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Abstract: Let Wg = {w;,w,,...,w;} be an ordered set of vertices of graph G and let e be an edge of
G. Suppose d(x, e) denotes distance between edge e and vertex x of G, defined as d(e, x) = d(x,e) =
min{d(x, a),d(x, b)}, where e = ab. A vertex x distinguishes two edges e; and e,, if d(ey, x) # d(e,, X).
The representation r(e | Wg) of e with respect to W is the k-tuple (d(e,w),d(e,w), ... ,d(e, wy)).
If distinct edges of G have distinct representation with respect to Wg, then Wy is called edge metric
generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and
its cardinality is called edge metric dimension of G, denoted by edim(G).

In this paper, we initiate the study of fault-tolerant edge metric dimension. Let Wy be edge metric
generator of graph G, then Wy, is called fault-tolerant edge metric generator of G if Wy \ {v} is also an
edge metric generator of graph G for every v € W. A fault-tolerant edge metric generator of minimum
cardinality is a fault-tolerant edge metric basis for graph G, and its cardinality is called fault-tolerant
edge metric dimension of G. We also computed the fault-tolerant edge metric dimension of path, cycle,
complete graph, cycle with chord graph, tadpole graph and kayak paddle graph.

Keywords: fault-tolerant edge metric dimension; edge metric generator; cycle with chord graphs;
tadpole graphs; kayak paddle graphs
Mathematics Subject Classification: 68R01, 68R05, 68R10

1. Introduction and preliminaries

Suppose that G is connected, simple and undirected graph having edge set E(G) and vertex set
V(G), respectively. The order of graph G is |V(G)| and size of graph G is |E(G)|. Moreover, A(G) and
0(G) represent the maximum and minimum degree of graph G respectively. Let W = {v{,v,,..., v} be
an ordered set of V(G) and let u be a vertex of G. The representation r(u | W) of u with respect to W
is the k-tuple (d(u, vy), d(u,v;),...,d(u,v;)). If distinct vertices of G have distinct representation with
respect to W, then W is called metric generator for G. A metric generator of minimum cardinality is
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metric basis for G, and its cardinality is called metric dimension of G, denoted by dim(G) (see [1]). A
metric generator W for G is called fault-tolerant metric generator if W\ {v} is also a metric generator,
for each v € W. The fault-tolerant metric dimension of G is the minimum cardinality of this set W and
is denoted by fdim(G) (see [2]).

Let d(x, e) denotes distance between edge e and vertex x, defined as d(x, ¢) = min{d(x, a), d(x, b)},
where e = ab (see [3]). A vertex x distinguishes two edges e; and e,, if d(e;, x) # d(es, x). Let
Wg = {w,w,,...,w;} be an ordered set of vertices of G and let e be an edge of G. The representation
r(e | Wg) of e with respect to W is the k-tuple (d(e, wy),d(e,wy), ...,d(e, wy)). If distinct edges of G
have distinct representation with respect to Wg, then Wy is called edge metric generator for G (see [3]).
An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is
called edge metric dimension of G, denoted by edim(G) [4-7].

Slater proposed the idea of metric dimension to find the location of intruder in a network (see [1,8]).
The proposed idea was further extended by Melter and Harary in [9]. Metric dimension is important in
robot navigation, chemistry, problems of image processing and pattern recognition etc. (see [10-15]).
The use of metric dimension of graphs was also observed in games like mastermind and coin weighing
(see [16]).

Kelenc in [3] extended the idea of metric dimension to edge metric dimension and make a
comparison between them. He also discussed some useful results for paths P,, cycles C,, complete
graphs K, and wheel graphs. In [8], Zubrilina classified the graphs on n vertices for which edge
metric dimension is n — 1. In [17], Kratica computed the edge metric dimension of generalized
petersen graphs GP(n, k) for k = 1 and 2 while for the other values of k the lower bound is given.
In [18], Ahsan computed the edge metric dimension of convex polytopes related graphs [19-21].

In 2008, Hernando, Slater, Mora and Wood introduced the new idea of fault-tolerant metric
dimension in [2]. Further in 2017, Voronov calculated the fault-tolerant metric dimension of the
king’s graph (see in [22]). In 2018, Raza et al. computed the fault-tolerant metric dimension of
generalized convex polytopes [23]. Recently in 2019, Liu, Munir, Ali, Hussain and Ahmed have
computed the fault-tolerant metric dimension of wheel related graphs like gear graphs [24]. Basak has
computed the fault-tolerant metric dimension of circulant graphs [25].

A framework where failure of any single unit, another chain of units not containing the defective unit
can substitute the initially utilized chain is called fault-tolerant self-stable framework. These graphs
can tolerate the failure of one part (vertex) keeping consistent execution (see [24,26]). For this purpose
we propose the concept of fault-tolerant edge metric dimension. Let Wy be edge metric generator of
graph G, then W is called fault-tolerant edge metric generator of G if Wi\ {v} is also an edge metric
generator of graph G for each v € Wy. A fault-tolerant edge metric generator of minimum cardinality
is a fault-tolerant edge metric basis for graph G, and its cardinality is called fault-tolerant edge metric
dimension of G, we are denoting it by fedim(G) [27,28]. In this concept, we will extend the work of
edge metric dimension to fault-tolerant edge metric dimension.

The lemmas given below are very helpful for calculating the fault-tolerant edge metric dimension
of graphs:

Lemma 1.1. /3] For any n > 2, edim(P,) = dim(P,) = 1, edim(C,) = dim(C,) = 2, edim(K,) =

dim(K,) = n — 1. Moreover, edim(G) = 1 if and only if G is path.

Lemma 1.2. [3] For a connected graph G, edim(G) > log,(A(G)).
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Lemma 1.3. [3] For a connected graph G of order n, edim(G) > 1 + [log, 6(G)] .
From the definition of fault-tolerant edge metric dimension, it can be seen that

Lemma 1.4. For a connected graph G,

1. fedim(G) > 1 + edim(G).
2. 2 < fedim(G) < n.

The rest of paper is structured as follows: In the second section, we will study the fault-tolerant edge
metric dimension of family of path, cycle and complete graphs. In third section, we will investigate
the fault-tolerant edge metric dimension of family of cycle with chord graphs C’'. In fourth section,
fault-tolerant edge metric dimension of family of tadpole graphs G!, will be determined. In last section,
we will compute the fault-tolerant edge metric dimension of family of kayak paddle graphs G

nm *

2. Fault-tolerant edge metric dimension of family of path, cycle and complete graphs

In this section, we will investigate the fault-tolerant edge metric dimension of family of paths, cycles
and complete graphs. The family P, have V(P,) = {uy, us, ..., u,} and E(P,) = {u;u;r1 : 1 <i<n-1}.
The family P, for n = 10 is shown in Figure 1. The following theorem tells us the edge metric
dimension of P,.

Theorem 2.1. [3] For any integer n > 2, edim(P,) = 1.

uy uy u3 uy us ug uy ug ug uio

Figure 1. Path graph P.

Now, we will compute the fault-tolerant edge metric dimension of P,,.
Theorem 2.2. For any integer n > 2, fedim(P,) = 2.

Proof. In order to compute fault-tolerant edge metric dimension of P,, we have
We = {uy,u,} < V(P,), we have to show that W is a fault-tolerant edge metric generator of P,. For
this, we give representations of each edge of P,,.

rui;[We) = (= l,n—i—1), where 1 <i<n-—1.

We see that there are no two tuples having the same representations. This shows that fault-tolerant
edge metric dimension of P, is less than or equal to 2. Since by Lemma 1.4, P, has fault-tolerant
edge metric dimension greater than or equal to 2. Hence fault-tolerant edge metric dimension is equal
to 2. O

The family C, have V(C,) = {u,us,...,u,} and E(C,) = {uju;y1 : 1 <i < n—1} U {u,u,}. The
family C, for n = 15 is shown in Figure 2. The following theorem tells us the edge metric dimension
of C,,.
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Theorem 2.3. [3] For any integer n > 3, edim(C,) = 2.

upy

u
up 13

Figure 2. Cycle graph C;s.
Now, we will compute the fault-tolerant edge metric dimension of C,.
Theorem 2.4. For any integer n > 3, fedim(C,) = 3.

Proof. In order to compute fault-tolerant edge metric dimension of C,, we have the following cases.
Case (i). n is odd. Take Wg = {u;, up, u3} C V(C,), we have to show that W is a fault-tolerant edge
metric generator of C,,. For this, we give representations of each edge of C,,.

(0,0, 1), if i =1;
(1,0,0), if i =2;
g |We) = § (= 1,i=2,i=3), if 3<i<™l
(52, 1, 3, if i =51+ 1;
(n—iin—i+ln-i+2), fH +2<i<n-1;

r(uu|Wg) = (0, 1,2).

Case (ii). » is even. Take We = {u,ur,u3} < V(C,), we have to show that W is a fault-tolerant
edge metric generator of C,. For this, we give representations of each edge of C,,.

0,0,1), ifi=1;
(1,0,0), ifi=2;
) i-1,i-2,i-3), if3<i<?;
r(uini|Weg) = (152,122 ncd) ifi=2+1;
(154,122 02y ifi=1+2;
(n—in—i+l,n—i+2), if5+3<i<n-1,

r(u,u|[We) = (0, 1,2).
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We see that there are no two tuples having the same representations. This shows that fault-tolerant
edge metric dimension of C,, is less than or equal to 3. Since by Lemma 1.4, C,, has fault-tolerant edge
metric dimension greater than or equal to 3. Hence fault-tolerant edge metric dimension of C, is equal
to 3. O

Theorem 2.5. For any integer n > 2, fedim(K,) = n.

Proof. The proof is straight forward from Lemma 1.1 and Lemma 1.4.

3. Fault-tolerant edge metric dimension of family of cycle with chord graphs C;

In this section, we will investigate the fault-tolerant edge metric dimension of family of cycle with
chord graphs C;'. The family C)' have V(C?") = {vi,va,...,v,} and E(C)) = {vivis; : 1 <7 <
n—1}U{v,vi, viv,}. It suffices to consider 2 < m < [ ]. The family C}? for n = 20 and m = 9 is shown
in Figure 3. The following theorem tells us the edge metric dimension of C)'.

Theorem 3.1. [29] For all n > 4, edim(C}}) = 2.

V1o
Vi1

V2

vis Vie V17

Figure 3. Cycle with Chord graph C),.

Now, we will compute the fault-tolerant edge metric dimension of C/'.
Theorem 3.2. Foralln > 4, fedim(C") = 3.

Proof. In order to compute fault-tolerant edge metric dimension of C', we have the following cases.
Case (i). Both n and m are even. Let Wy = {v,, Ve, vms1} C V(CI), we have to show that Wg is a
fault-tolerant edge metric generator of C'. For this, we give representations of each edge of C)'.
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0,3 -1,2), ifi=1;
(i-2,3—i,i+1), f2<i<3-1;
(5 -2,0,%), ifi=7%;
(5 -1,0,7 -1, ifi=%2+1,
) m—i+1,i-%—-1,m-1i, if3+2<i<m-1,
r(vivir1|We) = (2’%_ 1,0), if i = m;

(-m+2,i-3-1Li-m-1), fm+1<i<5+7% -1,

n m n n m s no,om.,
5—34‘1,5—1,5—5—1), lfl—2+2,

n m n n m Fi—nom .
333~ L3—3%) ifi=5+3+1
(n—i+lLn+3—-in—i+2), if5+7+2<i<n

r(vaiWe) = (1,%,2) and r(viv,|We) = (1,2 - 1,1).

Case (ii). 7 is odd and m is even. Let Wg = {v,, Vo, Vms1} C V(C), we have to show that Wgis a
fault-tolerant edge metric generator of C)'. For this, we give representations of each edge of C)'.

0,2 -1,2), ifi=1;
(i-2,2-ii+1), if2<i<%-1;
(2-2,0,2), if i =2
(2-1,0,2-1), ifi=2+1;
Fowi[We) =4 (m—i+1,i—3—1,m—i, if3+2<i<m-1,
(2,2 -1,0), if i =m;
(i-m+2,i-2-1i-m-1), ifm+1<i<zl+2
(opslaton, =gl
m—i+ln+2-in—-i+2), ifZ+2+2<i<n-1;

rvai W) = (1,%,2) and r(viv|We) = (1,2 - 1,1).

Case (iii). 7 is even and m is odd. Let Wy = {v,, Vasl s V%+mT+l} C V(C), we have to show that We
is a fault-tolerant edge metric generator of C)'. For this, we give representations of each edge of C};.
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(0,21, 2 — =l ifi=1;

(i-2,2 —im+i-2), if 2 <i< 2

(= -1,0,2-1), if i = 2,
rOwiiWe) =4 m—i+1,i-2d -1, 2+l if 2y 1 <i<m—1;

(i—- m+2z—'”—+l—lﬂ+——l) 1fm<z<ﬂ+’"7_l;

(n—l+1,n+%—i,

i+m-n-2), if2+2=l+1<i<n-1;

rvaiIWeg) = (1,22, m = 2) and r(vvulWe) = (1,252 = 1,m = 1).

Case (iv). Both 7 and m are odd. Let Wy = {v%, Vi1, V) C V(CI'), we have to show that W is a
fault-tolerant edge metric generator of C!'. For this, we give representations of each edge of C;".

(5L =i i+ 1,0), if1<i<mt
(z—m_+1 m—im—i+1), if’”T“gigm_l;
(21,0,2), if i =m;
(i—m+1i— _1,
! ] 1 H n—1 m=1 .
rvvi[Wg) =4 1-m+2), ifm+1<i<™+2= -1,
(l m+1l_ -1
: n—1 -1 n—1 m+1
nzl), if 5- + 5 <i< 5+
n=3 n+l m+l n—1 m+1 _ ntl | m+l,
(5.5 2 2 -, ifi=5+ 5
(n+20 —in—i+2n—i-1), if S+l <i<n-1,

rvanWe) = (%54,2,0) and r(vivulWe) = (251, 1,1).

We see that there are no two tuples having the same representations in all the four cases. This
shows that fault-tolerant edge metric dimension of C} is less than or equal to 3. Since by Lemma 1.4,
C" 1s not a path so fault-tolerant edge metric dimension of C)' is greater than or equal to 3. Hence
fault-tolerant edge metric dimension of C}' is 3.

O

4. Fault-tolerant edge metric dimension of family of tadpole graphs G/

In this section, we will compute the fault-tolerant edge metric dimension of family of tadpole graphs
G!. The family G/ have V(G.) = (vi,va, ..., Vo us, tta, ...,y and E(G') = {vvyy; : 1 <i<n-1}U
{usigrr,: 1 < s < 1—1} U {v,uy,u;vi}. The graph G,ﬂ forn = 9 and [ = 7 is shown in Figure 4. The
following theorem tells us the edge metric dimension of G/,.

Theorem 4.1. [29] Foralln > 2,1 > 3, edim(Gﬁl) =2
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V3 V2

Figure 4. Tadpole graph GJ.
Now, we will compute the fault-tolerant edge metric dimension of G/,

Theorem 4.2. Foralln > 2,1 > 3, fedim(G') = 3.

Proof. In order to compute fault-tolerant edge metric dimension of G!, we have the following cases.
Case (i). nis odd. Let Wg = {v{,v,,u,,} C V(Gﬁ,), we have to show that W is a fault-tolerant edge
metric generator of G, For this, we give representations of each edge of G.

(i-Li+1,i+%5h, ifl<i<i-1;
n—1 n—1 n-1 e n=l.
) T -1L5. 5 +m=-1), ifti="%5
r\ivVis1 E) = n-1 n-1 n—1 s s _ n—1 .
(7,7—1,7+m—1), lfl—T'f‘l,
mn—i+l,n—i-1l,n+m—-i-1), if";21+2£iﬁn—l;

r(uiui |Wg) = (G, i,m—i— 1) where 1 <i<m-—1,
rWaun|We) = (1,0,m — 1) and r(u;vi|Wg) = (0, 1,m - 1),

Case (ii). n is even. Let Wr = {v{,v,, U} C V(Gﬁ,), we have to show that Wy, is a fault-tolerant
edge metric generator of G',. For this, we give representations of each edge of G',.

(-1Li+1,i+7%), if1<i<

i n n n e _on.
r(vivin1|Wg) = s5—Li-Li+m—1), ifi=73;

n—i+lLn-i-ln+tm—-i-1), iff+1<i<n-1;

r(uiui |We) = (G, i,m—i— 1) where 1 <i<m-—1,
raun|We) = (1,0,m — 1) and r(u;vi|Wg) = (0, 1,m - 1),

We see that there are no two tuples having the same representations. This shows that fault-tolerant
edge metric dimension of G! is less than or equal to 3 and now we try to show that fault-tolerant edge
metric dimension of G! is greater than or equal to 3. Since by Lemma 1.4, G/, is not a path so fault-
tolerant edge metric dimension of G. is greater than or equal to 3. Hence fault-tolerant edge metric
dimension of G!, is equal to 3.

O
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5. Fault-tolerant edge metric dimension of family of kayak paddle graphs Gﬁ,,m

In this section, we will compute the edge metric dimension of family of kayak paddle graphs G,’Lm.
The family G, have V(G},) = {ui, Uz, ..., U, Vi, V2, ..., Vi, Wi, Wa, ..., wi} and E(G),) = {vivisr :
I1<i<n-1JU{wwi 11 <j<I-1}U{uugy @ 1 < s <m— 13U {v,w, wivi, wuy, w,,wi}. The
family Gﬁ,’m forn =8, m =5 and [ = 4 is shown in Figure 5. The following theorem tells us the edge
metric dimension of G, .

Theorem 5.1. [29] For everyn > 2, m > 2 and [ > 4, edim(G' ) = 2.

n,m

uy Vs
u3

ui Vi

uy

wi wy w3 w4

Us
uy V4

Figure 5. Kayak Paddle graph G{ ;.
Now, we will compute the fault-tolerant edge metric dimension of G/, .

Theorem 5.2. Forn>2, m>2andl> 4, fedim(G' )= 4.

n,m

Proof. In order to compute fault-tolerant edge metric dimension of Gi,m, we have the following cases.

Case (i). n is odd and m is even. Let Wr = {v{,vo, uj, ur} C V(Gﬁl,m), we have to show that Wy is a
fault-tolerant edge metric generator of G/, . For this, we give representations of each edge of G}, .

0,0,1+1,1+2), ifi=1;
(i-1,i-2,,1+i,l+i+1), if2<i<sh
. (G5 - Ll e sl 4+ 1), if =2

r(viVHllWE): nil nil n—1 ’ nil S nil .

(7,7,74—1—1,74‘1), lfl:T-i'l,

n—i+1l,n—i+2,n+1-1,

n+l—i+1), if%+2§i§n—1;
rwiwi|Wg) = (,i+ 1,01 —i,l—i+ 1) where | <i<[—1,

(I+1,1+2,0,0), ifi=1;

(A+il+i+1,i—1,i-2), if2<i<?%;
r(uinia|We) =4 (+% - 1,1+2,2. 2 1), ifi=2+1;

m+l—im+Il—i+1l,m—-i+1,

m—1i+?2), f3+2<i<m-1;
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rvawiWe) = (1,2,L1+ 1), r(wvi|Wg) = (0, 1,L1 + 1), r(wuy|Wg) = (1,1 + 1,0,1) and
r(uwilWe) = (L1+1,1,2).

Case (ii). Both n and m are even. Let Wi = {vy, vy, uy, s} C V(Gﬁl,m), we have to show that Wy is a
fault-tolerant edge metric generator of G/, .. For this, we give representations of each edge of G/, ,

0,0,1+1,1+2), ifi=1;
(-1,i=2,,l+il+i+1), if2<i<?y;
, G.5-1L3+1-1,5+D, ifi=2+1;
r(vivis |We) = 22 o 2
(-1 §ﬂ+l—2 +1-1), ifi=35+2;
n—i+1l,n—i+2,n+1-1,
n+l—i+1), if%+3§i$n—l;

rwiwi|Wg) = (,i+ 1,1 —i,l—i+ 1) where | <i<[-1,

(I+1,1+2,0,0), ifi=1;
(I+il+i+1,i—1,i-2), if2<i<?%;
rui|\We) =4 ((+2-1,1+2,2,2-1), ifi=2+1;

m+l—im+Il—i+1l,m—-i+1,
m—1i+?2), f3+2<i<m-1;

roow|We) = (1,2,L1+ 1), riwyvi|We) = (0,1,L1 + 1), r(wau|Wg) = (1,1 + 1,0, 1) and
r,wlWe) = (L1+1,1,2).

Case (iii). Both n and m are odd. Let Wz = {v{, v, u1, u} C V(Gfl’m), we have to show that Wy is a
fault-tolerant edge metric generator of Gﬁ,’m. For this, we give representations of each edge of Gﬁl’m

0,0,1+1,1+2), ifi=1;
(i-1,i-2,,1+il+i+1), if2<i<zl
, (55, 5t - s L, if = 2
r(vivi1|We) = i ,i - ’ e nil
T,T,T-f‘l—l,T'i'l), lfl:T'Fl,
m—i+l,n—i+2,n+1—1,
n+l—i+1), if%+2$i$n—1;

rwiwi|Wg) = (,i+ 1,1—i,l—i+ 1) where | <i<[—1,
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(I+1,1+2,0,0), ifi=1,
A+il+i+1,i—1,i-2), if2<i<nl
) (ot ppmd mlomd = 2l
r(uiui+1|WE): m2—l ’ m—zl -1 m-1 ) mil .
(Z+T—1,Z+T,T,T), lfl:T+1,
m+l-iim+Il-i+1l,m—i+]1,
m—i+?2), if 2 +2<i<m—-1;

roawilWe) = (1L,2,L1+ 1), r(wvi|Wg) = (0, 1,L1 + 1), r(wauy|Wg) = (1,1 + 1,0,1) and
r(uwi|We) = (L1+1,1,2).

We see that there are no two tuples having the same representations. This shows that fault-tolerant
edge metric dimension of Gﬁl,m is less than or equal to 4 and now we try to show that fault-tolerant edge
metric dimension of G/, , is grater than or equal to 4.

For this purpose, we have to show that there is no fault-tolerant edge metric generator having
cardinality 3, we suppose on contrary that fault-tolerant edge metric dimension of Gﬁl’m is 3 and let
We = {vi,v i» V). Then the Table 1 shows all order pairs of edges (e, f) for which r(elWE) =r(f |We).

Table 1. (e, f) for which r(e|Wg) = r(f|Wg).

Conditions on i, j and k (e, f)
1<i,jjk<n (uywy, ywy)
1<i,j<nl1<k<lI (uywy, ywy)
l<i<nandl<jk<I (uywy, Uy Wy)
1<i,jk<l (u1wy, uwy)
l<i<nml<j<landl<k<m
If we take W \ {vi) (uywy, Uy wy)
I<i,j<n,andl1 <k<m
If we take Wi \ {vi} (Wiwp, wivy) or (Wiwy, wiv,)

In all possibilities, we conclude that there is no fault-tolerant edge metric generator of 3 vertices. Hence
fault-tolerant edge metric dimension of G}, ,, is 4.
]

6. Conclusions

In this paper, we have computed the fault-tolerant edge metric dimension of some planar graphs
path, cycle, complete, cycle with chord, tadpole and kayak paddle. It is observed that the
fault-tolerant edge metric dimension of these graphs is constant and does not depend on the number of
vertices. It is concluded that the fault-tolerant edge metric dimension of families of path graphs is
two, the fault-tolerant edge metric dimension of families of cycle graphs, cycle with chord graphs,
tadpole graphs is three and the fault-tolerant edge metric dimension of kayak paddle graphs is found
to be four. Here we end with an open problem.
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Open Problem

Characterize all families of graphs for which difference of fault-tolerant metric dimension and edge
metric dimension is one.
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