Mathematics
http://www.aimspress.com/journal/Math

Research article

The existence of subdigraphs with orthogonal factorizations in digraphs

Sizhong Zhou and Quanru Pan*

School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China

* Correspondence: Email: qrpana@163.com; Tel: +8613852948136; Fax: +8651184401171.

Abstract

Let G be a $\left[0, k_{1}+k_{2}+\cdots+k_{m}-n+1\right]$-digraph and $H_{1}, H_{2}, \cdots, H_{r}$ be r vertex-disjoint n-subdigraphs of G, where m, n, r and $k_{i}(1 \leq i \leq m)$ are positive integers satisfying $1 \leq n \leq m$ and $k_{1} \geq k_{2} \geq \cdots \geq k_{m} \geq r+1$. In this article, we verify that there exists a subdigraph R of G such that R possesses a $\left[0, k_{i}\right]_{1}^{n}$-factorization orthogonal to every H_{i} for $1 \leq i \leq r$.

Keywords: network; digraph; subdigraph; factor; orthogonal factorization
Mathematics Subject Classification: 05C70, 05C20, 68M10

1. Introduction

Many real-world networks can conveniently be simulated by graphs or networks. Examples include the World Wide Web with nodes modelling Web pages and links representing hyperlinks between Web pages, or a communication network with nodes simulating cities, and links modelling communication channels, an interconnection network with nodes representing processors and links simulating communication channels. The factors, fractional factors, factorizations and orthogonal factorizations in graphs or networks attracted a great deal of attention [1-17] due to their applications in network design, combinatorial design, the file transfer problems on computer networks, coding design, scheduling problems, and so on. The file transfer problem can be simulated as $(0, f)$-factorizations in a graph [18]. The design of a Room square with order $2 n$ is equivalent to the orthogonal 1-factorization of $K_{2 n}$ which is firstly posed by Horton [19]. The design of a pair of orthogonal Latin squares with order n is related to two orthogonal 1-factorizations of $K_{n, n}$ which is firstly posed by Euler [20]. It is well-known that a network can be simulated by a graph. Vertices of the graph represent nodes of the network, and edges of the graph represent links between the nodes in the network. Henceforth, we replace network by the term graph.

In this article, we discuss finite directed graphs (digraphs) without loops or parallel arcs. Let G be a digraph. We denote the vertex set and arc set of G by $V(G)$ and $E(G)$, respectively. For $x \in V(G)$, we denote by $d_{G}^{-}(x)$ the indegree of x in G, and by $d_{G}^{+}(x)$ denote the outdegree of x in G. We use $x y$ to
denote the arc with tail x and head y. Let $g=\left(g^{-}, g^{+}\right)$and $f=\left(f^{-}, f^{+}\right)$be pairs of nonnegative integervalued functions defined on $V(G)$ satisfying $g^{-}(x) \leq f^{-}(x)$ and $g^{+}(x) \leq f^{+}(x)$ for every $x \in V(G)$. A spanning subdigraph F of a digraph G is called a (g, f)-factor of G if it satisfies $g^{-}(x) \leq d_{F}^{-}(x) \leq f^{-}(x)$ and $g^{+}(x) \leq d_{F}^{+}(x) \leq f^{+}(x)$ for all $x \in V(G)$. We call G a (g, f)-digraph if G itself is a (g, f)-factor. For convenience, we write $g \leq f$ if $g^{-}(x) \leq f^{-}(x)$ and $g^{+}(x) \leq f^{+}(x)$ for every $x \in V(G)$, and write $g \geq k$ if $\min \left\{g^{-}(x), g^{+}(x)\right\} \geq k$ for every $x \in V(G)$, and write $g=a$ if $g^{-}(x)=a$ and $g^{+}(x)=a$ for every $x \in V(G)$, where a is a nonnegative integer. Furthermore, we shall write $m f+n$ for $\left(m f^{-}+n, m f^{+}+n\right)$. If $g(x)=a$ and $f(x)=b$ for any $x \in V(G)$, then we call a (g, f)-factor as an [a,b]-factor and a (g, f) digraph as an $[a, b]$-digraph. If $E(G)$ can be decomposed into arc-disjoint [$\left.0, k_{1}\right]$-factor $F_{1},\left[0, k_{2}\right]$-factor $F_{2}, \cdots,\left[0, k_{m}\right]$-factor F_{m}, then we say $\mathcal{F}=\left\{F_{1}, F_{2}, \cdots, F_{m}\right\}$ is a $\left[0, k_{i}\right]_{1}^{m}$-factorization of a digraph G, where k_{i} is a positive integer for $1 \leq i \leq m$.

A subdigraph H of a digraph G is called an m-subdigraph if H possesses m arcs in total. Let H be an m-subdigraph of G and $\mathcal{F}=\left\{F_{1}, F_{2}, \cdots, F_{m}\right\}$ be a $\left[0, k_{i}\right]_{1}^{m}$-factorization of G. If $\left|E(H) \cap E\left(F_{i}\right)\right|=1$ for $1 \leq i \leq m$, then we say that \mathcal{F} is orthogonal to H, namely, \mathcal{F} is an orthogonal $\left[0, k_{i}\right]_{1}^{m}$-factorization of G. Similarly, we may define an orthogonal (g, f)-factorization of G.

Zhou and Sun [21, 22] posed some sufficient conditions for graphs to admit [1, 2]-factors with given properties. Zhou [23] studied the existence of [1,2]-factors with given properties. Kouider and Lonc [24] derived some results on [a,b]-factors in graphs. Yan, Pan, Wong and Tokuda [25] investigated (g, f)-factorizations of graphs. Alspach, Heinrich and Liu [14] put forward the following problem: Given a subgraph H of G, does there exist a factorization \mathcal{F} of G of certain type orthogonal to H ? Liu [26] demonstrated that every $(m g+m-1, m f-m+1$)-graph admits a (g, f)-factorization orthogonal to an m-matching. Lam, Liu, Li and Shiu [27] justified that every ($m g+m-1, m f-m+1$)-graph admits a (g, f)-factorization orthogonal to k given vertex-disjoint m-subgraphs. Feng and Liu [28] claimed that every $\left[0, k_{1}+k_{2}+\cdots+k_{m}-m+1\right]$-graph possesses a $\left[0, k_{i}\right]_{1}^{m}$-factorization orthogonal to any given m-subgraph. Wang [29] verified the existence of subgraphs with orthogonal $\left[0, k_{i}\right]_{1}^{n}$ factorizations in [$\left.0, k_{1}+k_{2}+\cdots+k_{m}-n+1\right]$-graphs. Liu [30] investigated orthogonal (g, f)-factorizations of $(m g+m-1, m f-m+1)$-digraphs. Wang [31] claimed that every $(m g+k-1, m f-k+1)$ digraph includes a subdigraph R such that R admits a (g, f)-factorization orthogonal to n arc-disjoint k-subdigraphs. Zhou and Bian [32] verified that every $(m g+(k-1) r, m f-(k-1) r)$-digraph includes a sundigraph R such that R admits a (g, f)-factorization orthogonal to r vertex-disjoint k-subdigraphs. Zhou, Sun and Xu [33] demonstrated that every $(0, m f-m+1)$-digraph possesses a $(0, f)$-factorization orthogonal to k vertex-disjoint m-subdigraphs.

In this article, we study the following problem: For given r vertex-disjoint n-subdigraphs $H_{1}, H_{2}, \cdots, H_{r}$ of a digraph G, does G admit factorization orthogonal to every $H_{i}(i=1,2, \cdots, r)$? Furthermore, we verify the following theorem, which partly solves the above problem.

Theorem 1. Let G be a $\left[0, k_{1}+k_{2}+\cdots+k_{m}-n+1\right]$-digraph, and let $H_{1}, H_{2}, \cdots, H_{r}$ be r vertexdisjoint n-subdigraphs of G, where m, n, r and $k_{i}(1 \leq i \leq m)$ are positive integers satisfying $1 \leq n \leq m$ and $k_{1} \geq k_{2} \geq \cdots \geq k_{m} \geq r+1$. Then there exists a subdigraph R of G such that R possesses a [$\left.0, k_{i}\right]_{1}^{n}$-factorization orthogonal to every H_{i} for $1 \leq i \leq r$.

Obviously, we admit the following result by setting $r=1$ in Theorem 1.
Corollary 1. Let G be a $\left[0, k_{1}+k_{2}+\cdots+k_{m}-n+1\right]$-digraph, and let H be an n-subdigraphs of G, where m, n and $k_{i}(1 \leq i \leq m)$ are positive integers satisfying $1 \leq n \leq m$ and $k_{1} \geq k_{2} \geq \cdots \geq k_{m} \geq 2$.

Then there exists a subdigraph R of G such that R possesses a $\left[0, k_{i}\right]_{1}^{n}$-factorization orthogonal to H.

2. Preliminary lemmas

Let G be a digraph. For any two vertex subsets S and T of G, we write $E_{G}(S, T)=\{x y: x y \in$ $E(G), x \in S, y \in T\}$, and let $e_{G}(S, T)=\left|E_{G}(S, T)\right|$. Let φ be a function defined on $V(G)$. We write $\varphi(S)=\sum_{x \in S} \varphi(x)$ and $\varphi(\emptyset)=0$. Define

$$
\begin{equation*}
\gamma_{1 G}(S, T ; g, f)=f^{+}(S)+e_{G}(V(G) \backslash S, T)-g^{-}(T) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{2 G}(S, T ; g, f)=f^{-}(T)+e_{G}(S, V(G) \backslash T)-g^{+}(S) . \tag{2.2}
\end{equation*}
$$

Let S and T be two vertex subsets of G, and E_{1} and E_{2} be two disjoint subsets of $E(G)$. Put

$$
E_{i S}=E_{i} \cap E_{G}(S, V(G) \backslash T), \quad E_{i T}=E_{i} \cap E_{G}(V(G) \backslash S, T)
$$

for $i=1,2$, and set

$$
\alpha_{S}\left(S, T ; E_{1}\right)=\left|E_{1 S}\right|, \quad \beta_{T}\left(S, T ; E_{2}\right)=\left|E_{2 T}\right|, \quad \alpha_{T}\left(S, T ; E_{1}\right)=\left|E_{1 T}\right|, \quad \beta_{S}\left(S, T ; E_{2}\right)=\left|E_{2 S}\right| .
$$

For simplicity, $\alpha_{S}\left(S, T ; E_{1}\right), \beta_{T}\left(S, T ; E_{2}\right), \alpha_{T}\left(S, T ; E_{1}\right)$ and $\beta_{S}\left(S, T ; E_{2}\right)$ are written as $\alpha_{S}, \beta_{T}, \alpha_{T}$ and β_{S} under without ambiguity.

Liu [30] derived a necessary and sufficient condition for a digraph to admit a (g, f)-factor containing E_{1} and excluding E_{2}, which plays a key role in the proof of Theorem 1 .
Lemma 1 (Liu [30]). Let G be a digraph, and let $g=\left(g^{-}, g^{+}\right)$and $f=\left(f^{-}, f^{+}\right)$be pairs of integervalued functions defined on $V(G)$ satisfying $0 \leq g(x) \leq f(x)$ for every $x \in V(G)$. Let E_{1} and E_{2} be two disjoint subsets of $E(G)$. Then G admits a (g, f)-factor F with $E_{1} \subseteq E(F)$ and $E_{2} \cap E(F)=\emptyset$ if and only if $\gamma_{1 G}(S, T ; g, f) \geq \alpha_{S}+\beta_{T}$ and $\gamma_{2 G}(S, T ; g, f) \geq \alpha_{T}+\beta_{S}$ for all vertex subsets S and T of G.

In what follows, we always assume that G is a $\left[0, k_{1}+k_{2}+\cdots+k_{m}-n+1\right]$-digraph, where m, n, r and $k_{i}(1 \leq i \leq m)$ are nonnegative integers satisfying $1 \leq n \leq m$ and $k_{1} \geq k_{2} \geq \cdots \geq k_{m} \geq r+1$. For every $\left[0, k_{i}\right]$-factor F_{i} and every isolated vertex x of G, we admit $d_{F_{i}}(x)=0$. We use I to denote the set of all isolated vertices in G. If $G-I$ admits a $\left[0, k_{i}\right]$-factor, then G admits also a $\left[0, k_{i}\right]$-factor. Hence, we may assume that G does not admit isolated vertices. For arbitrary $x \in V(G)$, we define

$$
\begin{gathered}
p^{-}(x)=\max \left\{0, d_{G}^{-}(x)-\left(k_{1}+k_{2}+\cdots+k_{m-1}-n+2\right)\right\}, \\
p^{+}(x)=\max \left\{0, d_{G}^{+}(x)-\left(k_{1}+k_{2}+\cdots+k_{m-1}-n+2\right)\right\}, \\
q^{-}(x)=\min \left\{k_{m}, d_{G}^{-}(x)\right\}
\end{gathered}
$$

and

$$
q^{+}(x)=\min \left\{k_{m}, d_{G}^{+}(x)\right\} .
$$

Write $p(x)=\left(p^{-}(x), p^{+}(x)\right)$ and $q(x)=\left(q^{-}(x), q^{+}(x)\right)$. According to the definitions of $p(x)$ and $q(x)$, we derive

$$
0 \leq p(x) \leq q(x) \leq k_{m}
$$

for every $x \in V(G)$.
Lemma 2. Let G be a $\left[0, k_{1}+k_{2}+\cdots+k_{m}\right]$-digraph, and let $H_{1}, H_{2}, \cdots, H_{r}$ be independent arcs of G, where m, r and $k_{i}(1 \leq i \leq m)$ are positive integers with $k_{i} \geq r+1$. Then G possesses a [$\left.0, k_{1}\right]$-factor containing $H_{i}(1 \leq i \leq r)$.
Proof. Let $E_{1}=\left\{H_{1}, H_{2}, \cdots, H_{r}\right\}$ and $E_{2}=\emptyset$. For arbitrary two vertex subsets S and T of G, we define $\alpha_{S}, \beta_{T}, \alpha_{T}$ and β_{S} as before. In light of the definitions of $\alpha_{S}, \beta_{T}, \alpha_{T}$ and β_{S}, we derive

$$
\begin{aligned}
& \alpha_{S} \leq \min \{r,|S|\} \text { and } \beta_{T}=0 \\
& \alpha_{T} \leq \min \{r,|T|\} \text { and } \beta_{S}=0 .
\end{aligned}
$$

Thus, we admit

$$
\gamma_{1 G}\left(S, T ; 0, k_{1}\right)=k_{1}|S|+e_{G}(V(G) \backslash S, T)-0 \cdot|T| \geq|S| \geq \alpha_{S}=\alpha_{S}+\beta_{T}
$$

and

$$
\gamma_{2 G}\left(S, T ; 0, k_{1}\right)=k_{1}|T|+e_{G}(S, V(G) \backslash T)-0 \cdot|S| \geq|T| \geq \alpha_{T}=\alpha_{T}+\beta_{S}
$$

by $k_{1} \geq 2$, where $\gamma_{1 G}\left(S, T ; 0, k_{1}\right)$ is defined by Equation (2.1) by replacing g and f by 0 and k_{1}, and $\gamma_{2 G}\left(S, T ; 0, k_{1}\right)$ is defined by Equation (2.2) by replacing g and f by 0 and k_{1}. Then it follows from Lemma 1 that G has a $\left[0, k_{1}\right]$-factor containing $H_{i}(1 \leq i \leq r)$. We finish the proof of Lemma 2.

3. Proof of Theorem 1

Proof of Theorem 1. We apply induction on m and n. According to Lemma 2, Theorem 1 is true for $n=1$. Hence, we may assume that $n \geq 2$. For the inductive step, we assume that Theorem 1 is true for any $\left[0, k_{1}+k_{2}+\cdots+k_{m^{\prime}}-n^{\prime}+1\right]$-digraph G^{\prime} with $m^{\prime}<m, n^{\prime}<n$ and $1 \leq n^{\prime} \leq m^{\prime}$, and any vertexdisjoint n^{\prime}-subdigraphs $H_{1}^{\prime}, H_{2}^{\prime}, \cdots, H_{r}^{\prime}$ of G^{\prime}. Now, we consider a $\left[0, k_{1}+k_{2}+\cdots+k_{m}-n+1\right]$-digraph G and any vertex-disjoint n-subdigraphs $H_{1}, H_{2}, \cdots, H_{r}$ of G.

We take $x_{i} y_{i} \in E\left(H_{i}\right)$ for $1 \leq i \leq r$. Write $E_{1}=\left\{x_{1} y_{1}, x_{2} y_{2}, \cdots, x_{r} y_{r}\right\}$ and $E_{2}=\left(\bigcup_{i=1}^{r} E\left(H_{i}\right)\right) \backslash E_{1}$. Thus, we easily see that $\left|E_{1}\right|=r$ and $\left|E_{2}\right|=(n-1) r$. Let $E_{1 S}, E_{2 S}, E_{1 T}, E_{2 T}, \alpha_{S}, \beta_{T}, \alpha_{T}, \beta_{S}, p(x)$ and $q(x)$ be defined as in Section 2. By the definitions of $\alpha_{S}, \beta_{T}, \alpha_{T}$ and β_{S}, we derive

$$
\begin{aligned}
& \alpha_{S} \leq \min \{r,|S|\}, \quad \beta_{T} \leq \min \{(n-1) r,(n-1)|T|\}, \\
& \alpha_{T} \leq \min \{r,|T|\}, \quad \beta_{S} \leq \min \{(n-1) r,(n-1)|S|\} .
\end{aligned}
$$

Now, we define $\gamma_{1 G}(S, T ; p, q)$ in Equation (2.1) by replacing g and f by p and q, and define $\gamma_{2 G}(S, T ; p, q)$ in Equation (2.2) by replacing g and f by p and q. Then we select two vertex subsets S and T of G satisfying
(a) $\gamma_{1 G}(S, T ; p, q)-\left(\alpha_{S}\left(S, T ; E_{1}\right)+\beta_{T}\left(S, T ; E_{2}\right)\right)$ is minimum;
(b) $|S|$ is minimum subject to (a).

Now, we demonstrate the following claim.
Claim 1. If $S \neq \emptyset$, then $q^{+}(x) \leq d_{G}^{+}(x)-1$ for every $x \in S$, and so $q^{+}(x)=k_{m}$ for every $x \in S$.
Proof. Set $S_{1}=\left\{x \in S: q^{+}(x) \geq d_{G}^{+}(x)\right\}$. In what follows, we verify $S_{1}=\emptyset$.

Suppose that $S_{1} \neq \emptyset$. Let $S_{0}=S \backslash S_{1}$. Thus, we admit

$$
\begin{aligned}
\gamma_{1 G}(S, T ; p, q) & =q^{+}(S)+e_{G}(V(G) \backslash S, T)-p^{-}(T) \\
& =q^{+}\left(S_{0}\right)+q^{+}\left(S_{1}\right)+e_{G}\left(V(G) \backslash S_{0}, T\right)-e_{G}\left(S_{1}, T\right)-p^{-}(T) \\
& =q^{+}\left(S_{0}\right)+e_{G}\left(V(G) \backslash S_{0}, T\right)-p^{-}(T)+q^{+}\left(S_{1}\right)-e_{G}\left(S_{1}, T\right) \\
& =\gamma_{1 G}\left(S_{0}, T ; p, q\right)+q^{+}\left(S_{1}\right)-e_{G}\left(S_{1}, T\right) \\
& \geq \gamma_{1 G}\left(S_{0}, T ; p, q\right)+d_{G}^{+}\left(S_{1}\right)-e_{G}\left(S_{1}, T\right) \\
& =\gamma_{1 G}\left(S_{0}, T ; p, q\right)+e_{G}\left(S_{1}, V(G) \backslash T\right) .
\end{aligned}
$$

Note that

$$
\alpha_{S}\left(S, T ; E_{1}\right)+\beta_{T}\left(S, T ; E_{2}\right) \leq \alpha_{S_{0}}\left(S_{0}, T ; E_{1}\right)+\beta_{T}\left(S_{0}, T ; E_{2}\right)+\alpha_{S_{1}}\left(S_{1}, T ; E_{1}\right)
$$

and

$$
e_{G}\left(S_{1}, V(G) \backslash T\right) \geq \alpha_{S_{1}}\left(S_{1}, T ; E_{1}\right) .
$$

Thus, we derive

$$
\begin{aligned}
& \gamma_{1 G}(S, T ; p, q)-\left(\alpha_{S}\left(S, T ; E_{1}\right)+\beta_{T}\left(S, T ; E_{2}\right)\right) \\
\geq & \gamma_{1 G}\left(S_{0}, T ; p, q\right)+e_{G}\left(S_{1}, V(G) \backslash T\right)-\left(\alpha_{S_{0}}\left(S_{0}, T ; E_{1}\right)+\beta_{T}\left(S_{0}, T ; E_{2}\right)+\alpha_{S_{1}}\left(S_{1}, T ; E_{1}\right)\right) \\
\geq & \gamma_{1 G}\left(S_{0}, T ; p, q\right)-\left(\alpha_{S_{0}}\left(S_{0}, T ; E_{1}\right)+\beta_{T}\left(S_{0}, T ; E_{2}\right)\right),
\end{aligned}
$$

which conflicts the choice of S. Hence, $S_{1}=\emptyset$. And so, if $S \neq \emptyset$, then $q^{+}(x) \leq d_{G}^{+}(x)-1$ for every $x \in S$. Furthermore, we admit $q^{+}(x)=k_{m}$ for every $x \in S$. We finish the proof of Claim 1 .

The remaining of the proof is dedicated to proving that G possesses a (p, q)-factor F_{n} with $E_{1} \subseteq$ $E\left(F_{n}\right)$ and $E_{2} \cap E\left(F_{n}\right)=\emptyset$. According to Lemma 1 and the choice of S and T, it suffices to verify that $\gamma_{1 G}(S, T ; p, q) \geq \alpha_{S}+\beta_{T}$ and $\gamma_{2 G}(S, T ; p, q) \geq \alpha_{T}+\beta_{S}$.

Next, we write $\rho=k_{1}+k_{2}+\cdots+k_{m-1}-n+2, T_{1}=\left\{x: d_{G}^{-}(x)-\rho>0, x \in T\right\}$ and $T_{0}=T \backslash T_{1}$. It is obvious that $p^{-}(x)=0$ for any $x \in T_{0}$ and $p^{-}(x)=d_{G}^{-}(x)-\rho$ for any $x \in T_{1}$. By the definition of $\beta_{T}\left(S, T ; E_{2}\right)$, we possess

$$
\begin{equation*}
\beta_{T_{0}}\left(S, T_{0} ; E_{2}\right)+\beta_{T_{1}}\left(S, T_{1} ; E_{2}\right)=\beta_{T}\left(S, T ; E_{2}\right) \tag{3.1}
\end{equation*}
$$

In light of the definitions of α_{S} and β_{T}, we have $\alpha_{S} \leq \min \{r,|S|\} \leq|S|$ and $\beta_{T} \leq e_{G}(V(G) \backslash S, T)$. If $T_{1}=\emptyset$, then by Claim 1 we admit

$$
\begin{aligned}
\gamma_{1 G}(S, T ; p, q) & =q^{+}(S)+e_{G}(V(G) \backslash S, T)-p^{-}(T) \\
& =q^{+}(S)+e_{G}(V(G) \backslash S, T)-p^{-}\left(T_{0}\right)-p^{-}\left(T_{1}\right) \\
& =k_{m}|S|+e_{G}(V(G) \backslash S, T) \\
& \geq|S|+e_{G}(V(G) \backslash S, T) \\
& \geq \alpha_{S}+\beta_{T} .
\end{aligned}
$$

If $S=\emptyset$, then we have $\alpha_{S}=0$. It follows from Equation (3.1), $r \geq 1,2 \leq n \leq m$ and $k_{1} \geq k_{2} \geq$ $\cdots \geq k_{m} \geq r+1$ that

$$
\gamma_{1 G}(S, T ; p, q)=q^{+}(S)+e_{G}(V(G) \backslash S, T)-p^{-}(T)
$$

$$
\begin{aligned}
& =e_{G}(V(G), T)-p^{-}\left(T_{1}\right) \\
& =d_{G}^{-}(T)-p^{-}\left(T_{1}\right) \\
& =d_{G}^{-}\left(T_{0}\right)+d_{G}^{-}\left(T_{1}\right)-\left(d_{G}^{-}\left(T_{1}\right)-\rho\left|T_{1}\right|\right) \\
& =d_{G}^{-}\left(T_{0}\right)+\rho\left|T_{1}\right| \\
& =d_{G}^{-}\left(T_{0}\right)+\left(k_{1}+k_{2}+\cdots+k_{m-1}-n+2\right)\left|T_{1}\right| \\
& \geq d_{G}^{-}\left(T_{0}\right)+((m-1)(r+1)-n+2)\left|T_{1}\right| \\
& \geq d_{G}^{-}\left(T_{0}\right)+((n-1)(r+1)-n+2)\left|T_{1}\right| \\
& =e_{G}\left(V(G) \backslash S, T_{0}\right)+((n-1) r+1)\left|T_{1}\right| \\
& \geq e_{G}\left(V(G) \backslash S, T_{0}\right)+(n-1)\left|T_{1}\right| \\
& \geq \beta_{T_{0}}\left(S, T_{0} ; E_{2}\right)+\beta_{T_{1}}\left(S, T_{1} ; E_{2}\right) \\
& =\beta_{T}\left(S, T ; E_{2}\right)=\beta_{T}=\alpha_{S}+\beta_{T} .
\end{aligned}
$$

In what follows, we always assume that $S \neq \emptyset$ and $T_{1} \neq \emptyset$. To demonstrate Theorem 1 , we consider two cases.
Case 1. $|S| \geq\left|T_{1}\right|$.
According to Claim 1, the definition of $T_{1}, k_{m} \geq r+1$ and $|S| \geq\left|T_{1}\right|$, we derive

$$
\begin{aligned}
\gamma_{1 G}(S, T ; p, q) & =q^{+}(S)+e_{G}(V(G) \backslash S, T)-p^{-}(T) \\
& =q^{+}(S)+e_{G}(V(G) \backslash S, T)-p^{-}\left(T_{1}\right) \\
& =k_{m}|S|+e_{G}(V(G) \backslash S, T)-\left(d_{G}^{-}\left(T_{1}\right)-\rho\left|T_{1}\right|\right) \\
& =k_{m}|S|+e_{G}(V(G) \backslash S, T)-d_{G}^{-}\left(T_{1}\right)+\rho\left|T_{1}\right| \\
& =k_{m}\left(|S|-\left|T_{1}\right|\right)+\left(\rho+k_{m}\right)\left|T_{1}\right|+e_{G}(V(G) \backslash S, T)-d_{G}^{-}\left(T_{1}\right) \\
& \geq k_{m}\left(|S|-\left|T_{1}\right|\right)+d_{G}^{-}\left(T_{1}\right)+\left|T_{1}\right|+e_{G}(V(G) \backslash S, T)-d_{G}^{-}\left(T_{1}\right) \\
& =k_{m}\left(|S|-\left|T_{1}\right|\right)+\left|T_{1}\right|+e_{G}(V(G) \backslash S, T) \\
& =\left(k_{m}-1\right)\left(|S|-\left|T_{1}\right|\right)+|S|+e_{G}(V(G) \backslash S, T) \\
& \geq|S|+e_{G}(V(G) \backslash S, T) \\
& \geq \alpha_{S}+\beta_{T} .
\end{aligned}
$$

Case 2. $|S| \leq\left|T_{1}\right|-1$.
By Claim 1, the definitions of T_{0} and T_{1}, we admit

$$
\begin{aligned}
\gamma_{1 G}(S, T ; p, q) & =q^{+}(S)+e_{G}(V(G) \backslash S, T)-p^{-}(T) \\
& =q^{+}(S)+e_{G}\left(V(G) \backslash S, T_{0}\right)+e_{G}\left(V(G) \backslash S, T_{1}\right)-p^{-}\left(T_{1}\right) \\
& =k_{m}|S|+e_{G}\left(V(G) \backslash S, T_{0}\right)+d_{G}^{-}\left(T_{1}\right)-e_{G}\left(S, T_{1}\right)-p^{-}\left(T_{1}\right) \\
& =k_{m}|S|+e_{G}\left(V(G) \backslash S, T_{0}\right)+\left(d_{G}^{-}\left(T_{1}\right)-p^{-}\left(T_{1}\right)\right)-e_{G}\left(S, T_{1}\right) \\
& =k_{m}|S|+e_{G}\left(V(G) \backslash S, T_{0}\right)+\rho\left|T_{1}\right|-e_{G}\left(S, T_{1}\right),
\end{aligned}
$$

namely,

$$
\begin{equation*}
\gamma_{1 G}(S, T ; p, q)=k_{m}|S|+e_{G}\left(V(G) \backslash S, T_{0}\right)+\rho\left|T_{1}\right|-e_{G}\left(S, T_{1}\right) \tag{3.2}
\end{equation*}
$$

Subcase 2.1. $\left|T_{1}\right| \leq k_{m}-1$.

It follows from Equations (3.1) and (3.2), $r \geq 1,2 \leq n \leq m$ and $k_{1} \geq k_{2} \geq \cdots \geq k_{m} \geq r+1$ that

$$
\begin{aligned}
\gamma_{1 G}(S, T ; p, q) & =k_{m}|S|+e_{G}\left(V(G) \backslash S, T_{0}\right)+\rho\left|T_{1}\right|-e_{G}\left(S, T_{1}\right) \\
& \geq k_{m}|S|+e_{G}\left(V(G) \backslash S, T_{0}\right)+\rho\left|T_{1}\right|-|S|\left|T_{1}\right| \\
& \geq k_{m}|S|+e_{G}\left(V(G) \backslash S, T_{0}\right)+((m-1)(r+1)-n+2)\left|T_{1}\right|-\left(k_{m}-1\right)|S| \\
& =|S|+e_{G}\left(V(G) \backslash S, T_{0}\right)+((m-1)(r+1)-n+2)\left|T_{1}\right| \\
& \geq|S|+e_{G}\left(V(G) \backslash S, T_{0}\right)+((n-1)(r+1)-n+2)\left|T_{1}\right| \\
& =|S|+e_{G}\left(V(G) \backslash S, T_{0}\right)+((n-1) r+1)\left|T_{1}\right| \\
& \geq|S|+e_{G}\left(V(G) \backslash S, T_{0}\right)+(n-1)\left|T_{1}\right| \\
& \geq \alpha_{S}+\beta_{T_{0}}\left(S, T_{0} ; E_{2}\right)+\beta_{T_{1}}\left(S, T_{1} ; E_{2}\right) \\
& =\alpha_{S}+\beta_{T}\left(S, T ; E_{2}\right)=\alpha_{S}+\beta_{T} .
\end{aligned}
$$

Subcase 2.2. $\left|T_{1}\right| \geq k_{m}$.
Subcase 2.2.1. $|S| \leq(n-1) r-2$.
By $2 \leq n \leq m, k_{1} \geq k_{2} \geq \cdots \geq k_{m} \geq r+1$ and $\rho=k_{1}+k_{2}+\cdots+k_{m-1}-n+2$, we admit

$$
\begin{aligned}
\rho-|S| & \geq((m-1)(r+1)-n+2)-|S| \\
& \geq((n-1)(r+1)-n+2)-((n-1) r-2) \\
& =3
\end{aligned}
$$

that is,

$$
\begin{equation*}
\rho-|S|=3>0 . \tag{3.3}
\end{equation*}
$$

It follows from Equations (3.2) and (3.3), $\left|T_{1}\right| \geq k_{m}, r \geq 1,2 \leq n \leq m$ and $k_{1} \geq k_{2} \geq \cdots \geq k_{m} \geq r+1$ that

$$
\begin{aligned}
\gamma_{1 G}(S, T ; p, q) & =k_{m}|S|+e_{G}\left(V(G) \backslash S, T_{0}\right)+\rho\left|T_{1}\right|-e_{G}\left(S, T_{1}\right) \\
& \geq k_{m}|S|+\rho\left|T_{1}\right|-\left|S \| T_{1}\right| \\
& =k_{m}|S|+(\rho-|S|)\left|T_{1}\right| \\
& \geq k_{m}|S|+(\rho-|S|) k_{m} \\
& =\rho k_{m} \\
& \geq((m-1)(r+1)-n+2)(r+1) \\
& \geq(2(n-1)-n+2)(r+1) \\
& =n(r+1) \\
& >n r \\
& =r+(n-1) r \\
& \geq \alpha_{S}+\beta_{T} .
\end{aligned}
$$

Subcase 2.2.2. $|S| \geq(n-1) r-1$.
According to $k_{1} \geq k_{2} \geq \cdots \geq k_{m} \geq r+1, \rho=k_{1}+k_{2}+\cdots+k_{m-1}-n+2$ and G being a $\left[0, k_{1}+k_{2}+\cdots+k_{m}-n+1\right]$-digraph, we admit $\rho \geq(m-1)(r+1)-n+2$ and $d_{G}^{+}(S) \leq\left(k_{1}+k_{2}+\cdots+\right.$
$\left.k_{m}-n+1\right)|S|=\left(\rho+k_{m}-1\right)|S|$. Combining these with Claim 1, the definition of $T_{1},|S| \leq\left|T_{1}\right|-1$ and $2 \leq n \leq m$, we derive

$$
\begin{aligned}
\gamma_{1 G}(S, T ; p, q) & =q^{+}(S)+e_{G}(V(G) \backslash S, T)-p^{-}(T) \\
& =q^{+}(S)+d_{G}^{-}(T)-e_{G}(S, T)-p^{-}\left(T_{1}\right) \\
& =k_{m}|S|+d_{G}^{-}(T)-e_{G}(S, T)-\left(d_{G}^{-}\left(T_{1}\right)-\rho\left|T_{1}\right|\right) \\
& =k_{m}|S|-e_{G}(S, T)+\rho\left|T_{1}\right|+d_{G}^{-}(T)-d_{G}^{-}\left(T_{1}\right) \\
& \geq k_{m}|S|-e_{G}(S, T)+\rho\left|T_{1}\right| \\
& =\rho\left(\left|T_{1}\right|-|S|\right)+\left(\rho+k_{m}\right)|S|-e_{G}(S, T) \\
& \geq \rho+\left(\rho+k_{m}\right)|S|-e_{G}(S, T) \\
& \geq \rho+|S|+d_{G}^{+}(S)-e_{G}(S, T) \\
& =\rho+|S|+e_{G}(S, V(G) \backslash T) \\
& \geq \rho+|S| \\
& \geq(m-1)(r+1)-n+2+((n-1) r-1) \\
& \geq(n-1)(r+1)-n+2+((n-1) r-1) \\
& =2(n-1) r \\
& \geq n r \\
& =r+(n-1) r \\
& \geq \alpha_{S}+\beta_{T} .
\end{aligned}
$$

In conclusion, $\gamma_{1 G}(S, T ; p, q) \geq \alpha_{S}\left(S, T ; E_{1}\right)+\beta_{T}\left(S, T ; E_{2}\right)$. Similarly, we may demonstrate

$$
\gamma_{2 G}(S, T ; p, q) \geq \alpha_{T}\left(S, T ; E_{1}\right)+\beta_{S}\left(S, T ; E_{2}\right)
$$

It follows from the choice of S and T that $\gamma_{1 G}\left(S^{\prime}, T^{\prime} ; p, q\right) \geq \alpha_{S^{\prime}}\left(S^{\prime}, T^{\prime} ; E_{1}\right)+\beta_{T^{\prime}}\left(S^{\prime}, T^{\prime} ; E_{2}\right)$ and $\gamma_{2 G}\left(S^{\prime}, T^{\prime} ; p, q\right) \geq \alpha_{T^{\prime}}\left(S^{\prime}, T^{\prime} ; E_{1}\right)+\beta_{S^{\prime}}\left(S^{\prime}, T^{\prime} ; E_{2}\right)$ for any two vertex subsets S^{\prime} and T^{\prime} of G. In light of Lemma 1, G possesses a (p, q)-factor F_{n} with $E_{1} \subseteq E\left(F_{n}\right)$ and $E_{2} \cap E\left(F_{n}\right)=\emptyset$. Note that F_{n} is also a [0, $\left.k_{n}\right]$-factor of G. It follows from the definitions of $p(x)$ and $q(x)$ that

$$
\begin{aligned}
0 & \leq d_{G-F_{n}}^{-}(x) \\
& =d_{G}^{-}(x)-d_{F_{n}}^{-}(x) \\
& \leq d_{G}^{-}(x)-p^{-}(x) \\
& \leq d_{G}^{-}(x)-\left(d_{G}^{-}(x)-\left(k_{1}+k_{2}+\cdots+k_{m-1}-n+2\right)\right) \\
& =k_{1}+k_{2}+\cdots+k_{m-1}-(n-1)+1
\end{aligned}
$$

and

$$
\begin{aligned}
0 & \leq d_{G-F_{n}}^{+}(x) \\
& =d_{G}^{+}(x)-d_{F_{n}}^{+}(x) \\
& \leq d_{G}^{+}(x)-p^{+}(x) \\
& \leq d_{G}^{+}(x)-\left(d_{G}^{+}(x)-\left(k_{1}+k_{2}+\cdots+k_{m-1}-n+2\right)\right)
\end{aligned}
$$

$$
=k_{1}+k_{2}+\cdots+k_{m-1}-(n-1)+1
$$

for any $x \in V(G)$. Therefore, $G-F_{n}$ is a $\left[0, k_{1}+k_{2}+\cdots+k_{m-1}-(n-1)+1\right]$-digraph. Let $H_{i}^{\prime}=H_{i}-x_{i} y_{i}$ for $1 \leq i \leq r$. Obviously, $H_{1}^{\prime}, H_{2}^{\prime}, \cdots, H_{r}^{\prime}$ are r vertex-disjoint $(n-1)$-subdigraphs of $G-F_{n}$. By the induction hypothesis, there exists a subdigraph R^{\prime} of $G-F_{n}$ such that R^{\prime} admits a $\left[0, k_{i}\right]_{i=1}^{n-1}$-factorization orthogonal to every $H_{i}^{\prime}, 1 \leq i \leq r$. We denote by R the subdigraph of G induced by $E\left(R^{\prime}\right) \cup E\left(F_{n}\right)$. Hence, R is a subdigraph of G such that R possesses a $\left[0, k_{i}\right]_{i=1}^{n}$-factorization orthogonal to every H_{i}, $1 \leq i \leq r$. We finish the proof of Theorem 1 .

Acknowledgments

We thank the anonymous referees for their careful reading, and for comments on an earlier version that improved the presentation. This work is supported by Six Big Talent Peak of Jiangsu Province (Grant No. JY-022).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Y. Egawa, M. Kano, Sufficient conditions for graphs to have (g, f)-factors, Discrete Math., 151 (1996), 87-90.
2. W. Gao, J. Guirao, Y. Chen, A toughness condition for fractional (k, m)-deleted graphs revisited, Acta Mathematica Sinica, English Series, 35 (2019), 1227-1237.
3. W. Gao, W. Wang, D. Dimitrov, Toughness condition for a graph to be all fractional (g, f, n)-critical deleted, Filomat, 33 (2019), 2735-2746.
4. X. Lv, A degree condition for fractional (g, f, n)-critical covered graphs, AIMS Mathematics, 5 (2020), 872-878.
5. S. Zhou, Z. Sun, H. Ye, A toughness condition for fractional (k, m)-deleted graphs, Inform. Process. Lett., 113 (2013), 255-259.
6. S. Zhou, Z. Sun, Q. Pan, A sufficient condition for the existence of restricted fractional (g, f)factors in graphs, Problems of Information Transmission, 56 (2020), in press.
7. S. Zhou, Remarks on path factors in graphs, RAIRO-Operations Research, 54 (2020), 1827-1834.
8. S. Zhou, Binding numbers and restricted fractional (g, f)-factors in graphs, Discrete Applied Mathematics, 2020.
9. S. Zhou, F. Yang, L. Xu, Two sufficient conditions for the existence of path factors in graphs, Sci. Iran., 26 (2019), 3510-3514.
10. R. Ma, H. Gao, On (g, f)-factorizations of graphs, Applied Mathematics and Mechanics, English Edition, 18 (1997), 407-410.
11. G. Liu, H. Long, Randomly orthogonal (g, f)-factorizations in graphs, Acta Mathematicae Applicatae Sinica, English Series, 18 (2002), 489-494.
12. G. Liu, B. Zhu, Some problems on factorizations with constraints in bipartite graphs, Discrete Applied Mathematics, 128 (2003), 421-434.
13. S. Zhou, Remarks on orthogonal factorizations of digraphs, International Journal of Computer Mathematics, 91 (2014), 2109-2117.
14. B. Alspach, K. Heinrich, G. Liu, Contemporary Design Theory-A Collection of Surveys, John Wiley and Sons, New York, 1992, 13-37.
15. S. Wang, W. Zhang, Research on fractional critical covered graphs, Problems of Information Transmission, 56 (2020), 270-277.
16. S. Zhou, T. Zhang, Z. Xu, Subgraphs with orthogonal factorizations in graphs, Discrete Applied Mathematics, 286 (2020), 29-34.
17. S. Zhou, Y. Xu, Z. Sun, Degree conditions for fractional (a, b, k)-critical covered graphs, Inform. Process. Lett., 152 (2019), 105838.
18. X. Zhou, T. Nishizeki, Edge-coloring and f-coloring for Vatious Classes of Graphs, Lecture Notes in Computer Science, 834 (1994), 199-207.
19. J. Horton, Room designs and one-factorizations, Aequationes Math., 22 (1981), 56-63.
20. L. Euler, Recherches sur une nouveau espece de quarres magiques, in Leonhardi Euleri Opera Omnia. Ser. Prima., 7 (1923), 291-392.
21. S. Zhou, Z. Sun, Binding number conditions for $P_{\geq 2}$-factor and $P_{\geq 3}$-factor uniform graphs, Discrete Mathematics, 343 (2020), 111715.
22. S. Zhou, Z. Sun, Some existence theorems on path factors with given properties in graphs, Acta Mathematica Sinica, English Series, 36 (2020), 917-928.
23. S. Zhou, Some results on path-factor critical avoidable graphs, Discussiones Mathematicae Graph Theory, 2020.
24. M. Kouider, Z. Lonc, Stability number and [a, b]-factors in graphs, J. Graph Theor., 46 (2004), 254-264.
25. G. Yan, J. Pan, C. Wong, T. Tokuda, Decomposition of graphs into (g, f)-factors, Graph. Combinator., 16 (2000), 117-126.
26. G. Liu, Orthogonal (g, f)-factorizations in graphs, Discrete Mathematics, 143 (1995), 153-158.
27. P. C. B. Lam, G. Liu, G. Li, W. Shiu, Orthogonal (g, f)-factorizations in networks, Networks, 35 (2000), 274-278.
28. H. Feng, G. Liu, Orthogonal factorizations of graphs, J. Graph Theor., 40 (2002), 267-276.
29. C. Wang, Orthogonal factorizations in networks, Int. J. Comput. Math., 88 (2011), 476-483.
30. G. Liu, Orthogonal factorizations of digraphs, Front. Math. China, 4 (2009), 311-323.
31. C. Wang, Subdigraphs with orthogonal factorizations of digraphs, Eur. J. Combin., 33 (2012), 1015-1021.
32. S. Zhou, Q. Bian, Subdigraphs with orthogonal factorizations of digraphs (II), Eur. J. Combin., 36 (2014), 198-205.
33. S. Zhou, Z. Sun, Z. Xu, A result on r-orthogonal factorizations in digraphs, Eur. J. Combin., 65 (2017), 15-23.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
