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1. Introduction

Many real-world networks can conveniently be simulated by graphs or networks. Examples
include the World Wide Web with nodes modelling Web pages and links representing hyperlinks
between Web pages, or a communication network with nodes simulating cities, and links modelling
communication channels, an interconnection network with nodes representing processors and links
simulating communication channels. The factors, fractional factors, factorizations and orthogonal
factorizations in graphs or networks attracted a great deal of attention [1–17] due to their applications in
network design, combinatorial design, the file transfer problems on computer networks, coding design,
scheduling problems, and so on. The file transfer problem can be simulated as (0, f )-factorizations in a
graph [18]. The design of a Room square with order 2n is equivalent to the orthogonal 1-factorization
of K2n which is firstly posed by Horton [19]. The design of a pair of orthogonal Latin squares with
order n is related to two orthogonal 1-factorizations of Kn,n which is firstly posed by Euler [20]. It is
well-known that a network can be simulated by a graph. Vertices of the graph represent nodes of the
network, and edges of the graph represent links between the nodes in the network. Henceforth, we
replace network by the term graph.

In this article, we discuss finite directed graphs (digraphs) without loops or parallel arcs. Let G be
a digraph. We denote the vertex set and arc set of G by V(G) and E(G), respectively. For x ∈ V(G),
we denote by d−G(x) the indegree of x in G, and by d+

G(x) denote the outdegree of x in G. We use xy to
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denote the arc with tail x and head y. Let g = (g−, g+) and f = ( f −, f +) be pairs of nonnegative integer-
valued functions defined on V(G) satisfying g−(x) ≤ f −(x) and g+(x) ≤ f +(x) for every x ∈ V(G). A
spanning subdigraph F of a digraph G is called a (g, f )-factor of G if it satisfies g−(x) ≤ d−F(x) ≤ f −(x)
and g+(x) ≤ d+

F(x) ≤ f +(x) for all x ∈ V(G). We call G a (g, f )-digraph if G itself is a (g, f )-factor.
For convenience, we write g ≤ f if g−(x) ≤ f −(x) and g+(x) ≤ f +(x) for every x ∈ V(G), and write
g ≥ k if min{g−(x), g+(x)} ≥ k for every x ∈ V(G), and write g = a if g−(x) = a and g+(x) = a for every
x ∈ V(G), where a is a nonnegative integer. Furthermore, we shall write m f + n for (m f −+ n,m f + + n).
If g(x) = a and f (x) = b for any x ∈ V(G), then we call a (g, f )-factor as an [a, b]-factor and a (g, f )-
digraph as an [a, b]-digraph. If E(G) can be decomposed into arc-disjoint [0, k1]-factor F1, [0, k2]-factor
F2, · · · , [0, km]-factor Fm, then we say F = {F1, F2, · · · , Fm} is a [0, ki]m

1 -factorization of a digraph G,
where ki is a positive integer for 1 ≤ i ≤ m.

A subdigraph H of a digraph G is called an m-subdigraph if H possesses m arcs in total. Let H be
an m-subdigraph of G and F = {F1, F2, · · · , Fm} be a [0, ki]m

1 -factorization of G. If |E(H) ∩ E(Fi)| = 1
for 1 ≤ i ≤ m, then we say that F is orthogonal to H, namely, F is an orthogonal [0, ki]m

1 -factorization
of G. Similarly, we may define an orthogonal (g, f )-factorization of G.

Zhou and Sun [21, 22] posed some sufficient conditions for graphs to admit [1, 2]-factors with given
properties. Zhou [23] studied the existence of [1, 2]-factors with given properties. Kouider and Lonc
[24] derived some results on [a, b]-factors in graphs. Yan, Pan, Wong and Tokuda [25] investigated
(g, f )-factorizations of graphs. Alspach, Heinrich and Liu [14] put forward the following problem:
Given a subgraph H of G, does there exist a factorization F of G of certain type orthogonal to H? Liu
[26] demonstrated that every (mg + m − 1,m f − m + 1)-graph admits a (g, f )-factorization orthogonal
to an m-matching. Lam, Liu, Li and Shiu [27] justified that every (mg + m − 1,m f − m + 1)-graph
admits a (g, f )-factorization orthogonal to k given vertex-disjoint m-subgraphs. Feng and Liu [28]
claimed that every [0, k1 + k2 + · · · + km − m + 1]-graph possesses a [0, ki]m

1 -factorization orthogonal
to any given m-subgraph. Wang [29] verified the existence of subgraphs with orthogonal [0, ki]n

1-
factorizations in [0, k1+k2+· · ·+km−n+1]-graphs. Liu [30] investigated orthogonal (g, f )-factorizations
of (mg + m − 1,m f − m + 1)-digraphs. Wang [31] claimed that every (mg + k − 1,m f − k + 1)-
digraph includes a subdigraph R such that R admits a (g, f )-factorization orthogonal to n arc-disjoint
k-subdigraphs. Zhou and Bian [32] verified that every (mg + (k − 1)r,m f − (k − 1)r)-digraph includes
a sundigraph R such that R admits a (g, f )-factorization orthogonal to r vertex-disjoint k-subdigraphs.
Zhou, Sun and Xu [33] demonstrated that every (0,m f −m+1)-digraph possesses a (0, f )-factorization
orthogonal to k vertex-disjoint m-subdigraphs.

In this article, we study the following problem: For given r vertex-disjoint n-subdigraphs
H1,H2, · · · ,Hr of a digraph G, does G admit factorization orthogonal to every Hi (i = 1, 2, · · · , r)?
Furthermore, we verify the following theorem, which partly solves the above problem.

Theorem 1. Let G be a [0, k1 + k2 + · · · + km − n + 1]-digraph, and let H1,H2, · · · ,Hr be r vertex-
disjoint n-subdigraphs of G, where m, n, r and ki (1 ≤ i ≤ m) are positive integers satisfying 1 ≤ n ≤ m
and k1 ≥ k2 ≥ · · · ≥ km ≥ r + 1. Then there exists a subdigraph R of G such that R possesses a
[0, ki]n

1-factorization orthogonal to every Hi for 1 ≤ i ≤ r.

Obviously, we admit the following result by setting r = 1 in Theorem 1.

Corollary 1. Let G be a [0, k1 + k2 + · · · + km − n + 1]-digraph, and let H be an n-subdigraphs of G,
where m, n and ki (1 ≤ i ≤ m) are positive integers satisfying 1 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ 2.
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Then there exists a subdigraph R of G such that R possesses a [0, ki]n
1-factorization orthogonal to H.

2. Preliminary lemmas

Let G be a digraph. For any two vertex subsets S and T of G, we write EG(S ,T ) = {xy : xy ∈
E(G), x ∈ S , y ∈ T }, and let eG(S ,T ) = |EG(S ,T )|. Let ϕ be a function defined on V(G). We write
ϕ(S ) =

∑
x∈S

ϕ(x) and ϕ(∅) = 0. Define

γ1G(S ,T ; g, f ) = f +(S ) + eG(V(G) \ S ,T ) − g−(T ) (2.1)

and
γ2G(S ,T ; g, f ) = f −(T ) + eG(S ,V(G) \ T ) − g+(S ). (2.2)

Let S and T be two vertex subsets of G, and E1 and E2 be two disjoint subsets of E(G). Put

EiS = Ei ∩ EG(S ,V(G) \ T ), EiT = Ei ∩ EG(V(G) \ S ,T )

for i = 1, 2, and set

αS (S ,T ; E1) = |E1S |, βT (S ,T ; E2) = |E2T |, αT (S ,T ; E1) = |E1T |, βS (S ,T ; E2) = |E2S |.

For simplicity, αS (S ,T ; E1), βT (S ,T ; E2), αT (S ,T ; E1) and βS (S ,T ; E2) are written as αS , βT , αT

and βS under without ambiguity.
Liu [30] derived a necessary and sufficient condition for a digraph to admit a (g, f )-factor containing

E1 and excluding E2, which plays a key role in the proof of Theorem 1.

Lemma 1 (Liu [30]). Let G be a digraph, and let g = (g−, g+) and f = ( f −, f +) be pairs of integer-
valued functions defined on V(G) satisfying 0 ≤ g(x) ≤ f (x) for every x ∈ V(G). Let E1 and E2 be two
disjoint subsets of E(G). Then G admits a (g, f )-factor F with E1 ⊆ E(F) and E2 ∩ E(F) = ∅ if and
only if γ1G(S ,T ; g, f ) ≥ αS + βT and γ2G(S ,T ; g, f ) ≥ αT + βS for all vertex subsets S and T of G.

In what follows, we always assume that G is a [0, k1 + k2 + · · · + km − n + 1]-digraph, where m, n, r
and ki (1 ≤ i ≤ m) are nonnegative integers satisfying 1 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ r + 1. For
every [0, ki]-factor Fi and every isolated vertex x of G, we admit dFi(x) = 0. We use I to denote the set
of all isolated vertices in G. If G − I admits a [0, ki]-factor, then G admits also a [0, ki]-factor. Hence,
we may assume that G does not admit isolated vertices. For arbitrary x ∈ V(G), we define

p−(x) = max{0, d−G(x) − (k1 + k2 + · · · + km−1 − n + 2)},

p+(x) = max{0, d+
G(x) − (k1 + k2 + · · · + km−1 − n + 2)},

q−(x) = min{km, d−G(x)}

and
q+(x) = min{km, d+

G(x)}.

Write p(x) = (p−(x), p+(x)) and q(x) = (q−(x), q+(x)). According to the definitions of p(x) and q(x),
we derive

0 ≤ p(x) ≤ q(x) ≤ km
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for every x ∈ V(G).

Lemma 2. Let G be a [0, k1 + k2 + · · · + km]-digraph, and let H1,H2, · · · ,Hr be independent arcs of G,
where m, r and ki (1 ≤ i ≤ m) are positive integers with ki ≥ r + 1. Then G possesses a [0, k1]-factor
containing Hi (1 ≤ i ≤ r).

Proof. Let E1 = {H1,H2, · · · ,Hr} and E2 = ∅. For arbitrary two vertex subsets S and T of G, we
define αS , βT , αT and βS as before. In light of the definitions of αS , βT , αT and βS , we derive

αS ≤ min{r, |S |} and βT = 0;

αT ≤ min{r, |T |} and βS = 0.

Thus, we admit

γ1G(S ,T ; 0, k1) = k1|S | + eG(V(G) \ S ,T ) − 0 · |T | ≥ |S | ≥ αS = αS + βT

and
γ2G(S ,T ; 0, k1) = k1|T | + eG(S ,V(G) \ T ) − 0 · |S | ≥ |T | ≥ αT = αT + βS

by k1 ≥ 2, where γ1G(S ,T ; 0, k1) is defined by Equation (2.1) by replacing g and f by 0 and k1, and
γ2G(S ,T ; 0, k1) is defined by Equation (2.2) by replacing g and f by 0 and k1. Then it follows from
Lemma 1 that G has a [0, k1]-factor containing Hi (1 ≤ i ≤ r). We finish the proof of Lemma 2. �

3. Proof of Theorem 1

Proof of Theorem 1. We apply induction on m and n. According to Lemma 2, Theorem 1 is true for
n = 1. Hence, we may assume that n ≥ 2. For the inductive step, we assume that Theorem 1 is true for
any [0, k1 + k2 + · · · + km′ − n′ + 1]-digraph G′ with m′ < m, n′ < n and 1 ≤ n′ ≤ m′, and any vertex-
disjoint n′-subdigraphs H′1,H

′
2, · · · ,H

′
r of G′. Now, we consider a [0, k1 + k2 + · · ·+ km − n + 1]-digraph

G and any vertex-disjoint n-subdigraphs H1,H2, · · · ,Hr of G.

We take xiyi ∈ E(Hi) for 1 ≤ i ≤ r. Write E1 = {x1y1, x2y2, · · · , xryr} and E2 =
( r⋃

i=1
E(Hi)

)
\ E1.

Thus, we easily see that |E1| = r and |E2| = (n − 1)r. Let E1S , E2S , E1T , E2T , αS , βT , αT , βS , p(x) and
q(x) be defined as in Section 2. By the definitions of αS , βT , αT and βS , we derive

αS ≤ min{r, |S |}, βT ≤ min{(n − 1)r, (n − 1)|T |},

αT ≤ min{r, |T |}, βS ≤ min{(n − 1)r, (n − 1)|S |}.

Now, we define γ1G(S ,T ; p, q) in Equation (2.1) by replacing g and f by p and q, and define
γ2G(S ,T ; p, q) in Equation (2.2) by replacing g and f by p and q. Then we select two vertex subsets S
and T of G satisfying

(a) γ1G(S ,T ; p, q) − (αS (S ,T ; E1) + βT (S ,T ; E2)) is minimum;
(b) |S | is minimum subject to (a).
Now, we demonstrate the following claim.

Claim 1. If S , ∅, then q+(x) ≤ d+
G(x) − 1 for every x ∈ S , and so q+(x) = km for every x ∈ S .

Proof. Set S 1 = {x ∈ S : q+(x) ≥ d+
G(x)}. In what follows, we verify S 1 = ∅.
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Suppose that S 1 , ∅. Let S 0 = S \ S 1. Thus, we admit

γ1G(S ,T ; p, q) = q+(S ) + eG(V(G) \ S ,T ) − p−(T )
= q+(S 0) + q+(S 1) + eG(V(G) \ S 0,T ) − eG(S 1,T ) − p−(T )
= q+(S 0) + eG(V(G) \ S 0,T ) − p−(T ) + q+(S 1) − eG(S 1,T )
= γ1G(S 0,T ; p, q) + q+(S 1) − eG(S 1,T )
≥ γ1G(S 0,T ; p, q) + d+

G(S 1) − eG(S 1,T )
= γ1G(S 0,T ; p, q) + eG(S 1,V(G) \ T ).

Note that

αS (S ,T ; E1) + βT (S ,T ; E2) ≤ αS 0(S 0,T ; E1) + βT (S 0,T ; E2) + αS 1(S 1,T ; E1)

and
eG(S 1,V(G) \ T ) ≥ αS 1(S 1,T ; E1).

Thus, we derive

γ1G(S ,T ; p, q) − (αS (S ,T ; E1) + βT (S ,T ; E2))
≥ γ1G(S 0,T ; p, q) + eG(S 1,V(G) \ T ) − (αS 0(S 0,T ; E1) + βT (S 0,T ; E2) + αS 1(S 1,T ; E1))
≥ γ1G(S 0,T ; p, q) − (αS 0(S 0,T ; E1) + βT (S 0,T ; E2)),

which conflicts the choice of S . Hence, S 1 = ∅. And so, if S , ∅, then q+(x) ≤ d+
G(x) − 1 for every

x ∈ S . Furthermore, we admit q+(x) = km for every x ∈ S . We finish the proof of Claim 1. �
The remaining of the proof is dedicated to proving that G possesses a (p, q)-factor Fn with E1 ⊆

E(Fn) and E2 ∩ E(Fn) = ∅. According to Lemma 1 and the choice of S and T , it suffices to verify that
γ1G(S ,T ; p, q) ≥ αS + βT and γ2G(S ,T ; p, q) ≥ αT + βS .

Next, we write ρ = k1 + k2 + · · · + km−1 − n + 2, T1 = {x : d−G(x) − ρ > 0, x ∈ T } and T0 = T \ T1.
It is obvious that p−(x) = 0 for any x ∈ T0 and p−(x) = d−G(x) − ρ for any x ∈ T1. By the definition of
βT (S ,T ; E2), we possess

βT0(S ,T0; E2) + βT1(S ,T1; E2) = βT (S ,T ; E2). (3.1)

In light of the definitions of αS and βT , we have αS ≤ min{r, |S |} ≤ |S | and βT ≤ eG(V(G) \ S ,T ). If
T1 = ∅, then by Claim 1 we admit

γ1G(S ,T ; p, q) = q+(S ) + eG(V(G) \ S ,T ) − p−(T )
= q+(S ) + eG(V(G) \ S ,T ) − p−(T0) − p−(T1)
= km|S | + eG(V(G) \ S ,T )
≥ |S | + eG(V(G) \ S ,T )
≥ αS + βT .

If S = ∅, then we have αS = 0. It follows from Equation (3.1), r ≥ 1, 2 ≤ n ≤ m and k1 ≥ k2 ≥

· · · ≥ km ≥ r + 1 that

γ1G(S ,T ; p, q) = q+(S ) + eG(V(G) \ S ,T ) − p−(T )

AIMS Mathematics Volume 6, Issue 2, 1223–1233.



1228

= eG(V(G),T ) − p−(T1)
= d−G(T ) − p−(T1)
= d−G(T0) + d−G(T1) − (d−G(T1) − ρ|T1|)
= d−G(T0) + ρ|T1|

= d−G(T0) + (k1 + k2 + · · · + km−1 − n + 2)|T1|

≥ d−G(T0) + ((m − 1)(r + 1) − n + 2)|T1|

≥ d−G(T0) + ((n − 1)(r + 1) − n + 2)|T1|

= eG(V(G) \ S ,T0) + ((n − 1)r + 1)|T1|

≥ eG(V(G) \ S ,T0) + (n − 1)|T1|

≥ βT0(S ,T0; E2) + βT1(S ,T1; E2)
= βT (S ,T ; E2) = βT = αS + βT .

In what follows, we always assume that S , ∅ and T1 , ∅. To demonstrate Theorem 1, we consider
two cases.
Case 1. |S | ≥ |T1|.

According to Claim 1, the definition of T1, km ≥ r + 1 and |S | ≥ |T1|, we derive

γ1G(S ,T ; p, q) = q+(S ) + eG(V(G) \ S ,T ) − p−(T )
= q+(S ) + eG(V(G) \ S ,T ) − p−(T1)
= km|S | + eG(V(G) \ S ,T ) − (d−G(T1) − ρ|T1|)
= km|S | + eG(V(G) \ S ,T ) − d−G(T1) + ρ|T1|

= km(|S | − |T1|) + (ρ + km)|T1| + eG(V(G) \ S ,T ) − d−G(T1)
≥ km(|S | − |T1|) + d−G(T1) + |T1| + eG(V(G) \ S ,T ) − d−G(T1)
= km(|S | − |T1|) + |T1| + eG(V(G) \ S ,T )
= (km − 1)(|S | − |T1|) + |S | + eG(V(G) \ S ,T )
≥ |S | + eG(V(G) \ S ,T )
≥ αS + βT .

Case 2. |S | ≤ |T1| − 1.
By Claim 1, the definitions of T0 and T1, we admit

γ1G(S ,T ; p, q) = q+(S ) + eG(V(G) \ S ,T ) − p−(T )
= q+(S ) + eG(V(G) \ S ,T0) + eG(V(G) \ S ,T1) − p−(T1)
= km|S | + eG(V(G) \ S ,T0) + d−G(T1) − eG(S ,T1) − p−(T1)
= km|S | + eG(V(G) \ S ,T0) + (d−G(T1) − p−(T1)) − eG(S ,T1)
= km|S | + eG(V(G) \ S ,T0) + ρ|T1| − eG(S ,T1),

namely,
γ1G(S ,T ; p, q) = km|S | + eG(V(G) \ S ,T0) + ρ|T1| − eG(S ,T1). (3.2)

Subcase 2.1. |T1| ≤ km − 1.
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It follows from Equations (3.1) and (3.2), r ≥ 1, 2 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ r + 1 that

γ1G(S ,T ; p, q) = km|S | + eG(V(G) \ S ,T0) + ρ|T1| − eG(S ,T1)
≥ km|S | + eG(V(G) \ S ,T0) + ρ|T1| − |S ||T1|

≥ km|S | + eG(V(G) \ S ,T0) + ((m − 1)(r + 1) − n + 2)|T1| − (km − 1)|S |
= |S | + eG(V(G) \ S ,T0) + ((m − 1)(r + 1) − n + 2)|T1|

≥ |S | + eG(V(G) \ S ,T0) + ((n − 1)(r + 1) − n + 2)|T1|

= |S | + eG(V(G) \ S ,T0) + ((n − 1)r + 1)|T1|

≥ |S | + eG(V(G) \ S ,T0) + (n − 1)|T1|

≥ αS + βT0(S ,T0; E2) + βT1(S ,T1; E2)
= αS + βT (S ,T ; E2) = αS + βT .

Subcase 2.2. |T1| ≥ km.
Subcase 2.2.1. |S | ≤ (n − 1)r − 2.

By 2 ≤ n ≤ m, k1 ≥ k2 ≥ · · · ≥ km ≥ r + 1 and ρ = k1 + k2 + · · · + km−1 − n + 2, we admit

ρ − |S | ≥ ((m − 1)(r + 1) − n + 2) − |S |
≥ ((n − 1)(r + 1) − n + 2) − ((n − 1)r − 2)
= 3,

that is,
ρ − |S | = 3 > 0. (3.3)

It follows from Equations (3.2) and (3.3), |T1| ≥ km, r ≥ 1, 2 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ r + 1
that

γ1G(S ,T ; p, q) = km|S | + eG(V(G) \ S ,T0) + ρ|T1| − eG(S ,T1)
≥ km|S | + ρ|T1| − |S ||T1|

= km|S | + (ρ − |S |)|T1|

≥ km|S | + (ρ − |S |)km

= ρkm

≥ ((m − 1)(r + 1) − n + 2)(r + 1)
≥ (2(n − 1) − n + 2)(r + 1)
= n(r + 1)
> nr

= r + (n − 1)r
≥ αS + βT .

Subcase 2.2.2. |S | ≥ (n − 1)r − 1.
According to k1 ≥ k2 ≥ · · · ≥ km ≥ r + 1, ρ = k1 + k2 + · · · + km−1 − n + 2 and G being a

[0, k1 + k2 + · · · + km − n + 1]-digraph, we admit ρ ≥ (m− 1)(r + 1)− n + 2 and d+
G(S ) ≤ (k1 + k2 + · · · +
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km − n + 1)|S | = (ρ + km − 1)|S |. Combining these with Claim 1, the definition of T1, |S | ≤ |T1| − 1 and
2 ≤ n ≤ m, we derive

γ1G(S ,T ; p, q) = q+(S ) + eG(V(G) \ S ,T ) − p−(T )
= q+(S ) + d−G(T ) − eG(S ,T ) − p−(T1)
= km|S | + d−G(T ) − eG(S ,T ) − (d−G(T1) − ρ|T1|)
= km|S | − eG(S ,T ) + ρ|T1| + d−G(T ) − d−G(T1)
≥ km|S | − eG(S ,T ) + ρ|T1|

= ρ(|T1| − |S |) + (ρ + km)|S | − eG(S ,T )
≥ ρ + (ρ + km)|S | − eG(S ,T )
≥ ρ + |S | + d+

G(S ) − eG(S ,T )
= ρ + |S | + eG(S ,V(G) \ T )
≥ ρ + |S |

≥ (m − 1)(r + 1) − n + 2 + ((n − 1)r − 1)
≥ (n − 1)(r + 1) − n + 2 + ((n − 1)r − 1)
= 2(n − 1)r
≥ nr

= r + (n − 1)r
≥ αS + βT .

In conclusion, γ1G(S ,T ; p, q) ≥ αS (S ,T ; E1) + βT (S ,T ; E2). Similarly, we may demonstrate

γ2G(S ,T ; p, q) ≥ αT (S ,T ; E1) + βS (S ,T ; E2).

It follows from the choice of S and T that γ1G(S ′,T ′; p, q) ≥ αS ′(S ′,T ′; E1) + βT ′(S ′,T ′; E2) and
γ2G(S ′,T ′; p, q) ≥ αT ′(S ′,T ′; E1) + βS ′(S ′,T ′; E2) for any two vertex subsets S ′ and T ′ of G. In light
of Lemma 1, G possesses a (p, q)-factor Fn with E1 ⊆ E(Fn) and E2 ∩ E(Fn) = ∅. Note that Fn is also
a [0, kn]-factor of G. It follows from the definitions of p(x) and q(x) that

0 ≤ d−G−Fn
(x)

= d−G(x) − d−Fn
(x)

≤ d−G(x) − p−(x)
≤ d−G(x) − (d−G(x) − (k1 + k2 + · · · + km−1 − n + 2))
= k1 + k2 + · · · + km−1 − (n − 1) + 1

and

0 ≤ d+
G−Fn

(x)
= d+

G(x) − d+
Fn

(x)
≤ d+

G(x) − p+(x)
≤ d+

G(x) − (d+
G(x) − (k1 + k2 + · · · + km−1 − n + 2))
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= k1 + k2 + · · · + km−1 − (n − 1) + 1

for any x ∈ V(G). Therefore, G−Fn is a [0, k1 + k2 + · · ·+ km−1− (n−1) + 1]-digraph. Let H′i = Hi− xiyi

for 1 ≤ i ≤ r. Obviously, H′1,H
′
2, · · · ,H

′
r are r vertex-disjoint (n − 1)-subdigraphs of G − Fn. By the

induction hypothesis, there exists a subdigraph R′ of G−Fn such that R′ admits a [0, ki]n−1
i=1 -factorization

orthogonal to every H′i , 1 ≤ i ≤ r. We denote by R the subdigraph of G induced by E(R′) ∪ E(Fn).
Hence, R is a subdigraph of G such that R possesses a [0, ki]n

i=1-factorization orthogonal to every Hi,
1 ≤ i ≤ r. We finish the proof of Theorem 1. �
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