(y \circ x) \circ k$ or $(y \circ x) \circ k \in K$ which implies either $(y \circ k) \circ(x \circ k)=(y \circ x) \circ k$ or $(y \circ x) \circ k \in K$.
(vi) Let $x \circ k \in K$ and $y \circ k \in K$. By (kue3), $(y \circ k) \circ(x \circ k) \in K$. Hence $(y \circ k) \circ(x \circ k)=k_{1}$, for some $k_{1} \in K$. By $(\mathrm{ku} 1),(x \circ y) \circ k_{1}=(x \circ y) \circ((y \circ k) \circ(x \circ k)) \in K$.
Similarly we can prove that, $(x \circ y) \circ k_{2} \in K$. By part (iv), $(x \circ y) \circ K \subseteq K$ and $(y \circ x) \circ K \subseteq K$. Thus $(y \circ x) \circ k \in K$ and $(x \circ y) \circ k \in K$.
(vii) and (viii) follow from Lemma 3(iv).

Theorem 3. Let $X_{K_{1}}$ and $X_{K_{2}}$ be two extended $K U$-algebras with same operation \circ. Then $K_{1}=K_{2}$.
Proof. Let $x \in K_{1}$. Then by (kue3) $x=x \circ x$ but by Lemma 3(i) $x=x \circ x \in K_{2}$ implies $K_{1} \subseteq K_{2}$. Similarly we can show that $K_{2} \subseteq K_{1}$. Hence $K_{1}=K_{2}$.

Definition 6. A set $(Y ; \circ ; L)$ is called extended sub-algebra of an extended $K U$-algebra X_{K} if $Y \subseteq$ $X, L \subseteq K$, and Y_{L} is also an extended $K U$-algebra.

Example 5. From Example 3 if we take $Y=\{1,2,3\}$ with $K=\{1,2\}$, then Y_{K} is a sub-algebra of X_{K}.
The following result derived from the definition of extended KU-algebras.
Proposition 1. If $\left(X_{i}, \circ, K\right)$, for $i \in \Lambda$, is a family of extended $K U$-subalgebras of an extended $K U$ algebra $\left(X_{K}, \circ, K\right)$, then $\bigcap_{i \in \Lambda}\left(X_{i} ; \circ, K\right)$ is also an extended $K U$-subalgebra.

Theorem 4. Let X_{K} be an extended $K U$-algebra. Then Y_{L} is a sub-algebra of X_{K} if and only if $x \circ y \in Y$, for all $x, y \in Y$, and $L=K \cap Y$.

Proof. Let Y_{L} be a sub-algebra of an extended KU-algebra X_{K}. Then clearly $x \circ y \in Y$, for all $x, y \in Y$ and let $M=K \cap Y$. Since $M \subseteq K$, therefore it is easy to see that Y_{M} is a subalgebra of X_{K}. By Theorem 3, $M=L=K \cap Y$. Converse is obvious.

Corollary 1. If X_{L} is a sub-algebra of X_{K}, then $L=K$.

4. Ideals on extended KU-algebras

In this section we will discuss ideals and some properties of ideals related to extended KU -algebras.
Definition 7. A subset I of an extended $K U$-algebra X_{K} is called an ideal of X_{K} if $K \subseteq I$ and $x \in$ $I, x \circ y \in I \Rightarrow y \in I$.
Clearly X_{K} itself and K are trivial ideals of X_{K}.
Example 6. In Example 4 we can see that the subset $I=\{1,2,3,4\}$ is an ideal of the extended $K U$ algebra X_{K}.

Proposition 2. For any ideal I of extended $K U$-algebra, X_{K}. If $x \in I$ and $y \leq x$, then $y \in I$.

Proof. Proof follows from the Definitions 4 and 7.
Proposition 3. Let $\left\{I_{\lambda}: \lambda \in \Lambda\right\}$ be a family of ideals of X_{K}. Then $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is also ideal of X_{K}.
Proof. Since, $K \subseteq I_{\lambda}$, for all $\lambda \in \Lambda$, we have $K \subseteq \bigcap_{\lambda \in \Lambda} I_{\lambda}$. Let $x, x \circ y \in \bigcap_{\lambda \in \Lambda} I_{\lambda}$. Then $x, x \circ y \in I_{\lambda}$, for all $\lambda \in \Lambda$. Since I_{λ} is an ideal, we have $x \in I_{\lambda}$, for all $\lambda \in \Lambda$. Implies $x \in \bigcap_{\lambda \in \Lambda} I_{\lambda}$.

Theorem 5. For an extended $K U$-algebra (X, \circ, K), let $\left(X^{\prime}, \circ, 1\right)$ be a $K U$-algebra, where $X^{\prime}=(X \backslash$ $K) \cup\{1\}$. Then for any ideal I of an extended $K U$-algebra X_{K}, the set $J=(I \backslash K) \cup\{1\}$ is an ideal of $K U$-algebra X^{\prime}.

Proof. Clearly $1 \in J$. Let $x \in J$ and $x \circ y \in J$ for $x, y \in X^{\prime}$. If $x=1$, then $1 \circ y=y \in J$. Also if $x \neq 1$ but $y=1$, then $y \in J$ and we are done.
Therefore we suppose that both $x, y \neq 1$, hence $x \in I \backslash K$ and $y \in X \backslash K$. If $x \circ y=1$, then by Lemma 3(iii) and (ku3) we get $x \circ((x \circ y) \circ y)=x \circ(1 \circ y)=x \circ y \in K$ which is a contradiction, implies $x \circ y \in I \backslash K$. As I is an ideal of X_{K} and $x, x \circ y \in I \backslash K$ gives $y \in I \backslash K \subseteq J$. Hence J is an ideal of Y.

Example 7. Let $X=\{a, b, c, d, e\}$ and $K=\{a, b\}$. By the following table, X_{K} is an extended $K U$-algebra.

\circ	a	b	c	d	e
a	a	b	c	d	e
b	a	b	c	d	e
c	a	a	a	a	e
d	a	a	d	a	e
e	a	a	b	a	a

Take $X^{\prime}=\{1, c, d, e\}$ with the following table.

\circ	1	c	d	e
1	1	c	d	e
c	1	1	1	e
d	1	d	1	e
e	1	b	1	1

which is a KU-algebra. We can see that $I=\{a, b, c, d\}$ is an ideal of X_{K} and $J=(I \backslash K) \cup\{1\}=$ $\{1, c, d\}$ is an ideal of X^{\prime}.

Definition 8. We call a map $f:\left(X, \circ_{1}, K\right) \rightarrow\left(Y, \circ_{2}, L\right)$ between two extended $K U$-algebras an isomorphism if f is bijective and $f\left(x_{1} \circ_{1} y_{1}\right)=f\left(x_{1}\right) \circ_{2} f\left(x_{2}\right)$, for all $x_{1}, x_{2} \in X$.
If f is an isomorphism, then we say that X_{K} is isomorphic to Y_{L} and write it as, $X_{K} \simeq Y_{L}$.
Theorem 6. Let $f:\left(X, \circ_{1}, K\right) \rightarrow\left(Y, \circ_{2}, L\right)$ be an isomorphism between two extended $K U$-algebras. Then $f(K)=L$.

Proof. By Definition 8, the $\left(f(X)=Y, \circ_{1}, f(K)\right)$ is an extended KU-algebra and hence by Theorem 3 we get, $f(K)=L$.

Theorem 7. Let $f:\left(X, \circ_{1}, K\right) \rightarrow\left(Y, \circ_{2}, L\right)$ be an isomorphism and I be an ideal of $X_{K}=\left(X, \circ_{1}, K\right)$. Then $J=f(I)$ is also an ideal of $Y_{L}=\left(Y, \circ_{2}, L\right)$.

Proof. Since f is a bijective function and I is an ideal of X_{K}, therefore $K \subseteq I$ and hence $f(K) \subseteq f(I)$. By Theorem $6, f(K)=L \subseteq J=f(I)$, the rest follows by the fact that f is an isomorphism.

5. Conclusions

In this paper, an extension for KU -algebras is given as extended KU algebras X_{K} depending on a non-empty subset K of X. We see that every KU -algebra is an extended KU-algebra and extended KUalgebras X_{K} is a KU-algebra X if and only if K is a singleton set. Several properties including extended KU-algebras were explored. We also discuss ideals and isomorphisms related properties on extended KU -algebras.

As a future work one can consider such extensions on other logical algebras. Moreover, several identities such as fuzzification, roughness, codes, soft sets and other related work can be seen on extended KU-algebras.

Acknowledgments

The authors are thankful to the anonymous referees for their valuable comments and suggestions which improved the final version of this article.

Conflict of interest

The authors declare no conflict of interest.

References

1. M. A. Ansari, A. N. A. Koam, Rough approximations in KU-Algebras, Italian J. Pure Appl. Math., 40 (2018), 679-691.
2. M. A. Ansari, A. N. A. Koam, A. Haider, On KU-algebras containing (α, β)-US soft sets, Korean J. Math., 28 (2020), 89-104.
3. A. N. A. Koam, M. A. Ansari, Azeem Haider, n-ary block codes related to KU-algebras, J. Taibah Univ. Sci., 14 (2020), 172-176.
4. A. N. A. Koam, A. Haider, M. A. Ansari, Pseudo-metric on KU-algebras, Korean J. Math., 27 (2019), 131-140.
5. S. F. Farag, A. N. Babiker, Quasi-ideals and extensions of BCK-algebras, Sci. Math., 3 (2000), 385-398.
6. N. V. Subrahmanya, Commutative extended BCK-algebra, Math. Slovaca, 61 (2011), 523-538.
7. S. M. Mostafa, M. A. Abd-Elnaby, M. M. M. Yousef, Fuzzy ideals of KU-Algebras, Int. Math. Forum, 6 (2011), 3139-3149.
8. S. M. Mostafa, M. A. Abd-Elnaby, O. R. Elgendy, Interval valued fuzzy KU-ideals in KU-algebras, Int. Math. Forum, 6 (2011), 3151-3159.
9. C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, 5 (2009), 54-57.
10. C. Prabpayak, U. Leerawat, On isomorphisms of KU-algebras, Sci. Magna, 5 (2009), 25-31.
11. A. Radfar, A. Rezaei, A. Borumand Saeid, Extensions of BCK-algebras, Cogent Math., 3 (2016), 1265297.
12. A. Rezaei, A. Borumand Saeid, A. Radfar, On eBE-algebras, TWMS J. Pure Appl. Math., 7 (2016), 200-210.
13. A. Borumand Saeid, A. Rezaei, A. Radfar, A generalization of groups, Atti Accad. Peloritana Pericolanti, 96 (2018), 1-11.
14. Y. Imai, K. Iseki, On axiom systems of propositional calculi XIV, Proc. Jpn. Acad., 42 (1966), 19-22.
15. N. Yaqoob, S. M. Mostafa, M. A. Ansari, On cubic KU-ideals of KU-algebras, Isrn Algebras, 2013 (2013), 1-10.
16. T. Senapati, K. P. Shum, Atanassov's intuitionistic fuzzy bi-normed KU-ideals of a KU-algebra, J. Intell. Fuzzy Syst., 30 (2016), 1169-1180.
17. T. Senapati, Y. B. Jun, K. P. Shum, Cubic intuitionistic structure of KU-algebras, Afrika Mat., 31 (2020), 237-248.

AIMS Press
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

