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Abstract: This paper is concerned with the existence of periodic wave solutions for a type of non-
Newtonian filtration equations with an indefinite singularity. A sufficient criterion for the existence of
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1. Introduction

In this paper, we consider the periodic wave solutions problem for a type of non-Newtonian filtration
equation with an indefinite singularity as follows:

∂y
∂t

=
∂

∂x

(∣∣∣∣∣∂y
∂x

∣∣∣∣∣p−2 ∂y
∂x

)
+ f (y) +

h(t, x)
ym , (1.1)

where p > 1, m > 0, f ∈ C(R,R), h ∈ C(R × R,R). In this equation, the function 1
ym may have a

singularity at y = 0. Besides this, the signs of h(t, x) are all allowed to change.
Equation (1.1) is known as the evolutionary p−Laplacian. Many fluid dynamics models can be

described by Eq (1.1), see [1, 2]. For the last forty years, there exist many results about
non-Newtonian filtration equation. In 1967, Ladyzhenskaja [1] studied the following non-Newtonian
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filtration equation:

∂y
∂t

=
∂

∂x

(∣∣∣∣∣∂y
∂x

∣∣∣∣∣p−2 ∂y
∂x

)
+ yq(1 − y)(z − a), t ≥ 0, p > 1, x ∈ R

which is the description of incompressible fluids and solvability in the large boundary value. Jin and
Yin [3] investigated the traveling wavefronts for a non-Newtonian filtration equation with Hodgkin-
Huxley source:

∂y
∂t

=
∂

∂x

(∣∣∣∣∣∂y
∂x

∣∣∣∣∣p−2 ∂y
∂x

)
+ f (y, yτ), t ≥ 0, x ∈ R,

where p > 1, f (y, z) = yq(1 − y)(z − a), q > 0, a ∈ (0, 1) is a constant, yτ = y(x, t − τ), τ > 0. The
more related papers for non-Newtonian filtration equation, see e.g., [4–7].

In recent years, the solitary wave and periodic wave solutions for the non-Newtonian filtration
equation have been received great attention. In 2014, Lian etc. [8] studied the following non-Newtonian
filtration equation:

∂q
∂t

=
∂

∂x

(∣∣∣∣∣∂q
∂x

∣∣∣∣∣p−2∂q
∂x

)
+ f (q) + g(t, x). (1.2)

By using an extension of Mawhin’s continuation theorem, the authors obtained some existence results
of solitary wave and periodic wave solutions for Eq (1.2). Kong etc. [9] considered a non-Newtonian
filtration equations with nonlinear sources and the variable delay. In 2017, when f (q) has a singularity
(including the attractive singular case or the repulsive singular case) in (1.2), Lian etc. [10] studied
the existence and multiplicity of positive periodic wave solutions for Eq (1.2). For more results about
periodic solutions and periodic wave solutions, see [11–13].

In Eq (1.1), the signs of function h are allowed to change which means that the singularity of 1
ym

has a singularity at y = 0 can be classified neither as repulsive type nor as attractive type. In this
paper, we will use the theorem belonging to [14] to obtain the existence of periodic wave solutions for
Eq (1.1). To the best of our knowledge, there is no paper to use the theorem in [14] for studying the
non-Newtonian filtration equations with an indefinite singularity, the main purpose is to recommend
a new method for the research of non-Newtonian filtration equations with an indefinite singularity.
Recent years, second-order indefinite singular equations have been studied by some researchers. Hakl
and Zamora [15] studied a second-order indefinite singular equations by using Leray-Schauder degree
theory. Fonda and Sfecci [16] investigated the periodic problem of Ambrosetti-Prodi type having a
nonlinearity with possibly one or two singularities. In the present paper, we will generalize second-
order indefinite singular equations to Eq (1.1). Hence, our research can enrich and develop the study
of second-order singular equations. The topics of solitary wave solutions, periodic wave, and traveling
wave solutions are interesting. Recently, there are many superior works on these topics, see them
in [17–27].

For Eq (1.1), assume that there is a continuous function h(s) such that h(t, x) = −h(x + ct) = −h(s),
where c ∈ R. Let y(t, x) = u(s) with s = x + ct be the solution of Eq (1.1), then Eq (1.1) is changed into
the following equation:

cu′(s) = (φp(u′(s)))′ + f (u) −
h(s)
um , (1.3)

where φp(u) = |u|p−2u, p > 1,m > 0, f , h ∈ C(R,R).
Definition 1.1 Let T > 0 be a constant. Suppose that u(s + T ) = u(s) and u(s) is a solution of Eq
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(1.3) for s ∈ R. In generally, the periodic solution of Eq (1.3) is regarded as periodic wave solution of
Eq (1.1).

The highlights of this paper are threefold:
(1) In this paper, we studied a new non-Newtonian filtration equation with an indefinite singularity
which is different from the existing non-Newtonian filtration equations, see e.g., [3, 8–12].
(2) We creatively use a new continuation theorem to study a class of strongly nonlinear equations.
For estimating the prior bounds of periodic wave solutions, we develop some inequality methods and
mathematical analysis skills.
(3) Different from the previous results, we introduce a new unified framework to deal with the existence
of periodic wave solutions for indefinite singular equations by using Topological degree theory and
some mathematical analysis skills, which may be of special interest. It is noted that our main methods
can be studied other types of indefinite singular equations.

The following sections are organized as follows: In Section 2, we give some useful lemmas and
definitions. In Section 3, main results are obtained for the existence of periodic wave solutions to the
non-Newtonian filtration equation (1.1). In Section 4, two examples are given to show the feasibility
of our results. Finally, some conclusions and discussions are given about this paper.

2. Preliminaries

Definition 2.1. [14] Let X and Z be two Banach spaces with norms || · ||X, || · ||Z, respectively. A
continuous operator

M : X ∩ domM→Z

is called to be quasi-linear if

(i) ImM :=M(X ∩ domM) is a closed subset ofZ;

(ii) KerM := {x ∈ X ∩ domM :Mx = 0} is linearly homeomorphic to Rn, n < ∞,
where domM is the domain ofM.
Definition 2.2. [14] Let Ω ⊂ X be an open and bounded set with the origin θ ∈ Ω. Nλ : Ω̄ → Z, λ ∈

[0, 1] is said to beM-compact in Ω̄ if there exists subset Z1 of Z satisfying dimZ1 = dimKerM and
an operator R : Ω̄ × [0, 1]→ X2 being continuous and compact such that for λ ∈ [0, 1],

(a) (I − Q)Nλ(Ω̄) ⊂ ImM ⊂ (I − Q)Z,
(b) QNλx = 0, λ ∈ (0, 1)⇔ QNx = 0, ∀x ∈ Ω,

(c) R(·, 0) ≡ 0 and R(·, λ)|Σλ = (I − P)|Σλ ,
(d)M[Pu + R(·, λ)] = (I − Q)Nλ, λ ∈ [0, 1],

where X2 is a the complement space of KerM in X, i.e., X = KerM⊕ X2; P, Q are two projectors
satisfying ImP = KerM, ImQ = Z1, N = N1, Σλ = {x ∈ Ω̄ :Mx = Nλx}.
Lemma 2.1. [14] Let X andZ be two Banach spaces with norms || · ||X, || · ||Z, respectively. Let Ω ⊂ X
be an open and bounded nonempty set. Suppose

M : X ∩ domM→Z

is quasi-linear and Nλ : Ω̄→ Z, λ ∈ [0, 1] isM−compact in Ω̄. In addition, if the following conditions
hold:
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(A1) Mx , Nλx, ∀(x, λ) ∈ ∂Ω × (0, 1);
(A2) QNx , 0, ∀x ∈ KerM∩ ∂Ω;
(A3) deg{JQN,Ω ∩ KerM, 0} , 0, J : ImQ→ KerM is a homeomorphism.

Then the abstract equationMx = Nx has at least one solution in domM∩ Ω̄.
From Lemma 2.1, [28] and [29], we have the following lemma:

Lemma 2.2. Consider the following p−Laplacian equation

(φp(u′(s)))′ = f (t, u, u′), (2.1)

where p > 1, f ∈ C(R3,R) with f (t + T, ·, ·) = f (t, ·, ·). Assume that Ω is an open bounded set in C1
T

such that the following conditions hold.
(1) For each λ ∈ (0, 1), the problem

(φp(u′))′ = λ f (t, u, u′), u(0) = u(T ), u′(0) = u′(T ),

has no solution on ∂Ω.
(2) The equation

F (a) =
1
T

∫ T

0
f (t, a, 0)dt = 0,

has no solution on ∂Ω ∩ R.
(3)The Brouwer degree

dB(F ,Ω ∩ R, 0) , 0.

Then Eq (2.1) has at least one T−periodic solution in Ω.
Remark 2.1. Lemma 2.2 is derived from the Lemma 2.1 which is convenient for studying the existence
of periodic wave solutions to the non-Newtonian filtration equation (1.1).

3. Main results

Denote
CT = {x|x ∈ C(R,R), x(t + T ) ≡ x(t), ∀t ∈ R}

with the norm
|ϕ|0 = max

t∈[0,T ]
|ϕ(t)|, ∀ϕ ∈ CT

and
C1

T = {x|x ∈ C1(R,R), x(t + T ) ≡ x(t), ∀t ∈ R}

with the norm
|ϕ|∞ = max

t∈[0,T ]
{|ϕ|0, |ϕ

′|0}, ∀ϕ ∈ C1
T .

Clearly, CT and C1
T are Banach spaces. For each φ ∈ CT , let

φ+(t) = max{φ(t), 0}, φ−(t) = max{−φ(t), 0},

φ =
1
T

∫ T

0
φ(s)ds, ||φ|p =

( ∫ T

0
|φ(s)|pds

) 1
p

, p > 1.
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Clearly, for t ∈ R, φ(t) = φ+(t) − φ−(t), φ = φ+ − φ−. Consider the following equations family:

(φp(u′(s)))′ = cλu′(s) − λ f (u) + λ
h(s)
um , λ ∈ (0, 1]. (3.1)

Let
Ω =

{
u ∈ C1

T : (φp(u′(s)))′ = cλu′(s) − λ f (u) + λ
h(s)
um , λ ∈ (0, 1], u > 0

}
.

Lemma 3.1. Assume that the function f such that

fL < f (u) < fM, f ′(u) > 0, ∀u > 0,

where fL and fM are positive constants. Furthermore, assume h > 0. Then for each u ∈ Ω, there are
constants ξ1, ξ2 ∈ [0,T ] such that

u(ξ1) ≤
(h+

fL

) 1
m

:= A1

and

u(ξ2) ≥
( h

fM

) 1
m

:= A2.

Proof. Let u ∈ Ω, we have (3.1) holds. Dividing both sides of (3.1) by f (u) and integrating them on
[0,T ], we have ∫ T

0

(φp(u′(s)))′

f (u)
ds = −λT + λ

∫ T

0

h(s)
f (u)um ds, λ ∈ (0, 1]. (3.2)

Note that ∫ T

0

(φp(u′(s)))′

f (u)
ds =

∫ T

0

1
f (u)

dφp(u′(s))

=

∫ T

0
f −2(u) f ′(u)|u′|pds ≥ 0,

(3.3)

where we use f ′(u) > 0. By (3.2) and (3.3) we have

T ≤
∫ T

0

h(s)
f (u)um ds ≤

∫ T

0

h+(s)
fLum ds.

By mean value theorem of integrals, there exists a point ξ1 ∈ [0,T ] such that

um(ξ1) ≤
h+

fL
,

i.e.,

u(ξ1) ≤
(h+

fL

) 1
m

:= A1.

Multiplying both sides of (3.1) by um and integrating them on [0,T ], we have∫ T

0
(φp(u′(s)))′umds = −λ

∫ T

0
f (u)umds + λ

∫ T

0
h(s)ds, λ ∈ (0, 1]. (3.4)
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Note that ∫ T

0
(φp(u′(s)))′umds =

∫ T

0
umdφp(u′(s))

= −m
∫ T

0
um−1|u′|pds ≤ 0.

(3.5)

In view of (3.4) and (3.5), we have∫ T

0
f (u)umds ≥

∫ T

0
h(s)ds = Th

and

fM

∫ T

0
umds ≥ Th.

By mean value theorem of integrals, there exists a point ξ2 ∈ [0,T ] such that

um(ξ2) ≥
h
fM
,

i.e.,

u(ξ2) ≥
( h

fM

) 1
m

:= A2.

Theorem 3.1. Suppose that conditions of Lemma 3.1 hold. Further assume that some assumptions on
f (u) and h(t):
(H1) Suppose that f (u) ≤ 1

um+1 for u > 0 and m > 0, and h(t) > 0 for t ∈ R.
Then Eq (1.3) has at least one T−periodic solution, i.e., Eq (1.1) has at least one periodic wave solution,
if c < 0 and Am+1

2 − m+1
|c| T fMBm

1 −
m+1
|c| T |h| > 0, where A2 is defined by Lemma 3.1, B1 is defined by

(3.6).
Proof. We complete the proof by three steps.

Step 1. For t1 < t2, let
u(t1) = max

t∈[0,T ]
u(t), u(t2) = min

t∈[0,T ]
u(t).

By Eq (3.1) and (φp(u′(t)))′|t=t1 ≤ 0, we have

f (u(t1)) ≥
h(t1)

um(t1)
.

Thus, by assumption (H1) we have

u(t1) ≤
1
hL

:= B1, (3.6)

where hl = mint∈[0,T ] |h(t)|. Multiplying both sides of (2.2) by um and integrating them on [t1, t2], we
have ∫ t2

t1
(φp(u′(s)))′umds = cλ

∫ t2

t1
u′(s)umds − λ

∫ t2

t1
f (u)umds + λ

∫ t2

t1
h(s)ds, λ ∈ (0, 1]. (3.7)
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Obviously,
∫ t2

t1
(φp(u′(s)))′umds ≤ 0. Then, from (3.7), Lemma 3.1 and assumptions of Theorem 3.1,

we have

c
∫ t2

t1
u′(s)umds −

∫ t2

t1
f (u)umds +

∫ t2

t1
h(s)ds ≤ 0

and

um+1(t2) ≥ um+1(t1) +
m + 1

c

∫ t2

t1
f (u)umds −

m + 1
c

∫ t2

t1
h(s)ds

≥ Am+1
2 −

m + 1
|c|

T fMBm
1 −

m + 1
|c|

T |h|.

Since Am+1
2 − m+1

|c| T fMBm
1 −

m+1
|c| T |h| > 0, we get

u(t2) ≥
(
Am+1

2 −
m + 1
|c|

T fMBm
1 −

m + 1
|c|

T |h|
) 1

m+1

:= B2. (3.8)

Multiplying both sides of (3.1) by u′(t) and integrating them on [0,T ], we have

∫ T

0
(φp(u′(s)))′u′(s)ds = cλ

∫ T

0
|u′(s)|2ds − λ

∫ T

0
f (u)u′(s)ds + λ

∫ T

0

h(s)
um u′(s)ds. (3.9)

Obviously, ∫ T

0
(φp(u′(s)))′u′(s)ds =

∫ T

0
u′(s)dφp(u′(s)) = 0 (3.10)

and ∫ T

0
f (u)u′(s)ds = 0. (3.11)

From (3.9)–(3.11), we get

||u′||22 ≤
1
|c|Bm

1

∫ T

0
|h(s)||u′(s)|ds

≤
1
|c|Bm

1
||h||2||u′||2,

i.e.,

||u′||2 ≤
1
|c|Bm

1
||h||2. (3.12)
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In view of (3.1), (3.12) and Hölder inequality , we have

|u′(t)|p−1 =

∣∣∣∣∣φp(u′(t1) +

∫ t

t1
(φp(u′(s))′ds

∣∣∣∣∣
≤

∫ T

0
|(φp(u′(s))′|ds

≤

∫ T

0
|c||u′(s)|ds +

∫ T

0
| f (u(s))|ds +

∫ T

0

|h(s)|
um(s)

ds

≤ |c|T
1
2 ||u′(s)||2 + T fM +

T |h|
Bm

2

≤
T

1
2

Bm
1
||h||2 + T fM +

T |h|
Bm

2

:= M1,

i.e.,

|u′|0 ≤ M
1

p−1

1 .

Choose positive constants δ1, δ2 and M such that δ1 < B2 < B1 < δ2 and M > M
1

p−1

1 . Let

Ω1 = {u ∈ C1
T : δ1 < u(t) < δ2, |u′(t)| < M}.

For each λ ∈ (0, 1), Eq (3.1) has no solution on ∂Ω1. Hence, condition (1) of Lemma 2.2 is satisfied.
Step 2. We will show that condition (2) of Lemma 2.2 is satisfied. On the contrary, assume that

there exists u = a ∈ ∂Ω1 such that F (a) = 0, then a ∈ R is a constant and

F (a) =
1
T

∫ T

0

[
− f (a) +

h(s)
am

]
= 0.

We have

B2 ≤

( h
fM

) 1
m

≤ a ≤
(hM

fL

) 1
m

≤ B1

which contradicts to a ∈ ∂Ω1. Hence, condition (2) of Lemma 2.2 is satisfied.
Step 3. We will show that condition (3) of Lemma 2.2 is satisfied. Due to the proof of Step 2, if

u ∈ Ω1 ∩ R such that F (u) = 0, the u = a ∈ [B2, B1]. It is easy to see that a is unique by using f (u) is
strictly monotonically increasing for u ∈ [B2, B1]. Hence,

dB(F ,Ω ∩ R, 0) = 1 , 0.

Applying Lemma 2.2, we reach the conclusion.
Lemma 3.2. Assume that the function f such that

f (0) = lim
u→0+

f (u) > 0, f (u) > 0, f ′(u) < 0, ∀u > 0.

Furthermore, assume h > 0. Then for each u ∈ Ω, there are constants η1, η2 ∈ [0,T ] such that

u(η1) ≤
(h+

f

) 1
m

:= A3
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and

u(η2) ≥
( h

f (0)

) 1
m

:= A4.

Proof. Integrating (3.1) on [0,T ], we have∫ T

0
f (u)ds =

∫ T

0

h(s)
um ds

and

T f ≤
∫ T

0

h+(s)
um ds. (3.13)

By (3.13) and mean value theorem of integrals, there exists a point η1 ∈ [0,T ] such that

um(η1) ≤
h+

f
,

i.e.,

u(η1) ≤
(h+

f

) 1
m

:= A3.

By f ′(u) < 0 for u > 0, we have f (0) > f (u) for u > 0. Similar to the proof of (3.4) and (3.5) in Lemma
3.1, we have ∫ T

0
f (u)umds ≥ Th

and

f (0)
∫ T

0
umds ≥ Th. (3.14)

By (3.14) and mean value theorem of integrals, there exists a point η2 ∈ [0,T ] such that

um(η2) ≥
h

f (0)
,

i.e.,

u(η2) ≥
( h

f (0)

) 1
m

:= A4.

Theorem 3.2. Suppose that conditions of Lemma 3.2 hold. Then Eq (1.3) has at least one T−periodic
solution, i.e., Eq (1.1) has at least one periodic wave solution.
Proof. Let u(t0) = mint∈[0,T ] u(t). By Eq (3.1), we have

f (u(t0)) =
h(t0)

um(t0)
.

Thus,

u(t0) ≥
( hL

f (0)

) 1
m

:= B0, (3.15)
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where hL = mint∈[0,T ] |h(t)|. For u ∈ Ω, by Lemma 3.2 and Hölder inequality we have

|u|0 ≤ A3 + T
1
q

( ∫ T

0
|u′(s)|pds

) 1
p

, (3.16)

where q > 1 and 1
p + 1

q = 1. Multiply (3.1) with u(t), and integrate it over the interval [0,T ], then

∫ T

0
|u′(s)|pds = λ

∫ T

0
f (u)uds − λ

∫ T

0

h(s)
um uds

≤

∫ T

0
f (u)uds +

∫ T

0

h−(s)
um uds

≤ |u|0

∫ T

0
f (u)ds + |u|0

∫ T

0

h−(s)
um ds.

(3.17)

Integrating (3.1) over the interval [0,T ], we gain∫ T

0
f (u)ds =

∫ T

0

h(s)
um ds. (3.18)

By (3.17) and (3.18), we have ∫ T

0
|u′(s)|pds ≤ |u|0

∫ T

0

h+(s)
um ds

≤
T |u|0h+

Bm
0

.

(3.19)

In view of (3.16) and (3.19), we gain

|u|0 ≤ A3 + T
1
q

(T |u|0h+

Bm
0

) 1
p

which implies that there is a constant ρ > 0 such that

|u|0 < ρ,

i.e.,

max
t∈[0,T ]

u(t) < ρ.

From (3.9)–(3.11) and (3.15), we have

||u′||2 ≤
1
|c|Bm

0
||h||2. (3.20)
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In view of (3.1), (3.20) and (3.15), we have

|u′(t)|p−1 =

∣∣∣∣∣φp(u′(t0) +

∫ t

t0
(φp(u′(s))′ds

∣∣∣∣∣
≤

∫ T

0
|(φp(u′(s))′|ds

≤

∫ T

0
|c||u′(s)|ds +

∫ T

0
f (u(s))ds +

∫ T

0

|h(s)|
um(s)

ds

≤ |c|T
1
2 ||u′(s)||2 + T f +

T |h|
Bm

0

≤
T

1
2

Bm
0
||h||2 + T f +

T |h|
Bm

0

:= N,

i.e.,
|u′|0 ≤ N

1
p−1 .

The following proof is similar to the proof of Step 2 and Step 3 in Theorem 3.1, we omit it.
Remark 3.1. In Theorems 3.1 and 3.2, nonlinear term f (u) has no singularity at u = 0. For example, in
Eq (1.1), let f (u) = 1

u2 or f (u) = − 1
u2 . Then, nonlinear term f (u) has singularity at u = 0. We naturally

ask the following question: if nonlinear term f (u) has singularity at u = 0. i.e., limu→0+ f (u) = ±∞, are
there periodic wave solutions for Eq (1.1)? We very hope that the researchers will be able to solve the
above problems.
Remark 3.2. In [10], the authors studied the existence of periodic wave solutions for Eq (1.2) which
nonlinear term f (q) is a strictly monotone function. Since monotonicity of f (q) is very critical for prior
bounds of solutions, in the present paper, we also assume that f (q) is a strictly monotone function.
When f (q) is not a monotone function, whether Eq (1.1) has periodic wave solutions which is a open
problem. The above issue is our research topic.
Remark 3.3. In [8], Eq (1.2) is changed into the following equation:

−cu′(s) = (φp(u′(s)))′ + f (u(s)) + e(s).

Under the following assumptions:
(H1) there exist constants m0 > 0, m1 > 1 such that

u f (u) ≤ −m0um, ∀u ∈ R,

(H2) e ∈ C(R,R) is a continuous 2T−periodic function with e(s) , 0, and( ∫ t

−T
|e(s)|

m
m−1

)m−1
m

+ sup
s∈[−T,T ]

|e(s)| < +∞,

then Eq (1.2) has at least one 2T−periodic wave solution. In the present paper, since Eq (1.1) has an
indefinite singularity, we add the stronger conditions for nonlinear term f , i.e., assume that the function
f such that

fL < f (u) < fM, f ′(u) > 0, ∀u > 0,
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where fL and fM are positive constants.
In this section, we will give two examples to illustrate the theoretical results in the present paper.

Example 4.1. Consider the following non-Newtonian filtration equations with an indefinite singularity:

∂y
∂t

=
∂

∂x

(∣∣∣∣∣∂y
∂x

∣∣∣∣∣p−2 ∂y
∂x

)
+ f (y) +

h(t, x)
ym . (4.1)

Let h(t, x) = −h(x + ct) = −h(s), where c ∈ R. Let y(t, x) = u(s) with s = x + ct be the solution of
Eq (4.1), then Eq (4.1) is changed into the following equation:

cu′(s) = (φp(u′(s)))′ + f (u) −
h(s)
um . (4.2)

Let p = 3, m = 1, T = 2π, f (u) = 1+arctanu, h(s) = 1+sin s, c = −260.Obviously, f ′(u) = 1
1+u2 > 0

is a strictly monotone increasing function. After a simple calculation, we have

fL = 1, fM = 1 +
π

2
, h = 1, hM = 2, A2 =

( h
fM

) 1
m

� 0.39,

B1 =

(hM

fL

) 1
m

= 1, Am+1
2 −

m + 1
|c|

T Bm
1 −

m + 1
|c|

T |h| = 0.05538 > 0.

Thus, all conditions of Theorems 3.1 hold. Therefore, Theorems 3.1 guarantees the existence of at
least one one periodic solution for Eq (4.2), i.e., Eq (4.1) has least one one periodic wave solution.
Example 4.2. In Eq (4.2), let p = 3, m = 1, T = 2π, f (u) = 3 − arctanu, h(s) = 1 + sin s. Obviously,

h = 1 > 0, f (0) = 3 > 0, f (u) > 0, f ′(u) = −
1

1 + u2 < 0 for u > 0.

Then f (u) is a strictly monotone decreasing function. Thus, all conditions of Theorems 3.2 hold. and
Theorems 3.2 guarantees the existence of at least one one periodic solution for Eq (4.2), i.e., Eq (4.1)
has least one one periodic wave solution.

4. Conclusion

In this article, we study a non-Newtonian filtration equations with an indefinite singularity. By
using an generalization of Mawhin’s continuation theorem and some mathematic analysis methods, we
obtain some existence results of periodic wave solutions for the considered equation. Two examples
are used to demonstrate the usefulness of our theoretical results. The novelty of the present paper is
that it is the first time to discuss the existence of periodic wave solutions for the indefinite singular
non-Newtonian filtration equations. Our results improve and extend some corresponding results in
the literature. However, many important questions about indefinite singular non-Newtonian filtration
equations remain to be studied, such as oscillation problems, exponential stability and asymptotic
stability problems, non-Newtonian filtration equations with impulse effects and stochastic effects, etc.
We hope to focus on the above issues in future studies.
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