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Abstract: In this paper, we develop a rumor spreading model by introducing white noise into the
model. We establish sufficient conditions for the existence and uniqueness of an ergodic stationary
distribution of the positive solutions to the stochastic model by constructing a suitable stochastic
Lyapunov function, which provides us a good description of persistence. Finally, we provide some
numerical simulations to illustrate the analytical results.
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1. Introduction

Rumor spreading as a social contagion process is very similar to the epidemic diffusion, so most
rumor spreading models have evolved from epidemic models, such as SI, SIR and SIS. A classic
rumor model was DK model proposed by Daley and Kendall in 1964 [2], in which the population
was divided into three classes: people who did not know the rumor, people who spread the rumor and
people who know but will never spread the rumor. Maki and Thomson modified the DK model into
the MK model [8]. Since then, a number of scholars have proposed various rumor spreading models
by improving the traditional epidemic models [1, 3, 14-16]. In 2019, Tian and Ding [11] formulated
an ordinary differential equation (ODE) compartmental model for rumor, where the population was
divided into five disjoint classes, namely the ignorants, the latents, the rumor-spreaders, the debunkers
and the stiflers. At time 7, the numbers in each of these classes are denoted by I(¢), L(t), R(t), D(t) and
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S (7), respectively. The rumor spreading model considered by Tian and Ding [11] can be described by
a system of ODEs

%:A_MIR—MD—,OI,

% =ulR+kID — (@ +B+y+p)L,

% =alL— (0 +&+p)R, (D
dzy) = BL + ¢R — (0 + p)D,

% =06R+ 6D + yL - pS,

where A is the constant immigration rate of the population, u is the rumor-contacting rate, k is the
debunker-contacting rate, p is the rate at which all existing users exit from the five classes (i.e.
emigration rate), « is the rumor-spreading rate, 5 is the debunking rate, y is the silent rate, ¢ is the
rumor-stifling, & is the reversal rate and 6 represents the debunking-stifling rate. All parameters are
assumed to be independent of time ¢ and positive.

The model used in the above study to describe rumor propagation behavior is deterministic model,
whereas the random models used to study rumor propagation are few [3]. But in the real world,
rumor models are often affected by environmental noise. Especially in emergency events, when rumors
are widely spread, the propagation process is affected by many uncertain factors, which increase the
volatility of the propagation process. Therefore, it would be necessary and interesting to reveal how
the environmental noise affects the rumor spreading model. Following the idea of Jia et al. [3], in this
paper, we assume that the stochastic perturbations are of white noise type which are proportional to the
system variable, respectively. Then we obtain a stochastic analogue of the deterministic model (1.1) as
follows

dl = [A — uIR — kID — pI| dt + o11dB:(¢),
dL = [uIR + kID — (a + B +y + p)L] dt + 0, Ld B (1),
dR = [aL — (6 + £ + p)R] dt + 03RdB5(1), (1.2)
dD = [BL + éR — (0 + p)D] dt + 04 DdBy(t),
dS = [6R + 0D + yL — pS|dt + 05S dBs(1),

where B;(1)(i = 1,2,3,4,5) are independent Brownian motions and o; > 0(i = 1,2, 3,4,5) are their
intensities. All the other parameters in system (1.2) have the same meaning as in system (1.1).
Throughout this paper, unless otherwise specified, let (Q, . Z,{%}0, P) be a complete probability
space with a filtration {.%,},» satisfying the usual conditions, that is, it is rightly continuous and
increasing while .%, contains all P—null sets, and let B;(t)(i = 1,2, 3,4, 5) be scalar Brownian motions
defined on the probability space. For the sake of simplicity, we introduce the following notations:
Ri = {(x1, X2, X3, X4, X5) € R’ 1 x; > 0,i = 1,2,3,4,5},a V b = max{a,b},a A b = min{a,b},oc =
o VoyVo3VoygVos.

With the help of the Lyapunov function methods and the inequality techniques, the existence and
uniqueness of an ergodic stationary distribution of the positive solutions to system (1.2) are presented.
The main difficulties lies in the construction of Lyapunov function and the construction of a bounded
closed domain. The main contribution of this paper are highlighted as follows: (i) a stochastic rumor

AIMS Mathematics Volume 6, Issue 2, 1234—-1248.



1236

spreading model is proposed and investigated; (ii) some sufficient conditions for the existence of an
ergodic stationary distribution; and (iii) the stationary distribution implies that the rumor can be
persistent in the mean. The subsequent part of this paper is as follows: In Section 2, we prove the
existence and uniqueness of a global positive solution to system (1.2) with any positive initial value.
In Section 3, by constructing a suitable stochastic Lyapunov function, we establish sufficient
conditions for the existence and uniqueness of an ergodic stationary distribution of the positive
solutions to model (1.2). In Section 4, some numerical simulations are provided to illustrate our
theoretical results. Finally, some concluding remarks are presented to end this paper.

2. Existence and uniqueness of the global positive solution

To analyze the dynamical behavior of a rumor spreading model, the first concerning thing is whether
the solution is global and positive. In this section, motivated by the methods in [9] and we show that
there is a unique global positive solution of system (1.2). The key is to construct a Lyapunov function.

Theorem 2.1. For any given initial value (/(0), L(0), R(0), D(0), S (0)) € Ri, system (1.2) admits a
unique solution (I(¢), L(¢), R(¢), D(t), S (t)) € R on t > 0 and the solution will remain in R with

probability one, namely (I(2), L(t), R(f), D(¢), S (1)) € R3 for all ¢ > 0 almost surely (a.s.).

Proof. Since the coeflicients of system (1.2) satisfy the local Lipschitz condition, we know that, for
any initial value (/(0),L(0),R(0),D(0),S(0)) € Ri, there is a wunique local solution
(), L(t),R(1), D(1),S (1)) € Ri ont € [0, 7.], where 7, is the explosion time [10]. Now we prove the
solution is global, i.e. to prove 7, = oo a.s. To this end, let m, > O be sufficiently large such that each
component of (1(0), L(0), R(0), D(0), S(0)) all lies in the interval [mio, my]. For each integer m > my,
define the following stopping time

3=

T, = Inf {t € [0,7,) : min{/(¢), L(?), R(t), D(t), S (t)} < — or max{I(¢), L(¢), R(¢), D(t), S (1)} > m}

Throughout this paper, we set inf ) = oo (as usual @ denotes the empty set). Obviously, 7, is an
increasing function as m — oo. Set 7., = lim,, o 7. Then 7, < 7, a.s. If 7, = oo a.s. is true,

then 7, = oo a.s. and (I(¢), L(t), R(¢), D(t),S (1)) € R} a.s. for all # > 0. In other words, in order to
show this assertion, we only need to prove 7., = oo a.s. If the assertion is false, then there is a pair of
constants 7 > 0 and € € (0, 1) such that P{r,, < T} > & for each integer m > m,. Define a C*>-function
V:R3 - R, U{0} by

1
VU,L,R,D,S)=UI-a—-aln-)+(L-1-InL)+(R-1-InR)+(D-1-InD)+ (S -1-1nS),
a
where a is a positive constant to be determined later. The nonnegativity of this function can be seen
fromu —1—Inu > 0,Vu > 0. According to the general Itd formula (see, for example, Theorem 4.2.1

of [10]), we have

dV(I,L,R,D,S) = LV{,L,R,D,S)dt+ oI —-a)dB(t)+ o(L - 1)dB,(t) + 03(R — 1)dBx(t)
+ 04(D — 1)dBy(t) + 05(S — 1)dBs(1),
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where LV : R? — R is defined by

LV(I, LR, D,S) (1 - ;)(A — uIR = kID = pI) + (1 _ %)(,u]R+kID— (@+B+v+p)l)

+(1—I%)(Q/L—((5+f+p)R)+(1—%)(ﬁL+§R—(9+p)D)

2 2 2 2 2
acy+05+05+0,+ 0%
2

1
+(1—§)(6R+9D+yL—pS)+

A IR kID L
= A—pI—pL—pR—pD—pS—a7+a/4R+akD+ap—'u————a—

L L R
BL &R 6R 6D yL
+Ha+B+y+p)+(0+E&E+p) D D+(0+p) S 3 3 +

ar;+ 05+ 03+ 05 + 03
2
A+(au—p)R+@k—-p)D+(@a+4)p+a+B+y+0+&+6
ao + 05+ 05+ 05 + 03
2

IA

—+

Choose a = min{ ﬁ, £}, then we obtain

acs + 03+ 05 + 05 + 0
LVULLR,D,S)<A+(a+4)p+a+B+y+o+&E+6+ > =K

and K is a positive constant. Thus,

dV(I,L,R,D,S) < Kdt+o,(I—-a)dB\(t)+ oo(L—1)dBy(t) + o3(R - 1)dBs(t)
+04(D — 1)dBy(t) + 05(S — 1)dBs(1). 2.1)

For any m > my, integrating (2.1) on both sides from O to 7, A T and then taking expectation yield

EVU@a, AT), Lty ANT),R(tyy NT),D(t)y NT),S(t,, NT)) < V((0),L(0),R(0), D(0),S(0)) + KT.

LetQ, ={weQ:71, =1,(w) <T}form > my. Then we have P(Q2,,) > €. Note that, for every
w € Q,, there exists I(1,,, w) or L(1,, w) or R(t,,, w) or D(t,,, w) or S (7, w) equaling either m or %
Thus V(I (t,,, w), L(t),, w)), R(t,,, ), D(7,,, w), S (T,,,, ) 1s no less than either

m—a-aln? ori—a—alnﬁ = %—a+aln(ma)orm— 1 —lnmor%— 1 —lni = i— 1+ Inm.
So we have
1
Vd(r,,w), L(t,, w), R(T,, w), D(T,,, w),S (T, w)) > (m —a—-aln ﬂ) A (— —a+ aln(ma))
a m

1
A (m—l—lnm)/\(——1+lnm).
m

Consequently,

V(1(0), L(0), R(0), D(0),S(0)) + KT > E[lg, VU (T, w), L(Ty, w), R(Ty, w), D(Ty, w), S (T, w))]
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1
> E(m—a—alnﬂ)/\(——a+a1n(ma))/\(m—1—lnm)
a m
1
A (——1+lnm),
m

where 1q, denotes the indicator function of €,,. Letting m — oo leads to the contradiction
oo > V(1(0), L(0), R(0), D(0), S (0)) + KT = co.

This completes the proof.
3. Existence of ergodic stationary distribution

When considering rumor propagation model, we are also interested to know when the rumor will
persist and prevail in a population. In the deterministic models, it can be solved by proving the rumor-
epidemic equilibrium of the corresponding model is a global attractor or globally asymptotically stable.
But there is no rumor-epidemic equilibrium in system (1.2). In this section, based on the theory of
Khasminskii( [7]), we prove that there is a stationary distribution which reveals that the rumor will
persist in the mean. Here we present some theory about the stationary distribution which is introduced

in ([7]).

Definition 3.1. ( [7]) The transition probability function P(s, x,?,A) is said to be time-homogeneous
(and the corresponding Markov process is called time-homogeneous) if the function P(s, x,7 + s5,A) is
independent of s, where 0 < s < t, x € R and A € B and B denotes the o— algebra of Borel sets in R'.

Definition 3.2. ( [7]) Let X(¢) be a regular time-homogeneous Markov process in R’ described by the
stochastic differential equation:

k
dX(r) = f(X(1))dr + Z g (X(1))dB,(1).
r=1

The diffusion matrix of the process X(7) is defined as follows:

k
A(x) = (a;(x),  aij(x) = Z £, (0)g)(x).
r=1

Lemma 3.1. ( [7]) The Markov process X(¢) has a unique ergodic stationary distribution 7(-) if there
exists a bounded domain D C R”" with regular boundary I'" and
Al: there is a positive number M such that

d
D ay(éE = MR, VxeD, VEER",

ij=1
A2: there exists a nonnegative C>-function V such that £V is negative for any R"\ D, where £ denotes
the differential operator defined by

2

- 0 1 © 0
= bi(x)7— + = ij .
L ; (x)ax‘ - 2 Z:l aj(x)@xiﬁxj

i
Lj=

AIMS Mathematics Volume 6, Issue 2, 1234—-1248.



1239

Then ,
Px{lim 1 f FX())dt = f f(x)ﬂ(dx)} =1
T—oo T 0 R

for all x € R”, where f(-) is a function integrable with respect to the measure 7.
Theorem 3.1. Assume
Aua

Ry =
4(p+%%)(a'+ﬁ+)/+p+%§)(6+f+p+%g)

> 1.

Then, for any initial value (1(0), L(0), R(0), D(0),S(0)) € R3, system (1.2) has a unique stationary
distribution 7(-) and the ergodicity holds.

Proof. Theorem 2.1 tells us that for any initial value (1(0), L(0), R(0), D(0), S (0)) € Ri, there is a
unique global solution (I(2), L(f), R(t), D(f), S (¢)) € R3. In order to prove this Theorem, it suffices to
validate A1 and A2 in Lemma 3.1. First, we verify A1. The diffusion matrix of system (1.2) is given by

o0 0 0 0
0 o> 0 0 0
A=l 0 0 o 0 0
0 0 0 D 0
0

0 0 0 o282

It is easy to see that the matrix A is positive definite for any compact subset of R, so condition A1 in
Lemma 3.1 is satisfied. Now we prove condition A2. Define a C2-function

OU,L,R,D,S) = M(-mInlI-nInL—-n3;InR—nsInS — nsD)
1
+ —1(I+L+R+D+S)(9+” —In/-InL-InR—-1InS

o+
= MO +Q0,—InI—-InL-InR-1InS,

where ny, ny, n3, ny, ns,0 and M are positive constants, which will be determined later. It is easy to
check that
lim inf OU,L,R,D,S) = +co,
k—s00,(I,L,R,D,S YR\ Uy
where Uy = T (%,k). In addition, O(I, L,R, D, S) is a continuous function. Hence, O(I,L,R, D, S)
must have a minimum point (/y, Lo, Ry, Do, So) € Ri. Therefore, we define a nonnegative C>-function
Q:R} >R,

Q(I’L’RaD’S) = Q(I’LaR’D’S) - Q(IO’LO’R()’DO’SO)'

Applying the general 1t6 formula [10] to Q;, one obtains the differential operator L of Q; as follows:

n nlo-% ny nzo'i

L0, = —T[A—,uIR—kID—pI]+ —Z[/JIR+kID—(a’+IB+’y+p)L]+ >
n3 oy oy nsos
_E[QL_(5+§+’O)R]+ 5 —§[5R+6?D+7L—pS]+T—n5[,8L+§R—(9+p)D]
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_ (nlA . nopIR . nyaL

i T R )+(mu—ns§)R+(n1k+n5(9+p))D+n1p+nz(a+,3+7+p)

2 2 2 2
no;y npo, l’l30'3 I”L4O'5

+ + +
2 2 2 2
=3 mimmAua + (nu — nsé) R + (nik + ns(@+p)) D +nip + m(a+B+7y +p)
I’l]O'% I’le’% l’l30'§ l’l40'§

2 T2 Tt

+n30+&+p) +mp +

IA

+n30+E&+p) +mp +
9

2
= =3ymmnsAua + (mp — nsé) R+ (nik + ns(0 + p)) D + n, (p + 5 )

0.2 0_2 0.2
+n2(a+,8+y+p+72)+n3(6+§+p+73)+n4(p+75).

Let
i

Pt
0'2 ’
2(a+,8+y+p+72)

2
o

P+ p+ 1 M
02,”4: >, N5 = 1+M—.
2(6+§+p+73) pt+3 3

n1:1,n2: ns =

Then it follows that
0'2 2
A,ucy(p+7‘)
0'2 0'2
4(a/+ﬁ+)/+p+72)((5+§+p+73)
1\ @ o
k+(1+—)u D+3(p+—l)
M| ¢ 2

T3\ (s U 1\ w8+ p)
—3(p+7)(RO —1)—MR+ k+(1+M)T]D. 3.1)

- LR

L0, < 3 i

+

Similarly, one has

LO, = U+L+R+D+SF[A-p(I+L+R+D+S)]
+§(1+L+R+D+S)9‘1 (2P + 03L% + 3R + 03D? + 0257)

IA

AI+L+R+D+SY—-p(I+L+R+D+S8)°*
+§( VoIV aivaival) I+ L+R+D+S)F!

= AU+L+R+D+S¥-¢(I+L+R+D+S)"!
1
< C()—§<j)(I+L+R+D+S)9+1

1
< Cy- Ed)(IQ*1 + [ 4 ROt 4 potl 4 geotly (3.2)

where we choose o sufficiently small such that ¢ = p — 9—‘272 > (0 and

Co = sup {A(1+L+R+D+S)Q—?(I+L+R+D+S)Q“}<oo.
(I,L.R.D.S)eRS 2
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Moreover, one has
2

A o
L(=Inl) = -7 +UR+ kD +p+ —,

2
IR kID o2
LD =-F2 EZ @By +p)+ =2,
aL o3 ‘
L(-InR)=——+ (5 +&+p) + =,
R 2
SR 6D yL ol
~InS)=-——-— -2 =,
LSy =~ =g gty

Making use of (3.1)—(3.3), we then derive that

2

o ! 0 + A
£0 < —3M(p+—2‘)(Rg~—1)+(M+1)(k+“( p))D+CO—7+p
1 of uIR kID
—§¢(IQ+1+L9+1+RQ+I+DQ+1+SQ+1)+71—/17—7+(a+,8+7+p)
2 2 2
o2 al o2 SR 6D yL o
2_Z40 S _=_= )
I A e S S R A
AR MCEYD)) A kID aL 6D
< -3M +—1(R“3—1)+ M+ 1Dk + D-—-"Z = _ 2 1Cy+4
(P 2) 0 ( ) £ 7 I R S 0T ap
0'%+0'§+0'§+0'§ ¢ 1 1 1 1 1
+a+B+y+5+E+ 3 —5(19+ + [ + R + D¢ +SQ+) (3.4)

For the convenience, we define

2

0 I

H = supl-3mp+ L (1%65—1)+(M+1)k+‘m D— gD\ < oo
DeR, 2 ‘f 4

and
[ S
H, = Co+4p+a+f+y+0+&+ (o7 +0;+05+0%).

Now we are in the position to construct a bounded closed domain U, such that the condition A2 in
Lemma 3.1 holds. To this end, we define a compact set as follows

5 I 5 1, 1 1, 1
Us=:{U,LLR,D,S)eR; :e<I< -, L=, SR —,e<D<—,e <S5 <=y,
€ e e* € €
where € > 0 is a sufficiently small constant such that
o7 si 0+
—3M(p+ 71)(1%3 - 1)+(M+ 1)(k+ ’%)HHZ <1 3.5)

and

A 0 k « 1) 1)
_(? A E A E A Z A 2 A A 4EQ+1)+H1 + H, < -1, (3.6)
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For convenience, we can divide Ri \ U, into ten domains, where

Uy={I.LR.D,S)eR|0<I<¢f, Uy={ULRDS)eR0<D<g¢,
Us={UI.L.R.D.S)eR}|e<D,0<S <€}, Us={UL.R.D,S)eR}|e<le<D0<L<e},

1
Us = {(I,L,R,D,S) eR|E<LO<R< 64}, Us = {(I,L,R,D,S) eR3|I > ;},

1 1
U, = {(I,L,R,D,S) eRIL > —%}, Us = {(1, L.R,D,S)€R3R > g}’
pE

1 1
Ug = {(I,L,R,D,S) eRID > —}, Uy = {([,L,R,D,S) eR}IS > —2}.
€ €

Obviously, R? \ U. = }°, U.. Next, we will prove that £Q(I,L,R,D,S) < -1 for any

(I,L,R,D,S) € Ri \ U, which is equivalent to proving it on the above ten domains, respectively.
Case 1. For any (I, L,R, D, S) € Uy, then (3.4) implies that

2

Lo < —3M(p+%)(1e§f —1)+(M+1)(k+‘M

3

A 1
—7+C0+4p+a+,8+y+6+§+§(a$+a§+(r§+a§)

1
D - —¢D°"!
Jo-3e

A A
< —7+H1+H2§——+H1+H2. (3.7)
€

Case 2. For any (I, L,R, D, S) € U,, using (3.4) one obtains

2

o\ [ st
£0 < —3M(p ¥ 7)(1?03 - 1)+ (M + 1)(k+

#(9+p))D

1
+C0+4p+a+ﬂ+y+6+§+E(Uf+dg+a§+a§)

2
sl 0
< —3M(p+%)(1e05—1)+(M+1)(k+“( +p))e+H2. (3.8)
Case 3. For any (I, L,R, D, S) € Us, in view of (3.4), we get
2
si 0 1
Lo < —3M(p + %)(Rbé - 1) (M + 1)(k+ ‘%)D - 56D

6D 1
—?+C0+4p+a+,8+y+5+§+E(a?+a-§+a§+a§)

6D 0
-5t H +H, <— +H, +H,. (3.9)
€

Case 4. For any (I, L,R, D, S) € Uy, it follows from (3.4) that

Ayan! 0 1
Lo < —3M(p+%)(R‘03—1)+(M+1)(k+‘%)1)—5¢1)9+1
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kID 1
—T+CO+4p+a+,8+y+5+§+E(af+o-§+o-§+a§)

k
< ——+H +H,.
€

Case 5. For any (I, L,R, D, S) € Us, according to (3.4), we derive

2

LO < —3M(p+%)(R3§ _1)+(M+1)(k+y(6'+p)

3

L 1
—%+C0+4p+a+,8+y+6+§+E(af+o-§+o-§+a§)

1
D - —¢D°"!
Jo-3e

a
< ——+H +H,.
€

Case 6. For any (I, L,R, D, S) € Ug, by (3.4), we obtain

Ay 6 1
L0 < —3M(p+%)(RO3—1)+(M+1)(k+ﬁ¥)D—§¢D9”

1 1
—§¢19+1+C0+4p+0z+,8+7+5+§+5(0’%+0’%+0‘§+0’§)

1
_E(p

1
ol + H, + H,.

Case 7. For any (I, L,R, D, S) € Uy, note from (3.4) that

o2 sb 0 1
Lo < —3M(p+71)(R03 - 1)+(M+ 1)(k+l¥)D—§¢D9”
1 1
—quL@+1 +C0+4p+a+ﬁ+y+6+§+E(o-%+a§+o-§+o-§)
1
—§¢m+H1 +H2.

Case 8. For any (I, L,R, D, S) € Ug, making use of (3.4) one obtains that

2

Lo < —3M(p+%)(R35 _ 1)+(M+ 1)(k+“(9+p)

&
1 1
—EqﬁRﬁ’”+C0+4p+a+,8+y+6+§+E(oﬁ+o—§+a§+o€)

1 1
< —§¢m + H1 + Hz.

Case 9. For any (I, L,R, D, S) € Uy, we know from (3.4) that

1
D — —¢D°"!
Jo-2e

o2\ 1 0 1
L0 < —3M(p+71)(1e‘(§ - l)+(M+ 1)(/<+“( ;p))D—Zng@”
1 1
—Z¢D9+1+Co+4p+a+ﬁ+y+6+§+E(a%+a§+o-§+a§)

1 1
—Z¢@ + Hl + Hz.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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Case 10. For any (I, L,R, D, S) € Uy, using (3.4), we can show that
o2\ / 1 0 1
L0 < —3M(p+ 71)(R0§ -~ 1) +(M + 1)(k+ @)D -~ EqﬁDg“

1 1
—§¢SQ+1+Co+4p+a'+,8+y+5+§+5(0’%+0‘§+0‘§+0’§)

1

—E(ﬁm + H, + H,. (316)

It follows from (3.5)—(3.16) that
£LO<-1, Y(,LR,D,S)eR\U,

which proves that condition A2 holds. Thus the conditions in Lemma 3.1 are verified, the proof is
completed.

Remark 3.1. Comparing with the threshold parameter R, in [11], the parameter R; in stochastic
system (1.2) is less than Ry, which reveals that the extinction of the rumor is much easier than in the
corresponding deterministic model (1.1). Moreover, taking attention to the expression of R}, we can
control the rumor propagation by environmental white noise.

4. Numerical simulations

In this section, we give some examples to illustrate the obtained theoretical results. We illustrate
our findings by the Milstein’s Higher Order Method developed in [5]. According to this method, we
can get the following discretization equation of system (1.2):

_ VAL 0'% 2
Ij+1 = Ij + [A —,LleRj —kIij —ij]At+0'11j Al‘fl’j + TIjAt(é‘:],j -1),

2

(o
Liy = L+ [ul;R; + kI,D; — (@ + B +y + p)L;IAt + o, L; VA1, ; + ijAr(ggJ - 1),
3

Rjs1 = Rj+ [aLj — (6 + £ + p)R1At + 3R, VA& + 5

RiAKE ;- 1),
oy
2
o3

2

Djuy = D;+ [BL; + éR; — (68 + p)D;IAt + 04D VAt j + —*D;AE - 1),

Sj+1 = Sj + [5R] + QD] + )/L] —ij]Al + O'5Sj \/Efij + S]Al(fgj - 1),

where time increment At > 0, and & 4, &k, €345 Ea s> €5 are independent Gaussian random variables
which follows N(0, 1). However, we would like to point out that the values of parameters of system
(1.2) and the initial values in the following numerical simulations are chosen for illustration purposes
and are not taken from any real life data for any rumors. To this end, we
set(1(0), L(0), R(0), D(0), S (0)) = (0.3,0.6,0.2,0.9,0.6).

Example 1. Choose the parameters: A = 5,u = 0.045,k = 0.2, = 0.05,8 = 0.05,y = 0.05,p =
0.01,0 = 0.01,£ = 0.01,6 = 0.2.
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By simple calculation, we have R = 1.213 > 1, which means that the conditions of Theorem 3.1
hold. Therefore, system (1.2) has a unique ergodic stationary distribution. Figures 1 and 2 illustrate
this fact.

5
ppal 400 1000
— 1) — L —R(t)
3 300
2 200 500
1 100
o [t

0 0
0 1000 2000 0 1000 2000 0 1000 2000
t t t

10000 10000
—— D) ——S()

5000 5000

0 0

0 1000 2000 0 1000 2000
t t

Figure 1. (oa] :0.9,0'2 =03 :0.09,0'4 =05 = 0.05.
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Figure 2. Relative frequency density.
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Example 2. Choose the parameters: A = 0.6,u = 0.04,k = 0.8, = 0.5, = 0.05,y = 0.5,p =
0.01,6 =0.1,£ =0.2,6 = 0.2.

In what follows, we start comparing the stochastic system and deterministic system. In Figure 3,
the rumor-spreaders in stochastic system are shown in red lines, compared with the rumor-spreaders in
deterministic system which are shown in blue lines. It reveals that the environmental disturbance may
help to curb the outbreak of rumors. Further, if we increase the environmental noise, the simulation
results in Figure 4 suggests that the extinction of rumor-spreaders in stochastic system is much more
easier than that in the corresponding deterministic system.

09ff-———————————————————— = -
08 i
0.7
06
05
0.4
03

0.2 1

o

0 200 400 600 800 1000 1200 1400 1600 1800 2000
t

Figure 3. Red line: Rumor-spreaders in stochastic system. Blue line: Rumor-spreaders in
deterministic system. The intensities of the white noise are oy = 2.3,0, = 1,03 = 0.25,04 =
0.3, 05 = 0.5, and other parameter values are presented in Example 2.

1

—R0)
v - -
09 —— RQ)

0.8 T
0.7 f
0.6
0.5
0.4
0.3
0.2

0.1 H

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
t

Figure 4. Red line: Rumor-spreaders in stochastic system. Blue line: Rumor-spreaders
in deterministic system. The intensities of the white noise are oy = 2.7,0, = 1.5,03 =
0.3,04 = 0.4,05 = 0.6, and other parameter values are presented in Example 2.
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5. Conclusions

In the current paper, we have studied a stochastic rumor spreading model. We have established
sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the
positive solutions to system (1.2) by using the stochastic Lyapunov function method. The ergodic
property can help us better understand cycling phenomena of a rumor spreading model, and so
describe the persistence of a rumor spreading model in practice. More precisely, we have obtained the
following result:

e Assume
Aua

0'2 0'2 0'2
4(p+71)(a+/3+y+p+72)(6+§+p+73)

Then, for any initial value (1(0), L(0), R(0), D(0), S (0)) € R3, system (1.2) has a unique stationary
distribution m(-) and the ergodicity holds. The stationary distribution indicates that the rumor can
become persistent in vivo. The theoretic work extended the results of the corresponding deterministic
system. The results show that the rumors will maintain its persistence if the environmental noise is
sufficiently small, while large stochastic noise can suppress the spread of rumors.

Some interesting topics deserve further consideration. As we all know, time-delay occurs frequently
in many practical engineering systems, which is usually the source of oscillation, instability and poor
performance of the systems. Now time-delay has been considered into many stochastic models (see,
for example, [4,6,12,13]). We leave time-delay case for our future work.

R) := > 1.
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