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Abstract: We define the anti-communicability function for the nodes of a simple graph as the
nondiagonal entries of exp (−A). We prove that it induces an embedding of the nodes into a Euclidean
space. The anti-communicability angle is then defined as the angle spanned by the position vectors
of the corresponding nodes in the anti-communicability Euclidean space. We prove analytically that
in a given k-partite graph, the anti-communicability angle is larger than 90◦ for every pair of nodes in
different partitions and smaller than 90◦ for those in the same partition. This angle is then used as a
similarity metric to detect the “best” k-partitions in networks where certain level of edge frustration
exists. We apply this method to detect the “best” k-partitions in 15 real-world networks, finding
partitions with a very low level of “edge frustration”. Most of these partitions correspond to bipartitions
but tri- and pentapartite structures of real-world networks are also reported.
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1. Introduction

An important set of problems in graph theory are those consisting on splitting the set of vertices V
of a graph G = (V, E) into two sets V1 and V2, with cardinalities n = |V | ,n1 = |V1| , n2 = |V2| , such that
V = V1∪V2 and fulfilling certain requirements about the cut C, i.e., the sum of weights of edges which
contain one vertex in V1 and another in V2 [1, 2]. One of these problems, the min-cut bipartitioning
problem, seeks a solution P = {V1,V2} that minimizes C subject to (1 − ε)n/2 ≤ n1, n2 ≤ (1 + ε) n/2,
ε ≥ 0 [3]. In particular, if ε is as small as possible the problem is known as a bisection. Although
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several exact solution approaches exist, due to the NP-completeness nature of these problems [3] we
need to rely on heuristic approaches that minimize C [3, 4]. Particularly, for large networks, there are
several heuristics that produce near optimum solutions in reasonable time [5–16].

The problem of graph bipartitioning also has a history of connections with physics. For instance,
statistical physics has benefited from graph theoretical tools to tackle optimal cuts in arrays of coupled
spins in which frustration prevents a simple identification of the lowest energy configurations [17].
In particular, models such as the Ising one subjected to random fields or its spin glass version
demands graph partitioning techniques to identify the ground state of the system and quantify the
energy barriers between metastable states. In its turn, these problems have been usually tackled by
physicists through statistical mechanics methods, such as simulated annealing techniques [18] or the
replica method [19]. Therefore, the feed-back loop between physics and graph theory is established
when the first applications of the latter techniques to the graph partitioning problem appeared [20–22].
Another promising research avenue involving the contribution of graph partitioning techniques to the
analysis of physical systems is the study of multipartite entanglements in quantum systems composed
of n q-bits [23].

More recently, the topic of graph partitioning has received some revival by its study in complex
networks. These networks represent many physical, biological, social and engineering systems [24,25]
where k-partitions may appear in different scenarios. In 2006 Newman [26] uses eigenvectors of graph-
theoretic matrices to identify the bipartite structure present in a network of nouns and adjectives of
the novel David Copperfield by Charles Dickens. The “concept” of anti-community then emerges
as “groups of nodes which are poorly connected among them but highly connected with the nodes
in another group”. This vague definition produces that anticommunities are sometimes identified as
bipartitions [27] and sometimes not necessarily [28–31].

In some situations it is also important to know “how bipartite” a network is. That is, a network that
is not bipartite could be similar to a bipartite one, for instance because eliminating a small number of
edges it is transformed into a bipartite graph. This was the idea used by Holme et al. [32] to quantify
the degree of bipartivity of a network by counting the number of “frustrated” edges, i.e., those whose
removal transform the network into bipartite (the name comes from its use in statistical mechanics
of spin systems). The “problem” of this approach is that we have to know beforehand what it is
the “best” bipartition of the corresponding network, which as mentioned before is an NP-complete
problem. Therefore, the use of the previously mentioned heuristics is in general needed to quantify
the degree of bipartivity using the number of frustrating edges. Other approaches that do not need an
a priori knowledge of the “best” bipartition have been proposed, which use spectral properties of the
exponential of the adjacency matrix [33, 34] or other structural properties of graphs [35].

Here, we focus on the use of geometric parameters of graphs derived from the use of the exponential
of the adjacency matrix A to detect k-partitions in networks. The nondiagonal entries of exp (A) are
know as the communicability function between the corresponding nodes of the graph [36–38]. It has
been recently proved that it induces an embedding of any graph into an n-dimensional Euclidean sphere
[39–42]. One of the geometrical parameters defined by this embedding, namely the communicability
angle, has been succesfully used as a similarity metric for detecting clusters in networks [43]. In
the current work we will propose an anti-communicability angle, which is based on the generalized
communicability function, to detect graph k-partitions. We will prove analytically that in a given k-
partition the anti-communicability angle is larger than 90◦ for every pair of nodes in different partitions
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and smaller than 90◦ for those in the same partition. By using the anti-communicability angle as a
similarity metric we will apply K-means techniques to detect the “best” k-partitions in networks where
certain level of edge frustration exists. We show here that the current method identifies k-partitions
(mainly bipartitions) in many real-world networks representing a variety of systems. In general, those
partitions have large bipartivity according to the index of Holme et al. [32], which can be considered
as a quality criterion for the partitions found.

2. Preliminaries

Here we consider simple connected graphs G = (V, E) , also named indistinctly networks, with
n = |V | nodes and m = |E| edges. Let A be the adjacency matrix of G. Then, A is symmetric
and has eigenvalues λ1 > λ2 ≥ · · · ≥ λn, with eigenvectors ~ψ1, ~ψ2, · · · , ~ψn, which are taken here
orthonormalized. A graph is bipartite if V = V1 ∪ V2, where V1 and V2 are mutually disjoint sets. We
recall that a bipartite graph does not contain any cycle of odd length.

Let p ∈ V and q ∈ V be any two nodes of G, and let γ ∈ R be a parameter. The generalized
communicability function [36–38] between these two nodes is defined as:

Gpq (γ) B
∞∑

k=0

γk
(
Ak

)
pq

k!
=

(
eγA

)
pq
, (2.1)

where
(
Ak

)
pq

counts the number of walks of length k between p and q, and eγA is the matrix exponential
function. We recall that a walk is a sequence of (not necessarily different) consecutive nodes and edges,
and its length the number of edges in it. Because the adjacency matrix of simple connected graphs is
always diagonalizable we can write the communicability function as

Gpq (γ) =

n∑
j=1

ψ jpψ jqeγλ j , (2.2)

where ψ jp represents the pth entry of the jth eigenvector of the adjacency matrix corresponding to the
eigenvalue λ j. The parameter γ can be understood as a homogeneous weight given to all the edges of
the graph. When γ = 1 we have a simple graph and when γ , 1 we have a graph with edge weights γ
and adjacency matrix γA.

3. Anti-communicability geometry

3.1. Generalized communicability function

In this subsection we extend the definition of communicability distance [39, 40] and angle [41] for
the generalized communicability function.

Lemma 1. Let G = exp (γA) for γ ∈ R. Then, G is positive definite (p.d).

Proof. The function G = exp (γA) is p.d. iff eig (G) = exp
(
γλ j

)
> 0, which is obviously the case for

any value of γ ∈ R. �
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Lemma 2. The function,

ξpq =
(
eγA

)
pp

+
(
eγA

)
qq
− 2

(
eγA

)
pq

(3.1)

is a square Euclidean distance between the nodes p and q.

Proof. The matrix function eγA can be written as eγA = VeγΛV−1, where V =
[
~ψ1 · · · ~ψn

]
and Λ =

diag (λr). Let ~ϕu =
[
ψ1,u, ψ2,u, · · · , ψn,u

]T . Then,

ξpq =
(
~ϕp − ~ϕq

)T
eγΛ

(
~ϕp − ~ϕq

)
. (3.2)

Thus, because eγA is p.d. (notice that it is enough that the matrix function is positive semi-definite) we
can write

ξpq =

((
~ϕp − ~ϕq

)T
eγΛ/2

) (
eγΛ/2

(
~ϕp − ~ϕq

))
=

(
eγΛ/2~ϕp − eγΛ/2~ϕq

)T (
eγΛ/2~ϕp − eγΛ/2~ϕq

)
=

(
~xp − ~xq

)T (
~xp − ~xq

)
=

∥∥∥~xp − ~xq

∥∥∥2
,

(3.3)

where ~xp = eγΛ/2~ϕp. �

Because ~xp is obviously the position vector of the node p in the corresponding Euclidean space
(see [42]) we have that ~xp · ~xq =

(
eγA

)
pq

, and
∥∥∥~xp

∥∥∥2
=

(
eγA

)
pp

. Thus, the following result follows.

Lemma 3. The function,

θpq = cos−1

(
eγA

)
pq√

(eγA)pp (eγA)qq

, (3.4)

is the Euclidean angle spanned by the position vectors of the nodes p and q of the graph in the
Euclidean embedding space for any γ ∈ R.

3.2. Anti-communicability angles in graphs

In order to understand the motivation of the current approach we will start by considering that γ < 0,
in particular let us fix γ = −1. This is equivalent to consider that every edge of the graph has a negative
weight equal to −1. We can think of this weighting as if a “repulsion” force is trying to pull apart every
pair of connected nodes (see Figure 1). In the particular case that the graph is bipartite, this repulsive
force will separate the nodes according to their disjoint sets. We should notice here that when γ > 0
the communicability angles identifies the nodes that tend to display similar topological features. In this
case the clustering of the nodes form communities of nodes that tend to communicate better among
them than with the others outside their communities [43].
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Figure 1. Schematic representation of the bipartitioning of a network using negative edge
weights for all the edges.

That is, let us define the communicability angle between any two nodes of the graphs for γ = −1
as:

θ̃pq = cos−1

(
e−A

)
pq√

(e−A)pp (e−A)qq

. (3.5)

Then, we have the main result of this work.

Theorem 4. Let G = (V, E) be a bipartite graph with disjoint sets V1 and V2 such that V = V1 ∪ V2.

Let p and q be two nodes of G. Then, the angle θ̃pq takes the following values:

cos θ̃pq ∈


[
0,
π

2

]
if p ∈ V1, q ∈ V1(

π

2
, π

]
if p ∈ V1, q ∈ V2.

(3.6)

Proof. Let us write

θ̃pq = cos−1 (cosh (A))pq − (sinh (A))pq√
(e−A)pp (e−A)qq

. (3.7)

Then, it is easy to see that the denominator of the definition of θ̃pq is positive:

(
e−A

)
pp

(
e−A

)
qq

=

 n∑
j=1

ψ2
j,pe−λ j


 n∑

j=1

ψ2
j,qe−λ j

 > 0. (3.8)

Let us consider that the two nodes p and q are in the same bipartition set. Thus, because there are
no walks of odd length starting at a node in V1 (resp. V2) and ending at a node in V1 (resp. V2), we
have that (sinh (A))pq = 0. Consequently,

θ̃pq (p ∈ V1, q ∈ V1) = cos−1 (cosh (A))pq√
(e−A)pp (e−A)qq

≥ 0 =⇒ 0◦ ≤ θ̃pq ≤ 90◦. (3.9)

Let us now consider that the two nodes p and q are in different bipartition sets. Thus, because there
are no walks of even length starting at a node in V1 (resp. V2) and ending at a node in V2 (resp. V1), we
have that (cosh (A))pq = 0. Consequently,
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θ̃pq (p ∈ V1, q ∈ V2) = cos−1 − (sinh (A))pq√
(e−A)pp (e−A)qq

< 0 =⇒ 90◦ < θ̃pq ≤ 180◦. (3.10)

�

Example 5. As a matter of example we give the communicability angles between the nodes of the
complete bipartite graph K2,3 illustrated in Figure 1: θ̃a,e = 44.9◦, θ̃b,c = θ̃b,d = θ̃c,d = 51.9◦, θ̃a,b = θ̃a,c =

θ̃a,d = θ̃e,b = θ̃e,c = θ̄e,d = 141.8◦.

Remark 6. The anti-communicability angle between two nodes can be calculated directly from the
eigenvalues and eigenvectors of the adjacency matrix,

θ̃pq = cos−1
n∑

j=1

ψ jpψ jqe−λ j√
ψ2

jpe−λ jψ2
jqe−λ j

, (3.11)

where ψ jp represents the entry corresponding to node p in the jth eigenvector of the adjacency matrix
associated to the eigenvalue λ j.

Remark 7. The anti-communicability angles can be obtained in the form of a matrix Θ in which the p, q
entry corresponds to the anticommunicability angle between these two nodes. Let P � Q, represents
the Hadamard division of matrix A by matrix B, P � Q the same for the Hadamard product of the two
matrices and P◦y the Hadamard power of the matrix P to the power y. Let ~p · ~q be the inner product of
the two vectors. Then,

Θ = cos−1
[
e−A �

(
~v~·1 � ~1 · ~v

)◦−1/2
]
, (3.12)

~v = diag
(
e−A

)
is a column vector formed by the main diagonal entries of e−A and where the inverse

cosine is applied in an entrywise way to the entries of the resulting matrix.

3.3. Deviations from bipartivity

To motivate this problem let us consider the following.

Example 8. We consider a modification of the bipartite graph illustrated in Figure 1 to which we
add the edge (b,c). In this case the graph is, obviously, no longer bipartite. The calculation of the
communicability angles are θ̃a,e = 48.6◦, θ̃b,d = θ̃c,d = 61.6◦, θ̃a,b = θ̃a,c = θ̃e,b = θ̃e,c = 125.3◦,
θ̃a,d = θ̃e,d = 141.5◦, and the most affected angle is θ̃b,c = 96.5◦. That is, the angle between the nodes
b and c, has changed from 51.9◦ to 96.5◦. The nodes a and e are clearly in the same disjoint set of the
partition as before because θ̃a,e < 90. However, for the nodes b, c and d we have that two angles are
below 90◦ (θ̃b,d = θ̃c,d = 61.6◦) and one angle is over 90 (θ̃b,c = 96.5◦).

From the previous example we can see that in order to decide what is the best place for the three
nodes b, c and d we should consider the communicability angles as a similarity measure and apply
some pattern recognition technique to group them according to certain criteria. Here we are going
to keep thing as simple as possible and we will find the best partition into almost-disjoint clusters
of nodes using K-Means [44, 45], based on θ̃. K-Means operates by considering the matrix θ̂ as the
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initial dataset consisting of column vectors which represents the nodes of the graph. That is, the ith
column of θ̂ represents an n-dimensional vector representing node i. Then, K-Means generates K non-
empty disjoint clusters C = {C1,C2, . . . ,CK} around the centroids c = {c1, c2, . . . , cK} , by iteratively
minimizing the sum [44, 45]

WK =

K∑
k=1

∑
i∈CK

n∑
ν=1

(
θ̃iν − ckν

)2
. (3.13)

Due to the fact that we have to preselect the number of clusters K, we need to compare the quality
of the partition for the different values of the number of clusters selected. With this goal we use several
cluster validity indices (CVIs) for estimating K [46, 47]. In particular we will consider here: (i) the
Calinski-Harabasz index [48], (ii) the Silhouette index [49], and (iii) the Davies-Bouldin index [50].
The reader is referred to [47] for details and comparisons of these indices. We have then considered
several networks, which are described below, and found the “best” bipartition according to these three
criteria. It should be remarked that this search is computationally and that even for the same network
and the same quality criterion the results vary from one realization to another. Consequently, it is
recommended to carry out several realizations with the same criterion and then selecting the ones
that produces the partition with the least number of frustrating edges. We have not found significant
differences in the number of frustrating edges, i.e., those belonging to C, between the three quality
criteria. Consequently, hereafter we will consider the Silhouette method in all our calculations.

3.4. Multipartitions

Let us start by considering a complete graph Kn in which n nodes are all connected to each other.
Then, we have the following.

Lemma 9. Let p and q be any two nodes in a complete graph Kn. Then,

θ̃pq (Kn) = sin−1
(

en − 1
en (n − 1) + 1

)
+
π

2
, (3.14)

which implies that θ̃pq > 90◦ for any pair of nodes in Kn.

Proof. In Kn we have λ1 = n − 1, λk≥2 = −1, ~ψ1 = n−1/2~1. Then,

(
e−A

)
pq

=
e (e−n − 1)

n
, (3.15)

(
e−A

)
pp

=
e (e−n + n − 1)

n
, (3.16)

which means that

θ̃pq = cos−1
(

e−n − 1
e−n + n − 1

)
, (3.17)

from which the result follows. �
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The previous result indicates that for a complete graph we will obtain a communicability matrix
angle, all of its entries are formed by angles larger than 90◦. That is, the previous result indicates
that the communicability angle correctly identifies a complete graph Kn as an n-partite one. In a
similar way, as can be easily derived from our main result (Theorem 4) the current approach exactly
identifies the partitions of any complete k-partite graph. The question is whether the computational
approach described in the previous section is able to recognize the k-partite structure of graphs in
which there is some level of edge frustration. We have analyzed this question computationally using
various realizations of tri- and tetra-partite graphs with different levels of frustration. In a similar way
as for the case of bipartitions, the current approach using K-means with Silhouette identifies correctly
the corresponding k-partite structures. For instance in Figure 2 we illustrate some complete k-partite
graphs (k = 3, 4) without (Figure 2 (top-left) and (bottom-left)) and with (Figure 2 (top-right) and
(bottom-right)) some level of edge frustration as partitioned by the current approach.

Figure 2. Illustration of the “best” k-partitions obtained using the current approach for a tri-
and tetrapartite graphs ((top-left) and (bottom-left)) as well as for such graphs after a few
frustrating edges are added ((top-right) and (bottom-right)).
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4. Analysis of real-world networks

In this section we consider several real-world networks (see [24] and references therein). The
first three networks contain evidences, either structural or from the way in which they were build,
about bipartivity. For instance, the first network, a protein/protein interaction network, has only one
odd/length cycle, i.e., a triangle. The second network is a network of subjective and nouns which is
expected to be split into two almost disjoint classes of words. The third one is a network of advisors-
advisees, which is also expected to reflect such kind of almost-bipartite structure.

After detecting the “best” partition according to the current method it is then easy to calculate the
level of “edge frustration”. That is, the relative number of edges that frustrate the bipartitivity of a
given graph. For that purpose we will use an index defined by Holme et al. [32]:

b = 1 −
ϕ (G)

m
, (4.1)

where ϕ (G) is the number of frustrating edges and m is the total number of edges in the graph. For
these calculations we do not take into account the number of self-loops in the graph.

We should remark here that the frustration index b has a unique value for a nonbipartite graph. This
is due to the fact that a nonbipartite graph G is transformed into a bipartite one after the removal of
ϕ (G) edges. However, detecting the exact number ϕ (G) for a non-bipartite graph is an NP-complete
problem. Therefore, if we do not know the exact value of ϕ (G) what we can do is to use the index b as
an indicator of the level of frustration found in the graph by the algorithm used to detect the bipartition.
It is not always the case that such number is the exact frustration of the corresponding graph.

4.1. Protein-protein interaction network (PIN) of A. fulgidus

This is a small network whose main connected component consists of 32 proteins connected through
36 protein-protein interactions. This PIN corresponds to the proteins implicated in the DNA replication
in Archaeoglobus fulgidus. The network is almost bipartite except for the presence of a triangle. This
network has two self-loops, i.e., edges of the type (v, v), which represent interactions with a protein
with itself.

As can be seen in Figure 3 the current method based on the communicability angle identifies two
partitions, one containing 13 nodes and the other having 19. There is only one frustrating interaction,
which is represented as a curved edge inside the set of red nodes. That is, in this case b ≈ 0.972, which
indicates a high level of bipartitivity. In this particular case it is plausible to identify the two almost-
disjoint sets of proteins from a biological point of view. The set of 19 proteins corresponds to those
used as preys in the yeast-two hybrid (Y2H) method to identify the protein interactions. The set formed
by 13 nodes is then formed by those used as baits. According to the authors of the Y2H experiment
bait proteins were generated as fusion of the respective complete open reading frame with the sequence
encoding the Gal4 DNA-binding domain in pGBDU. On the other hand, prey proteins were encoded
by inserts from the genomics library (Y2H-screen) or correspond to those containing the complete
open reading frame encoded by a fusion gene with the activation domain of Gal4 in pGAD424 (matrix
mating).
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Figure 3. Best bipartition found by using the anti-communicability angles for the protein-
protein interaction network of A. fulgidus. Notice the presence of self-loops in one of the
partitions.

4.2. Network of nouns and adjectives

The second experiment corresponds to the analysis of a network generated by Newman and
representing juxtapositions of words in a corpus of the novel David Copperfield by Charles Dickens.
The network was constructed by taken the 60 most commonly occurring nouns in the novel and the
60 most commonly occurring adjectives. The vertices in the network represent words and an edge
connects any two words that appear adjacent to one another at any point in the book. Eight of the
words never appear adjacent to any of the others and are excluded from the network, leaving a total of
112 nodes. In this network it is expected that nouns are connected mainly to adjectives, such that they
form two disjoint sets. However, it is possible for adjectives to occur next to other adjectives or for
nouns to occur next to other nouns.

In Figure 4 we illustrate the partition found using the current approach which consists of two classes,
one having 51 nodes and the other having 39. The class having 51 nodes corresponds to nouns and
the other to adjectives. Thus, according to the classification made by Newman, our method identifies
correctly 94.4% of nouns and 67.2% of adjectives. According to Holme et al. index b ≈ 0.746, the
network display about 74% of bipartition.

However, a more careful analysis of the false nouns, i.e., adjectives classified as nouns by the
current approach, using the Oxford Dictionary detected that 14 out of the 19 false nouns are also
used in English as both adjectives and nouns (see Table 1). Thus, in reality the method identifies these
words in the class in which they produce least edge frustration of the two in which they can be correctly
classified.
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Figure 4. Best bipartition found by using the anti-communicability angles for the network
of adjectives and nouns in a corpus of the novel David Copperfield by Charles Dickens.
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Table 1. All words (adjectives and nouns) classified incorrectly by the correct approach.
Notice that a few adjectives classified here as nouns are also frequently used in English as
both, adjectives and nouns.

word class observations word class observations
short adjective Also a noun light adjective Also a noun
round adjective Also a noun low adjective Also a noun

beautiful adjective ready adjective Also a noun
black adjective Also a noun miserable adjective
right adjective Also a noun pleasant adjective
bright adjective Also a noun possible adjective Also a noun
dear adjective Also a noun perfect adjective Also a noun

pretty adjective Also a noun strong adjective
great adjective Also a noun anything noun pronoun
white adjective Also a noun mother noun
late adjective half noun

4.3. Advisors/advisees social network in a sawmill

The third example is a social network within a small sawmill. The nodes represent the employees
of the sawmill, with two employees linked based on the frequency with which they discussed work
matters on a five-point scale ranging: from less than once a week to several times a day. The employees
are Spanish-speaking or English- speaking, and the sawmill contains two main sections: the mill and
the planer section. Then there is a yard where two employees are working, and some managers and
additional officials.

The partition of the network obtained by using the current approach is illustrated in Figure 5. This
partition consists of one group of 17 workers and another of 19 ones. In total there are 13 frustrating
connections, 6 among the workers in the group of 17 workers and 7 in the other group, which gives
b ≈ 0.790. The analysis of these groups reveals that they are formed by a mix of employees. For
instance, the group of 17 workers is formed by 8 workers from planing section (2 English speaking
and 6 Hispanic), 7 workers from the mill (4 English speaking and 3 Hispanic), the forester, one worker
from the yard and the kiln operator. The other group is formed by 6 workers in planing (1 English
speaking and 5 Hispanic), 9 from the mill (2 English and 7 Hispanic), one worker from the yard, the
mill manager, and the owner. This clearly shows that the partition of this network reflects more the
structure of advisors and advisees, than a ethnic or location-related partition.

We now consider some other networks for which we do not have evidences of any bipartite structure.
The first group of networks represent undirected versions of food webs where the nodes represent the
species and the edges the trophic interactions. The second group is formed by two social networks and
two biological networks. We discuss each of them in the next subsections.
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Figure 5. Best bipartition found by using the anti-communicability angles for the social
network of workers in a sawmill.

4.4. Foodwebs

The first of the food webs considered here is “Grassland”, which is formed by all vascular plants
and all insects and trophic interactions found inside stems of plants collected from 24 sites distributed
within England and Wales. The best bipartition found by the current approach is illustrated in 6 (top-
left), where it can be seen that there are two well defined partitions, the red ones having 48 nodes
with 7 frustrating edges and the blue one having 28 nodes with 14 frustrating edges, which give a
bipartivity value of b ≈ 0.814. It is easy to realize that these partitions mainly correspond to plants
and insects, with frustrating edges mainly corresponding to parasitoids, hyper-parasitoids and hyper-
hyper-parasitoids.

The second food web is the one of “BridgeBrook”, which represents pelagic species from the largest
of a set of 50 New York Adirondack lake food webs. The best partition found in the current work
corresponds to a set of 28 nodes without frustration and another set of 47 nodes with 47 frustrations (b ≈
0.913). The food web is formed by phytoplankton, herbivorous (rotiferan and crustacean) zooplankton,
carnivorous zooplankton and fish. Thus, a plausible partition is in a layer formed by herbivorous
without any frustrating edges, and the other by phytoplankton and carnivorous, with frustrating edges
between carnivorous as well as between carnivorous and phytoplankton (see Figure 6).
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Figure 6. Best bipartitions found by using the anti-communicability angles for the food webs
of: (top-left) England grassland, (top-right) Bridge Brooks, (bottom-left) Canton creek and
(bottom-right) Stony stream. Notice the presence of self-loops in some of the partitions.

The third food web represents “Canton Creek”, which accounts for primarily invertebrates and algae
in a tributary, surrounded by pasture, of the Taieri River in the South Island of New Zealand. The best
partition is formed by a set of 61 nodes with 14 frustrations and the other formed by 47 nodes with 5
frustrations, which indicates a bipartivity of b ≈ 0.973. The fourth network represents “Stony”, which
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is formed by primarily by invertebrates and algae in a tributary, surrounded by pasture, of the Taieri
River in the South Island of New Zealand in native tussock habitat. The best partition is formed by a set
of 40 nodes with 4 frustrations and the other formed by 72 nodes with 19 frustrations, which indicates
a bipartivity of b ≈ 0.972.
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Figure 7. Best k-partitions found by using the anti-communicability angles for the food
webs of: (top) Scotch Broom, (bottom) Skipwith. The plots in the left give the values of the
Silhouette index for different values of k.

Among the food webs analyzed we also found two for which the current method produces k-partite
structures as the best partition. They correspond to the food web of Scotch Broom, which consists
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of trophic interactions between the herbivores, parasitoids, predators and pathogens associated with
broom, Cytisus scoparius, collected in Silwood Park, Berkshire, England, UK, and the one of Skipwith,
which contains interactions between invertebrates in an English pond. In both cases we have made
several realizations of the K-means approach with the Silhouette quality criterion. As can be seen
in Figures 7 (top-left) and (bottom-left) the Silhouette method identifies k = 3 and k = 5 as the
best partitions for these two food webs, respectively. The corresponding k-partitions are illustrated
in Figures 7 (top-right) and (bottom-right). The bipartivity of these two partitions are, respectively:
b ≈ 0.858 and b ≈ 0.836.

Figure 8. Best bipartitions found by using the anti-communicability angles for: (top-
left) Social network of physicians in Galesburgh, (top-right) Social network of students
dating, (bottom-left) protein-protein interaction network of Kaposi Sarcome-Herpes Virus,
and (bottom-right) Transcription network of sea urchin. Notice the presence of self-loops in
some of the partitions.
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4.5. Other networks

In this subsection we study two social networks, namely “social3”, which represents a social
network among college students in a course about leadership. The students choose which three
members they wanted to have in a committee, and “Galesburg”, which accounts for friendship ties
among 31 physicians. The other two networks are “Trans sea urchin”, which is the developmental
transcription network for sea urchin endomesoderm development and “KSHV”, the protein-protein
interaction networks in Kaposi sarcoma herpes virus (KSHV).

The first network, which is partitioned in Figure 8 (top-left) produces a bipartivity index of b ≈
0.725 where in one of the partitions there are people who want the members of the other partition in a
committee, but not those in their same partition. A similar explanation can emerge for the friendship
network among physicians, which produces b ≈ 0.762. In the PPI of KSHV the partition provides a
bipartivity of b ≈ 0.868 and could reflect the division of proteins into locks and keys as in the case of the
PPI of A. fulgidus previously analyzed. The transcription network of sea urchins produces a partition
having bipartivity b ≈ 0.712,possibly reflecting the nature of the interactions between operons–one or
more genes transcribed on the same mRNA–that encode transcription factor to operons that are directly
regulated.

5. Very sparse networks

To warming up and understand the main issue here we will consider a simple example. Let Pn

be the connected graph with n − 2 nodes of degree 2 and two nodes of degree one. This graph is
obviously bipartite and if we label the nodes from 1 to n, we can split the graph into two disjoint sets,
one with odd labels and the other with even ones. Then, according to what we have proven previously,
if we pick one node i of the path Pn the angles between this node and every other node in the graph
will alternate between values larger than 90◦ and values smaller than 90◦. An example is provided in
Figure 9 for the node i = 1. Every broken line represents the angle between the node labeled as one
and the corresponding node in the path. Then, according to our current analysis every node with an
angle with node 1 smaller than 90 degrees should be in the same partition as this node, i.e., all nodes
with odd-labels should be in the same partition as node i = 1. However, here we are using a method to
detect these partitions which considers the angles matrix as a similarity matrix. Thus, such method is
not able to distinguish between angles too close to 90◦, such as the angles θ1,7, θ1,8, θ1,9, and θ1,10. In
other words, using the anti-communicability angles as a similarity matrix, it is difficult to say which of
these nodes, i.e., 7, 8, 9 and 10, are in the same partition of the node 1 and which are not.

This situation is not exclusive of the path graph, but of any network with low edge density and
possibly large diameter. Thus, a simple way to “help” the method to recognize the similarities and
dissimilarities between pairs of nodes is simply transforming the anti-communicability angle matrix
into a binary matrix. That is, we can transform the anti-communicability angles matrix such that every
angle strictly larger than 90◦ becomes one, and every angle smaller or equal than 90 becomes zero. In
this case K-means clearly identifies both partitions of the path.
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Figure 9. Illustration of the values of the anti-communicability angles between the first and
every other node in the path graph P10.

In order to illustrate this problem and its solution in real-world networks we study here two sexual
contact networks. In the first of the two networks only heterosexual contacts between individuals are
considered. Thus, the network is bipartite, with male and female as the members of each partition.
However, the current approach using directly the anti-communicability matrix as the similarity matrix
produces partitions which do not correspond to the expected bipartite graph. However, the introduction
of the correction based on the dichotomization of the network immediately recovers the bipartite
structure of this network as illustrated in Figure 10 (left) where obviously b = 1. A similar situation
occurs for the case in which both hetero and homosexual relations are considered in the same network.
The method without preprocessing produces a partition with many frustrating edges, but the application
of the dichotomization makes a bipartition with 2 frustrations in one set and 13 in the other as illustrated
in Figure 10 (right) for a high value of the bipartivity index b ≈ 0.944.

Figure 10. Bipartitioning of a hetero-only (left) and hetero-plus-homo (right) sexual
networks using pre-processing.
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6. Conclusions

We have defined and used here the anti-communicability angles between the nodes of a graph to
identify bi- and multi-partite structures in networks. We have restricted ourselves to the use of exp (−A)
for the sake of simplicity. However, the anti-communicability angle can be defined in a general
framework for exp (− |γ| A), such that we can modulate the value of the parameter γ that produces
the “best” k-partition for a given network. This is, of course, a more computational task and we
have restricted ourselves here to the general mathematical framework of the method. Therefore, it
is possible that the results presented here can be improved by using such computationally intensive
method. However, we should remark here that for the real-world networks that we have studied the
partitions found by the current approach display large bipartivity indices (according to Holme et al. [32]
index). For instance, among the 15 real-world networks studied here the average values of this index
is b̄ ≈ 0.859 ± 0.096, with a minimum value of b ≈ 0.712, which was obtained for the partition of the
transcription network of sea urchins. That is, the current approach produces k-partitions with a very
low level of edge frustration in real-world networks of very different topologies and sizes.

We should emphasize that the current approach can be applied to bigger networks. Indeed, we
have applied it to networks with the order of 104. However, such networks have displayed low level
of bipartivity and showed a large number of frustrating edges, such that they were not appropriate
as illustrative examples. This is not strange because many real-world networks have a large number
of triangles due to the transitivity of many relations. Consequently, their level of edge frustration
is very high. We should remark that the computational complexity for the calculation of the matrix
exponential has an upper bound of O

(
n3

)
and a lower bound is O

(
n2

)
. We have previously analyzed

this complexity in our paper [38]. However, it is known that finding the optimal solution to the k-means
clustering problem in a general Euclidean space like the one used here is an NP-hard problem [51].
This implies that for extremely large networks it should be better to explore the use of other algorithms
showing better computational efficiency than k-means. All in all, we consider that the study of the anti-
communicability angles as a proxy for the detection of multipartite structure in graphs and networks
deserves attention from both a mathematical and a computational point of view.
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