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1. Introduction

Rumor spreading as a social contagion process is very similar to the epidemic diffusion, so most
rumor spreading models have evolved from epidemic models, such as SI, SIR and SIS. A classic
rumor model was DK model proposed by Daley and Kendall in 1964 [2], in which the population
was divided into three classes: people who did not know the rumor, people who spread the rumor and
people who know but will never spread the rumor. Maki and Thomson modified the DK model into
the MK model [8]. Since then, a number of scholars have proposed various rumor spreading models
by improving the traditional epidemic models [1, 3, 14–16]. In 2019, Tian and Ding [11] formulated
an ordinary differential equation (ODE) compartmental model for rumor, where the population was
divided into five disjoint classes, namely the ignorants, the latents, the rumor-spreaders, the debunkers
and the stiflers. At time t, the numbers in each of these classes are denoted by I(t), L(t),R(t),D(t) and
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S (t), respectively. The rumor spreading model considered by Tian and Ding [11] can be described by
a system of ODEs 

dI(t)
dt

= Λ − µIR − kID − ρI,

dL(t)
dt

= µIR + kID − (α + β + γ + ρ)L,

dR(t)
dt

= αL − (δ + ξ + ρ)R,

dD(t)
dt

= βL + ξR − (θ + ρ)D,

dS (t)
dt

= δR + θD + γL − ρS ,

(1.1)

where Λ is the constant immigration rate of the population, µ is the rumor-contacting rate, k is the
debunker-contacting rate, ρ is the rate at which all existing users exit from the five classes (i.e.
emigration rate), α is the rumor-spreading rate, β is the debunking rate, γ is the silent rate, δ is the
rumor-stifling, ξ is the reversal rate and θ represents the debunking-stifling rate. All parameters are
assumed to be independent of time t and positive.

The model used in the above study to describe rumor propagation behavior is deterministic model,
whereas the random models used to study rumor propagation are few [3]. But in the real world,
rumor models are often affected by environmental noise. Especially in emergency events, when rumors
are widely spread, the propagation process is affected by many uncertain factors, which increase the
volatility of the propagation process. Therefore, it would be necessary and interesting to reveal how
the environmental noise affects the rumor spreading model. Following the idea of Jia et al. [3], in this
paper, we assume that the stochastic perturbations are of white noise type which are proportional to the
system variable, respectively. Then we obtain a stochastic analogue of the deterministic model (1.1) as
follows 

dI =
[
Λ − µIR − kID − ρI

]
dt + σ1IdB1(t),

dL =
[
µIR + kID − (α + β + γ + ρ)L

]
dt + σ2LdB2(t),

dR =
[
αL − (δ + ξ + ρ)R

]
dt + σ3RdB3(t),

dD =
[
βL + ξR − (θ + ρ)D

]
dt + σ4DdB4(t),

dS =
[
δR + θD + γL − ρS

]
dt + σ5S dB5(t),

(1.2)

where Bi(t)(i = 1, 2, 3, 4, 5) are independent Brownian motions and σi > 0(i = 1, 2, 3, 4, 5) are their
intensities. All the other parameters in system (1.2) have the same meaning as in system (1.1).
Throughout this paper, unless otherwise specified, let (Ω,F , {Ft}t≥0,P) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual conditions, that is, it is rightly continuous and
increasing while F0 contains all P−null sets, and let Bi(t)(i = 1, 2, 3, 4, 5) be scalar Brownian motions
defined on the probability space. For the sake of simplicity, we introduce the following notations:
R5

+ = {(x1, x2, x3, x4, x5) ∈ R5 : xi > 0, i = 1, 2, 3, 4, 5}, a ∨ b = max{a, b}, a ∧ b = min{a, b}, σ =

σ1 ∨ σ2 ∨ σ3 ∨ σ4 ∨ σ5.

With the help of the Lyapunov function methods and the inequality techniques, the existence and
uniqueness of an ergodic stationary distribution of the positive solutions to system (1.2) are presented.
The main difficulties lies in the construction of Lyapunov function and the construction of a bounded
closed domain. The main contribution of this paper are highlighted as follows: (i) a stochastic rumor
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spreading model is proposed and investigated; (ii) some sufficient conditions for the existence of an
ergodic stationary distribution; and (iii) the stationary distribution implies that the rumor can be
persistent in the mean. The subsequent part of this paper is as follows: In Section 2, we prove the
existence and uniqueness of a global positive solution to system (1.2) with any positive initial value.
In Section 3, by constructing a suitable stochastic Lyapunov function, we establish sufficient
conditions for the existence and uniqueness of an ergodic stationary distribution of the positive
solutions to model (1.2). In Section 4, some numerical simulations are provided to illustrate our
theoretical results. Finally, some concluding remarks are presented to end this paper.

2. Existence and uniqueness of the global positive solution

To analyze the dynamical behavior of a rumor spreading model, the first concerning thing is whether
the solution is global and positive. In this section, motivated by the methods in [9] and we show that
there is a unique global positive solution of system (1.2). The key is to construct a Lyapunov function.

Theorem 2.1. For any given initial value (I(0), L(0),R(0),D(0), S (0)) ∈ R5
+, system (1.2) admits a

unique solution (I(t), L(t),R(t),D(t), S (t)) ∈ R5
+ on t ≥ 0 and the solution will remain in R5

+ with
probability one, namely (I(t), L(t),R(t),D(t), S (t)) ∈ R5

+ for all t ≥ 0 almost surely (a.s.).

Proof. Since the coefficients of system (1.2) satisfy the local Lipschitz condition, we know that, for
any initial value (I(0), L(0),R(0),D(0), S (0)) ∈ R5

+, there is a unique local solution
(I(t), L(t),R(t),D(t), S (t)) ∈ R5

+ on t ∈ [0, τe], where τe is the explosion time [10]. Now we prove the
solution is global, i.e. to prove τe = ∞ a.s. To this end, let m0 > 0 be sufficiently large such that each
component of (I(0), L(0),R(0),D(0), S (0)) all lies in the interval [ 1

m0
,m0]. For each integer m ≥ m0,

define the following stopping time

τm = inf
{

t ∈ [0, τe) : min{I(t), L(t),R(t),D(t), S (t)} ≤
1
m

or max{I(t), L(t),R(t),D(t), S (t)} ≥ m
}
.

Throughout this paper, we set inf ∅ = ∞ (as usual ∅ denotes the empty set). Obviously, τm is an
increasing function as m → ∞. Set τ∞ = limm→∞ τm. Then τ∞ ≤ τe a.s. If τ∞ = ∞ a.s. is true,
then τe = ∞ a.s. and (I(t), L(t),R(t),D(t), S (t)) ∈ R5

+ a.s. for all t ≥ 0. In other words, in order to
show this assertion, we only need to prove τ∞ = ∞ a.s. If the assertion is false, then there is a pair of
constants T > 0 and ε̄ ∈ (0, 1) such that P{τm ≤ T } ≥ ε̄ for each integer m ≥ m0. Define a C2-function
V : R5

+ → R+ ∪ {0} by

V(I, L,R,D, S ) = (I − a − a ln
I
a

) + (L − 1 − ln L) + (R − 1 − ln R) + (D − 1 − ln D) + (S − 1 − ln S ),

where a is a positive constant to be determined later. The nonnegativity of this function can be seen
from u − 1 − ln u ≥ 0,∀u > 0. According to the general Itô formula (see, for example, Theorem 4.2.1
of [10]), we have

dV(I, L,R,D, S ) = LV(I, L,R,D, S )dt + σ1(I − a)dB1(t) + σ2(L − 1)dB2(t) + σ3(R − 1)dB3(t)
+ σ4(D − 1)dB4(t) + σ5(S − 1)dB5(t),
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where LV : R5
+ → R is defined by

LV(I, L,R,D, S ) =

(
1 −

a
I

)
(Λ − µIR − kID − ρI) +

(
1 −

1
L

)
(µIR + kID − (α + β + γ + ρ)L)

+

(
1 −

1
R

)
(αL − (δ + ξ + ρ)R) +

(
1 −

1
D

)
(βL + ξR − (θ + ρ)D)

+

(
1 −

1
S

)
(δR + θD + γL − ρS ) +

aσ2
1 + σ2

2 + σ2
3 + σ2

4 + σ2
5

2

= Λ − ρI − ρL − ρR − ρD − ρS − a
Λ

I
+ aµR + akD + aρ −

µIR
L
−

kID
L
−
αL
R

+(α + β + γ + ρ) + (δ + ξ + ρ) −
βL
D
−
ξR
D

+ (θ + ρ) −
δR
S
−
θD
S
−
γL
S

+ ρ

+
aσ2

1 + σ2
2 + σ2

3 + σ2
4 + σ2

5

2
≤ Λ + (aµ − ρ)R + (ak − ρ)D + (a + 4)ρ + α + β + γ + δ + ξ + θ

+
aσ2

1 + σ2
2 + σ2

3 + σ2
4 + σ2

5

2
.

Choose a = min{ ρ
µ
, ρk }, then we obtain

LV(I, L,R,D, S ) ≤ Λ + (a + 4)ρ + α + β + γ + δ + ξ + θ +
aσ2

1 + σ2
2 + σ2

3 + σ2
4 + σ2

5

2
:= K.

and K is a positive constant. Thus,

dV(I, L,R,D, S ) ≤ Kdt + σ1(I − a)dB1(t) + σ2(L − 1)dB2(t) + σ3(R − 1)dB3(t)
+σ4(D − 1)dB4(t) + σ5(S − 1)dB5(t). (2.1)

For any m ≥ m0, integrating (2.1) on both sides from 0 to τm ∧ T and then taking expectation yield

EV(I(τm ∧ T ), L(τm ∧ T ),R(τm ∧ T ),D(τm ∧ T ), S (τm ∧ T )) ≤ V(I(0), L(0),R(0),D(0), S (0)) + KT.

Let Ωm = {ω ∈ Ω : τm = τm(ω) ≤ T } for m ≥ m0. Then we have P(Ωm) ≥ ε̄. Note that, for every
ω ∈ Ωm, there exists I(τm, ω) or L(τm, ω) or R(τm, ω) or D(τm, ω) or S (τm, ω) equaling either m or 1

m .
Thus V(I(τm, ω), L(τm, ω)),R(τm, ω),D(τm, ω), S (τm, ω) is no less than either

m − a − a ln m
a or 1

m − a − a ln 1
ma = 1

m − a + a ln(ma) or m − 1 − ln m or 1
m − 1 − ln 1

m = 1
m − 1 + ln m.

So we have

V(I(τm, ω), L(τm, ω),R(τm, ω),D(τm, ω), S (τm, ω)) ≥
(
m − a − a ln

m
a

)
∧

(
1
m
− a + a ln(ma)

)
∧ (m − 1 − ln m) ∧

(
1
m
− 1 + ln m

)
.

Consequently,

V(I(0), L(0),R(0),D(0), S (0)) + KT ≥ E[1Ωm(ω)V(I(τm, ω), L(τm, ω),R(τm, ω),D(τm, ω), S (τm, ω))]
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≥ ε̄
(
m − a − a ln

m
a

)
∧

(
1
m
− a + a ln(ma)

)
∧ (m − 1 − ln m)

∧

(
1
m
− 1 + ln m

)
,

where 1Ωm denotes the indicator function of Ωm. Letting m→ ∞ leads to the contradiction

∞ > V(I(0), L(0),R(0),D(0), S (0)) + KT = ∞.

This completes the proof.

3. Existence of ergodic stationary distribution

When considering rumor propagation model, we are also interested to know when the rumor will
persist and prevail in a population. In the deterministic models, it can be solved by proving the rumor-
epidemic equilibrium of the corresponding model is a global attractor or globally asymptotically stable.
But there is no rumor-epidemic equilibrium in system (1.2). In this section, based on the theory of
Khasminskii( [7]), we prove that there is a stationary distribution which reveals that the rumor will
persist in the mean. Here we present some theory about the stationary distribution which is introduced
in ( [7]).

Definition 3.1. ( [7]) The transition probability function P(s, x, t, A) is said to be time-homogeneous
(and the corresponding Markov process is called time-homogeneous) if the function P(s, x, t + s, A) is
independent of s, where 0 ≤ s ≤ t, x ∈ Rl and A ∈ B and B denotes the σ− algebra of Borel sets in Rl.

Definition 3.2. ( [7]) Let X(t) be a regular time-homogeneous Markov process in Rl described by the
stochastic differential equation:

dX(t) = f (X(t))dt +

k∑
r=1

gr(X(t))dBr(t).

The diffusion matrix of the process X(t) is defined as follows:

A(x) = (ai j(x)), ai j(x) =

k∑
r=1

gi
r(x)g j

r(x).

Lemma 3.1. ( [7]) The Markov process X(t) has a unique ergodic stationary distribution π(·) if there
exists a bounded domain D ⊂ Rn with regular boundary Γ and

A1: there is a positive number M such that
d∑

i, j=1

ai j(x)ξiξ j ≥ M|ξ|2, ∀x ∈ D, ∀ξ ∈ Rn.

A2: there exists a nonnegative C2-function V such thatLV is negative for any Rn \D, whereL denotes
the differential operator defined by

L =

n∑
i=1

bi(x)
∂

∂xi
+

1
2

n∑
i, j=1

ai j(x)
∂2

∂xi∂x j
.
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Then

Px

{
lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
Rn

f (x)π(dx)
}

= 1

for all x ∈ Rn, where f (·) is a function integrable with respect to the measure π.

Theorem 3.1. Assume

Rs
0 :=

Λµα

4
(
ρ +

σ2
1

2

) (
α + β + γ + ρ +

σ2
2

2

) (
δ + ξ + ρ +

σ2
3

2

) > 1.

Then, for any initial value (I(0), L(0),R(0),D(0), S (0)) ∈ R5
+, system (1.2) has a unique stationary

distribution π(·) and the ergodicity holds.

Proof. Theorem 2.1 tells us that for any initial value (I(0), L(0),R(0),D(0), S (0)) ∈ R5
+, there is a

unique global solution (I(t), L(t),R(t),D(t), S (t)) ∈ R5
+. In order to prove this Theorem, it suffices to

validate A1 and A2 in Lemma 3.1. First, we verify A1. The diffusion matrix of system (1.2) is given by

A =


σ2

1I2 0 0 0 0
0 σ2

2L2 0 0 0
0 0 σ2

3R2 0 0
0 0 0 σ2

4D2 0
0 0 0 0 σ2

5S 2


.

It is easy to see that the matrix A is positive definite for any compact subset of R5
+, so condition A1 in

Lemma 3.1 is satisfied. Now we prove condition A2. Define a C2-function

Q̃(I, L,R,D, S ) = M(−n1 ln I − n2 ln L − n3 ln R − n4 ln S − n5D)

+
1

% + 1
(I + L + R + D + S )(%+1) − ln I − ln L − ln R − ln S

:= MQ1 + Q2 − ln I − ln L − ln R − ln S ,

where n1, n2, n3, n4, n5, % and M are positive constants, which will be determined later. It is easy to
check that

lim inf
k→∞,(I,L,R,D,S )∈R5

+\Uk

Q̃(I, L,R,D, S ) = +∞,

where Uk = Π5
i=1

(
1
k , k

)
. In addition, Q̃(I, L,R,D, S ) is a continuous function. Hence, Q̃(I, L,R,D, S )

must have a minimum point (I0, L0,R0,D0, S 0) ∈ R5
+. Therefore, we define a nonnegative C2-function

Q : R5
+ → R+

Q(I, L,R,D, S ) = Q̃(I, L,R,D, S ) − Q̃(I0, L0,R0,D0, S 0).

Applying the general Itô formula [10] to Q1, one obtains the differential operator L of Q1 as follows:

LQ1 = −
n1

I
[
Λ − µIR − kID − ρI

]
+

n1σ
2
1

2
−

n2

L
[
µIR + kID − (α + β + γ + ρ) L

]
+

n2σ
2
2

2

−
n3

R
[
αL − (δ + ξ + ρ) R

]
+

n3σ
2
3

2
−

n4

S
[
δR + θD + γL − ρS

]
+

n4σ
2
5

2
− n5[βL + ξR − (θ + ρ)D]
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≤ −

(
n1Λ

I
+

n2µIR
L

+
n3αL

R

)
+ (n1µ − n5ξ) R + (n1k + n5(θ + ρ)) D + n1ρ + n2(α + β + γ + ρ)

+ n3(δ + ξ + ρ) + n4ρ +
n1σ

2
1

2
+

n2σ
2
2

2
+

n3σ
2
3

2
+

n4σ
2
5

2
≤ −3 3

√
n1n2n3Λµα + (n1µ − n5ξ) R + (n1k + n5(θ + ρ)) D + n1ρ + n2(α + β + γ + ρ)

+ n3(δ + ξ + ρ) + n4ρ +
n1σ

2
1

2
+

n2σ
2
2

2
+

n3σ
2
3

2
+

n4σ
2
5

2

= −3 3
√

n1n2n3Λµα + (n1µ − n5ξ) R + (n1k + n5(θ + ρ)) D + n1

(
ρ +

σ2
1

2

)
+ n2

(
α + β + γ + ρ +

σ2
2

2

)
+ n3

(
δ + ξ + ρ +

σ2
3

2

)
+ n4

(
ρ +

σ2
5

2

)
.

Let

n1 = 1, n2 =
ρ +

σ2
1

2

2
(
α + β + γ + ρ +

σ2
2

2

) , n3 =
ρ +

σ2
1

2

2
(
δ + ξ + ρ +

σ2
3

2

) , n4 =
ρ +

σ2
1

2

ρ +
σ2

5
2

, n5 =

(
1 +

1
M

)
µ

ξ
.

Then it follows that

LQ1 ≤ −3


Λµα

(
ρ +

σ2
1

2

)2

4
(
α + β + γ + ρ +

σ2
2

2

) (
δ + ξ + ρ +

σ2
3

2

)


1
3

−
µ

M
R

+

[
k +

(
1 +

1
M

)
µ(θ + ρ)

ξ

]
D + 3

(
ρ +

σ2
1

2

)
= −3

(
ρ +

σ2
1

2

) (
Rs

1
3

0 − 1
)
−
µ

M
R +

[
k +

(
1 +

1
M

)
µ(θ + ρ)

ξ

]
D. (3.1)

Similarly, one has

LQ2 = (I + L + R + D + S )%[Λ − ρ(I + L + R + D + S )]

+
%

2
(I + L + R + D + S )%−1

(
σ2

1I2 + σ2
2L2 + σ2

3R2 + σ2
4D2 + σ2

5S 2
)

≤ Λ(I + L + R + D + S )% − ρ(I + L + R + D + S )%+1

+
%

2

(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4 ∨ σ

2
5

)
(I + L + R + D + S )%+1

= Λ(I + L + R + D + S )% − φ(I + L + R + D + S )%+1

≤ C0 −
1
2
φ(I + L + R + D + S )%+1

≤ C0 −
1
2
φ(I%+1 + L%+1 + R%+1 + D%+1 + S %+1), (3.2)

where we choose % sufficiently small such that φ = ρ − %σ2

2 > 0 and

C0 = sup
(I,L,R,D,S )∈R5

+

{
Λ(I + L + R + D + S )% −

φ

2
(I + L + R + D + S )%+1

}
< ∞.
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Moreover, one has 

L(− ln I) = −
Λ

I
+ µR + kD + ρ +

σ2
1

2
,

L(− ln L) = −
µIR

L
−

kID
L

+ (α + β + γ + ρ) +
σ2

2

2
,

L(− ln R) = −
αL
R

+ (δ + ξ + ρ) +
σ2

3

2
,

L(− ln S ) = −
δR
S
−
θD
S
−
γL
S

+ ρ +
σ2

5

2
.

(3.3)

Making use of (3.1)–(3.3), we then derive that

LQ ≤ −3M
(
ρ +

σ2
1

2

) (
Rs

1
3

0 − 1
)

+ (M + 1)
(
k +

µ(θ + ρ)
ξ

)
D + C0 −

Λ

I
+ ρ

−
1
2
φ(I%+1 + L%+1 + R%+1 + D%+1 + S %+1) +

σ2
1

2
−
µIR

L
−

kID
L

+ (α + β + γ + ρ)

+
σ2

2

2
−
αL
R

+ (δ + ξ + ρ) +
σ2

3

2
−
δR
S
−
θD
S
−
γL
S

+ ρ +
σ2

5

2

≤ −3M
(
ρ +

σ2
1

2

) (
Rs

1
3

0 − 1
)

+ (M + 1)
(
k +

µ(θ + ρ)
ξ

)
D −

Λ

I
−

kID
L
−
αL
R
−
θD
S

+ C0 + 4ρ

+ α + β + γ + δ + ξ +
σ2

1 + σ2
2 + σ2

3 + σ2
5

2
−
φ

2

(
I%+1 + L%+1 + R%+1 + D%+1 + S %+1

)
(3.4)

For the convenience, we define

H1 = sup
D∈R+

{
−3M

(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
D −

1
4
φD%+1

}
< ∞

and

H2 = C0 + 4ρ + α + β + γ + δ + ξ +
1
2

(σ2
1 + σ2

2 + σ2
3 + σ2

5).

Now we are in the position to construct a bounded closed domain Uε such that the condition A2 in
Lemma 3.1 holds. To this end, we define a compact set as follows

Uε =

{
(I, L,R,D, S ) ∈ R5

+ : ε ≤ I ≤
1
ε
, ε3 ≤ L ≤

1
ε3 , ε

4 ≤ R ≤
1
ε4 , ε ≤ D ≤

1
ε
, ε2 ≤ S ≤

1
ε2

}
,

where ε > 0 is a sufficiently small constant such that

−3M
(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
ε + H2 < −1 (3.5)

and

−

(
Λ

ε
∧
θ

ε
∧

k
ε
∧
α

ε
∧

φ

2ε4(%+1) ∧
φ

4ε%+1

)
+ H1 + H2 < −1, (3.6)
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For convenience, we can divide R5
+ \ Uε into ten domains, where

U1 =
{
(I, L,R,D, S ) ∈ R5

+|0 < I < ε
}
, U2 =

{
(I, L,R,D, S ) ∈ R5

+|0 < D < ε
}
,

U3 =
{
(I, L,R,D, S ) ∈ R5

+|ε ≤ D, 0 < S < ε2
}
, U4 =

{
(I, L,R,D, S ) ∈ R5

+|ε ≤ I, ε ≤ D, 0 < L < ε3
}
,

U5 =
{
(I, L,R,D, S ) ∈ R5

+|ε
3 ≤ L, 0 < R < ε4

}
, U6 =

{
(I, L,R,D, S ) ∈ R5

+|I >
1
ε

}
,

U7 =

{
(I, L,R,D, S ) ∈ R5

+|L >
1
ε3

}
, U8 =

{
(I, L,R,D, S ) ∈ R5

+|R >
1
ε4

}
,

U9 =

{
(I, L,R,D, S ) ∈ R5

+|D >
1
ε

}
, U10 =

{
(I, L,R,D, S ) ∈ R5

+|S >
1
ε2

}
.

Obviously, R5
+ \ Uε =

⋃10
i=1 Ui. Next, we will prove that LQ(I, L,R,D, S ) ≤ −1 for any

(I, L,R,D, S ) ∈ R5
+ \ Uε , which is equivalent to proving it on the above ten domains, respectively.

Case 1. For any (I, L,R,D, S ) ∈ U1, then (3.4) implies that

LQ ≤ −3M
(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
D −

1
2
φD%+1

−
Λ

I
+ C0 + 4ρ + α + β + γ + δ + ξ +

1
2

(σ2
1 + σ2

2 + σ2
3 + σ2

5)

≤ −
Λ

I
+ H1 + H2 ≤ −

Λ

ε
+ H1 + H2. (3.7)

Case 2. For any (I, L,R,D, S ) ∈ U2, using (3.4) one obtains

LQ ≤ −3M
(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
D

+ C0 + 4ρ + α + β + γ + δ + ξ +
1
2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤ −3M

(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
ε + H2. (3.8)

Case 3. For any (I, L,R,D, S ) ∈ U3, in view of (3.4), we get

LQ ≤ −3M
(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
D −

1
2
φD%+1

−
θD
S

+ C0 + 4ρ + α + β + γ + δ + ξ +
1
2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤ −

θD
S

+ H1 + H2 ≤ −
θ

ε
+ H1 + H2. (3.9)

Case 4. For any (I, L,R,D, S ) ∈ U4, it follows from (3.4) that

LQ ≤ −3M
(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
D −

1
2
φD%+1
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−
kID

L
+ C0 + 4ρ + α + β + γ + δ + ξ +

1
2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤ −

k
ε

+ H1 + H2. (3.10)

Case 5. For any (I, L,R,D, S ) ∈ U5, according to (3.4), we derive

LQ ≤ −3M
(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
D −

1
2
φD%+1

−
αL
R

+ C0 + 4ρ + α + β + γ + δ + ξ +
1
2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤ −

α

ε
+ H1 + H2. (3.11)

Case 6. For any (I, L,R,D, S ) ∈ U6, by (3.4), we obtain

LQ ≤ −3M
(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
D −

1
2
φD%+1

−
1
2
φI%+1 + C0 + 4ρ + α + β + γ + δ + ξ +

1
2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤ −

1
2
φ

1
ε%+1 + H1 + H2. (3.12)

Case 7. For any (I, L,R,D, S ) ∈ U7, note from (3.4) that

LQ ≤ −3M
(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
D −

1
2
φD%+1

−
1
2
φL%+1 + C0 + 4ρ + α + β + γ + δ + ξ +

1
2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤ −

1
2
φ

1
ε3(%+1) + H1 + H2. (3.13)

Case 8. For any (I, L,R,D, S ) ∈ U8, making use of (3.4) one obtains that

LQ ≤ −3M
(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
D −

1
2
φD%+1

−
1
2
φR%+1 + C0 + 4ρ + α + β + γ + δ + ξ +

1
2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤ −

1
2
φ

1
ε4(%+1) + H1 + H2. (3.14)

Case 9. For any (I, L,R,D, S ) ∈ U9, we know from (3.4) that

LQ ≤ −3M
(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
D −

1
4
φD%+1

−
1
4
φD%+1 + C0 + 4ρ + α + β + γ + δ + ξ +

1
2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤ −

1
4
φ

1
ε%+1 + H1 + H2. (3.15)
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Case 10. For any (I, L,R,D, S ) ∈ U10, using (3.4), we can show that

LQ ≤ −3M
(
ρ +

σ2
1

2

) (
Rs 1

3
0 − 1

)
+ (M + 1)

(
k +

µ(θ + ρ)
ξ

)
D −

1
2
φD%+1

−
1
2
φS %+1 + C0 + 4ρ + α + β + γ + δ + ξ +

1
2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤ −

1
2
φ

1
ε2(%+1) + H1 + H2. (3.16)

It follows from (3.5)–(3.16) that

LQ < −1, ∀(I, L,R,D, S ) ∈ R5
+ \ Uε ,

which proves that condition A2 holds. Thus the conditions in Lemma 3.1 are verified, the proof is
completed.

Remark 3.1. Comparing with the threshold parameter R0 in [11], the parameter Rs
0 in stochastic

system (1.2) is less than R0, which reveals that the extinction of the rumor is much easier than in the
corresponding deterministic model (1.1). Moreover, taking attention to the expression of Rs

0, we can
control the rumor propagation by environmental white noise.

4. Numerical simulations

In this section, we give some examples to illustrate the obtained theoretical results. We illustrate
our findings by the Milstein’s Higher Order Method developed in [5]. According to this method, we
can get the following discretization equation of system (1.2):

I j+1 = I j + [Λ − µI jR j − kI jD j − ρI j]∆t + σ1I j

√
∆tξ1, j +

σ2
1

2
I j∆t(ξ2

1, j − 1),

L j+1 = L j + [µI jR j + kI jD j − (α + β + γ + ρ)L j]∆t + σ2L j

√
∆tξ2, j +

σ2
2

2
L j∆t(ξ2

2, j − 1),

R j+1 = R j + [αL j − (δ + ξ + ρ)R j]∆t + σ3R j

√
∆tξ3, j +

σ2
3

2
R j∆t(ξ2

3, j − 1),

D j+1 = D j + [βL j + ξR j − (θ + ρ)D j]∆t + σ4D j

√
∆tξ4, j +

σ2
4

2
D j∆t(ξ2

4, j − 1),

S j+1 = S j + [δR j + θD j + γL j − ρS j]∆t + σ5S j

√
∆tξ5, j +

σ2
5

2
S j∆t(ξ2

5, j − 1),

where time increment ∆t > 0, and ξ1,k, ξ2,k, ξ3,k, ξ4,k, ξ5,k are independent Gaussian random variables
which follows N(0, 1). However, we would like to point out that the values of parameters of system
(1.2) and the initial values in the following numerical simulations are chosen for illustration purposes
and are not taken from any real life data for any rumors. To this end, we
set(I(0), L(0),R(0),D(0), S (0)) = (0.3, 0.6, 0.2, 0.9, 0.6).
Example 1. Choose the parameters: Λ = 5, µ = 0.045, k = 0.2, α = 0.05, β = 0.05, γ = 0.05, ρ =

0.01, δ = 0.01, ξ = 0.01, θ = 0.2.
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By simple calculation, we have Rs
0 = 1.213 > 1, which means that the conditions of Theorem 3.1

hold. Therefore, system (1.2) has a unique ergodic stationary distribution. Figures 1 and 2 illustrate
this fact.
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Figure 1. σ1 = 0.9, σ2 = σ3 = 0.09, σ4 = σ5 = 0.05.
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Figure 2. Relative frequency density.
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Example 2. Choose the parameters: Λ = 0.6, µ = 0.04, k = 0.8, α = 0.5, β = 0.05, γ = 0.5, ρ =

0.01, δ = 0.1, ξ = 0.2, θ = 0.2.

In what follows, we start comparing the stochastic system and deterministic system. In Figure 3,
the rumor-spreaders in stochastic system are shown in red lines, compared with the rumor-spreaders in
deterministic system which are shown in blue lines. It reveals that the environmental disturbance may
help to curb the outbreak of rumors. Further, if we increase the environmental noise, the simulation
results in Figure 4 suggests that the extinction of rumor-spreaders in stochastic system is much more
easier than that in the corresponding deterministic system.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R(t)

R(t)

Figure 3. Red line: Rumor-spreaders in stochastic system. Blue line: Rumor-spreaders in
deterministic system. The intensities of the white noise are σ1 = 2.3, σ2 = 1, σ3 = 0.25, σ4 =

0.3, σ5 = 0.5, and other parameter values are presented in Example 2.
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Figure 4. Red line: Rumor-spreaders in stochastic system. Blue line: Rumor-spreaders
in deterministic system. The intensities of the white noise are σ1 = 2.7, σ2 = 1.5, σ3 =

0.3, σ4 = 0.4, σ5 = 0.6, and other parameter values are presented in Example 2.
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5. Conclusions

In the current paper, we have studied a stochastic rumor spreading model. We have established
sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the
positive solutions to system (1.2) by using the stochastic Lyapunov function method. The ergodic
property can help us better understand cycling phenomena of a rumor spreading model, and so
describe the persistence of a rumor spreading model in practice. More precisely, we have obtained the
following result:
• Assume

Rs
0 :=

Λµα

4
(
ρ +

σ2
1

2

) (
α + β + γ + ρ +

σ2
2

2

) (
δ + ξ + ρ +

σ2
3

2

) > 1.

Then, for any initial value (I(0), L(0),R(0),D(0), S (0)) ∈ R5
+, system (1.2) has a unique stationary

distribution π(·) and the ergodicity holds. The stationary distribution indicates that the rumor can
become persistent in vivo. The theoretic work extended the results of the corresponding deterministic
system. The results show that the rumors will maintain its persistence if the environmental noise is
sufficiently small, while large stochastic noise can suppress the spread of rumors.

Some interesting topics deserve further consideration. As we all know, time-delay occurs frequently
in many practical engineering systems, which is usually the source of oscillation, instability and poor
performance of the systems. Now time-delay has been considered into many stochastic models (see,
for example, [4, 6, 12, 13]). We leave time-delay case for our future work.
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