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1. Introduction

The classical Banach contraction principle is proved in metric spaces. One natural way to improve
this result is to enlarge the class of spaces. With this idea in mind, several authors generalized the
notion of metric spaces which saw the evolution of some new notions (see [1–11]). In 2008, Suzuki [12]
established a new type of contraction mappings and studied the existence and uniqueness of fixed point
theorems, which is a genuine extension of the Banach contraction principle. Later on, many researchers
have been worked on this contraction mapping for single-valued mappings as well as multivalued
mappings. One of the initial results was introduced by Nadler [13] in the line of research of multivalued
mappings. Later on, the domain of fixed points of multivalued functions was developed into a very rich
and fruitful theory.

In 2014, Ma et al. [14] introduce the class of C∗-algebra valued metric spaces (in short C∗-AVMS),
wherein the range set R is replaced by an unital C∗-algebra, which is more generalized than the class
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of metric spaces and proved some related fixed point results. Later on, many researchers extended this
class by considering some generalized class (see [2, 4, 10, 15–17]).

Inspired by the preceding observations, we prove a fixed point result via Suzuki type contraction
multivalued mapping in C∗-algebra valued metric spaces and give the application in Fredholm type
integral equation.

Throughout the paper, C denotes an unital C∗-algebra. An element 0C ∈ C is known as zero element
in C and if 0C 4 a ∈ C then a is called positive element in C. Also, C+ = {a ∈ C; a < 0A}. Moreover,
if a = a∗ and σ(a) = {λ ∈ R : λI − a is non-invertible } ⊆ [0,∞). The partial ordering on C can be
defined as follows: a 4 b if and only if 0C 4 b − a.

In 2014, Ma et al. [14] introduced the following definition:

Definition 1.1. Let A , ∅ and a mapping d : A × A→ C satisfies the following (for all a, b, c ∈ A):

(i) d(a, b) < 0C and d(a, b) = 0C iff a = b;

(ii) d(a, b) = d(b, a);

(iii) d(a, b) 4 d(a, c) + d(c, b).

Then the mapping d is known as C∗-algebra valued metric on A and (A,C, d) is known as C∗-algebra
valued metric space.

Definition 1.2. [14] Let (A,C, d) be C∗-algebra valued metric space, a ∈ A and {an} a sequence in X.

1. {an} is called convergent (with respect to C), if for given ε � 0C, there exists k ∈ N such that
d(an, a) ≺ ε, for all n > k. Equivalently, lim

n→∞
d(an, a) = 0C.

2. {an} is called Cauchy sequence (with respect to C), if for given ε � 0C, there exists k ∈ N such
that d(an, am) ≺ ε, for all n,m > k. Equivalently, lim

n→∞
d(an, am) = 0C.

3. (A,C, d) is called complete with respect to C, if every Cauchy in A is convergent to some point a
in A.

Let (A,C, d) be a C∗-algebra valued metric space. The set

Bd(a; ε) = {σ ∈ A : d(a, b) ≺ ε}.

is called open ball of radius 0C ≺ ε ∈ C and at center a ∈ A. Similarly, the set

Bd[a; ε] = {σ ∈ A : d(a, b) 4 ε}.

is called closed ball of radius 0C ≺ ε ∈ C and at center a ∈ A. The set of open balls

Ud = {Bd(a; ε) : a ∈ A, ε � 0C},

forms a basis of some topology τd on A.

Definition 1.3. The max function on A (C∗-algebra) with the partial order relation ‘ 4′ is defined by
(for all a, b ∈ A+):

max{a, b} = b⇔ a 4 b and ‖a‖ ≤ ‖b‖.
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The family CBC(A) stands for all nonempty, closed and bounded subsets of (A,C, d). Moreover, for
M,N ∈ CBC(A) and x ∈ A, we define:

distC(a,M) = inf{d(a, b) : b ∈ M};

δC(M,N) = sup{distC(a,N) : a ∈ M};

δC(N,M) = sup{distC(b,M) : b ∈ N}.

Define C∗-algebra valued Hausdorff metric HC : CBC(A) × CBC(A)→ C by:

HC(M,N) = max{δC(M,N), δC(N,M)} for all M,N ∈ CBC(A).

Remark 1.1. Let (A,C, d) be a C∗-algebra valued metric space and M a nonempty subset of A, then

a ∈ M if and only if distC(a,M) = 0C,

where, M denotes the closure of M with respect to C∗-algebra valued metric A. Also, M is closed in
(A,C, d) if and only if M = M.

Proposition 1.1. Let (A,C, d) be a C∗-algebra valued metric space. For M,N, L ∈ CBA(A), we have
the following:

(i) δP(M,M) = diam(M);

(ii) δP(M,N) = 0C ⇒ M ⊆ N;

(iii) N ⊂ L⇒ δP(M, L) 4 δP(M,N);

(iv) δC(M ∪ N, L) = max{δC(M, L), δC(N, L)}.

Proof. (i) Suppose M ∈ CBA(A). Then by the definition of δC, we have

δC(M,M) = sup{distC(a,M) : a ∈ A} = diam(M).

(ii) Suppose M,N ∈ CBA(A) such that δC(M,N) = 0C. Then

sup{distC(a,N) : a ∈ M} = 0C ⇒ distC(a,N) = 0C for all a ∈ M,

which implies that δC(M,N) = 0C. Therefore, distC(a,N) = 0C for all a ∈ M implies that ‘a’ is in the
closure of N for all a ∈ M. Since N is closed, so M ⊆ N.
(iii) Suppose M,N, L ∈ CBA(A) such that N ⊆ L. Then

distC(a,N) 4 distC(a, L) for all a ∈ X.

Thus
N ⊂ L⇒ δC(M, L) 4 δC(M,N).

(iv) Suppose M,N, L ∈ CBA(A). Then

δC(M ∪ N, L) = sup{distC(a, L) : a ∈ M ∪ N}

= max
{
sup{distC(a, L) : a ∈ M}, sup{distC(b, L) : b ∈ N}

}
= max{δC(M, L), δC(N, L)}.

�
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2. Fixed point results

In this section, firstly we define following notions which are needed in our subsequent discussions.
Consider, OC = {h ∈ C; 0 ≤ ‖h‖ < 1} and O

′

C
= {h ∈ C; 0 ≤ ‖h‖ ≤ 1}.

Next, let ξ : OC → O
′

C
be the non-increasing function defined by

ξ(h) =

I if 0 ≤ ‖h‖ < 1
2

I − h if 1
2 ≤ ‖h‖ < 1.

(2.1)

Now, we present our main result as follows:

Theorem 2.1. Let (A,C, d) be complete C∗-algebra valued metric space and f : X → CBA(A). Sup-
pose that there exists h ∈ OC such that f satisfies the following:

ξ(h)∗distC(a, f a)ξ(h) 4 d(a, b) =⇒ HC( f a, f b) 4 h∗M(a, b)h, (2.2)

for all a, b ∈ A, where ξ is defined by (2.1) and

M(a, b) = max
{

d(a, b), distC(a, f a), distC(b, f b),
distC(a, f b) + distC(b, f a)

2

}
.

Then f has a unique fixed point.

Proof. Consider h1 ∈ OC such that 0 ≤ ‖h‖ < ‖h1‖ < 1. Let a1 ∈ A and a2 ∈ f a1 be arbitrary points.
Since a2 ∈ f a1, then d(a2, f a2) 4 HC( f a1, f a2) and ‖ξ(h)‖ < 1,

ξ(h)∗distC(a1, f a1)ξ(h) 4 d(a1, f a1) 4 d(a1, a2)

⇒ ‖ξ(h)‖2‖distC(a1, f a1)‖ ≤ ‖d(a1, f a1)‖ ≤ ‖d(a1, a2)‖.

Hence the assumption (2.2) yielding thereby,

distC(a2, f a2) 4 HC( f a1, a2)

4 h∗max
{
d(a1, a2), distC(a1, f a1), distC(a2, f a2),

distC(a1, f a2) + 0C
2

}
h

4 h∗max
{
d(a1, a2), distC(a2, f a2),

d(a1, a2) + distC(a2, f a2)
2

}
h

= h∗max{d(a1, a2), distC(a2, f a2)}h.

Assume that max{d(a1, a2), distC(a2, f a2)} = distC(a2, f a2), then we have

‖distC(a2, f a2)‖ ≤ ‖h∗distC(a2, f a2)h‖
= ‖h‖2‖distC(a2, f a2)h‖
< ‖distC(a2, f a2)h‖ as ‖h‖2 < 1,
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a contradiction. Thus we have distC(a2, f a2) 4 h∗d(a1, a2)h. Hence there exists a3 ∈ f a2 such that
d(a2, a3) 4 h∗1d(a1, a2)h1. By proceeding with this procedure, we can construct a sequence {an} in A
such that an+1 ∈ f an with

d(an+1, an+2) 4 h∗1d(an, an+1)h1 4 ... 4 (h∗1)nd(a1, a2)(h1)n.

and
∞∑

n=1

d(an+1, an+2) 4
∞∑

n=1

(h∗1)nd(a1, a2)(h1)n

=

∞∑
n=1

(h∗1)n(d(a1, a2))
1
2 (d(a1, a2))

1
2 (h1)n

=

∞∑
n=1

(
(d(a1, a2))

1
2 (h1)n

)∗ (
(d(a1, a2))

1
2 (h1)n

)
=

∞∑
n=1

∣∣∣∣(d(a1, a2))
1
2 (h1)n

∣∣∣∣2
4

∥∥∥∥∥∥∥
∞∑

n=1

∣∣∣∣(d(a1, a2))
1
2 (h1)n

∣∣∣∣2
∥∥∥∥∥∥∥ I

4
∞∑

n=1

∥∥∥∥(d(a1, a2))
1
2

∥∥∥∥2 ∥∥∥hn
1

∥∥∥2
I

= ‖d(a1, a2)‖
∞∑

n=1

‖h1‖
2nI

= ‖d(a1, a2)‖
‖h1‖

2

1 − ‖h1‖
2 I.

Thus ∥∥∥∥∥∥∥
∞∑

n=1

d(an+1, an+2)

∥∥∥∥∥∥∥ < ∞.
Hereby, we presume that {an} is a Cauchy sequence. Since A is complete C∗-algebra valued metric
space, so there is some point z ∈ A such that lim

n→∞
an = z.

Now, we shall show that

d(z, f a) 4 h∗max{d(z, a), d(a, f a)}h for all a ∈ A \ {z}. (2.3)

As lim
n→∞

an = z, there exists N0 ∈ N such that

d(z, an) 4
1
3

d(z, a) for all n ≥ N0.

Therefore, we have

ξ(h)∗distC(an, f an)ξ(h) 4 distC(an, f an)
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4 d(an, an+1) 4 d(an, z) + d(z, an+1)

4
2
3

d(z, x) = d(z, x) −
1
3

d(z, a)

4 d(z, a) −
1
3

d(an, z)

4 d(an, a),

yielding thereby

HC( f an, f a) 4 h∗max
{
d(an, a), distC(an, f an), distC(a, f a),

distC(an, f a) + distC(a, f an)
2

}
h. (2.4)

Since an+1 ∈ f an, then

distC(an+1, f a) 4 HC( f an, f a) and distC(an, f an) 4 d(an, an+1).

Hence from (2.4), we have

distC(an+1, f a) 4 h∗max
{
d(an, a), d(an, an+1), distC(a, f a),

distC(an, f a) + d(a, an+1)
2

}
h.

On making limit as n→ ∞, we obtain (2.3).
To show that z ∈ f z. First, we take the case ξ(h) = I for 0 ≤ ‖h‖ ≤ 1

2 . Let on contrary that z < f z.
Now, let u ∈ f z such that

2‖h‖‖d(u, z)‖ < ‖distC(z, f z)‖.

Since u ∈ f z implies that u , z then from (2.3), we have

distC(z, f u) 4 h∗max{d(z, u), distC(u, f u)}h.

Also, since ξ(h)∗distC(z, f z)ξ(h) 4 distC(z, f z) 4 d(z, u), then in view of condition (2.2), we have

HC( f z, f u) 4 h∗max
{
d(z, u), distC(z, f z), distC(u, f u),

distC(z, f u) + 0C
2

}
h

4 h∗max{d(z, u), distC(z, f z), distC(u, f u)}h
4 h∗max{d(z, u), distC(u, f u)}h. (2.5)

Hence
distC(u, f u) 4 HC( f z, f u) 4 h∗max{d(z, u), distC(u, f u)}h.

Thus ‖distC(u, f u)‖ ≤ ‖h∗d(z, u)h‖ < ‖d(z, u)‖. Therefore (2.5) gives arise

distC(z, f u) 4 h∗d(z, u)h
= h∗d(z, u)

1
2 d(z, u)

1
2 h

=
(
d(z, u)

1
2 h

)∗ (
d(z, u)

1
2 h

)
AIMS Mathematics Volume 6, Issue 2, 1126–1139.
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=
∥∥∥∥d(z, u)

1
2 h

∥∥∥∥2
I

≤ ‖h‖2 ‖d(z, u)‖ I.

Therefore, we obtain

distC(z, f z) 4 distC(z, f u) + HC( f u, f z)
4 distC(z, f u) + h∗max{d(z, u), distC(u, f u)}h
4 2‖h‖2‖d(z, u)‖I
≺ ‖distC(z, f z)‖I

a contradiction. Therefore, distC(z, f z) = 0C, which deduce that z is a fixed point f .
Now, we take the case 1

2 ≤ ‖h‖ ≤ 1. Now, we prove

HC( f a, f z) 4 h∗max
{
d(a, z), distC(a, f a), distC(z, f z),

distC(a, f z) + distC(z, f a)
2

}
h (2.6)

for all a ∈ A. If a = z, then above inequality holds. Hence we let a , z. Then, for each n ∈ N, there
exists a sequence bn ∈ f a such that

d(z, bn) 4 distC(z, f a) +
1
n

d(a, z).

Now, by using (2.3), for all nN, we have

distC(a, f a) 4 d(a, bn) 4 d(a, z) + d(z, bn)

4 d(a, z) + distC(z, f a) +
1
n

d(a, z)

4 d(a, z) + h∗max{d(a, z), distC(a, f a)}h +
1
n

d(a, z).

Assume that d(a, z) < distC(a, f a), then

distC(a, f a) 4 d(a, z) + h∗d(a, z)h +
1
n

d(a, z)

= d(a, z) +
(
d(a, z)

1
2 h

)∗ (
d(a, z)

1
2 h

)
+

1
n

d(a, z)

= d(a, z) +
∥∥∥∥d(a, z)

1
2 h

∥∥∥∥2
+

1
n

d(a, z)

4 d(a, z) + ‖h‖2‖d(a, z)‖ +
1
n

d(a, z)

=

(
1 + ‖h‖2 +

1
n

)
d(a, z).

On making limit as n→ ∞, we obtain distC(a, f a) 4
(
1 + ‖h‖2

)
d(a, z). Hence

ξ(h)∗distC(a, f a)ξ(h) =
(
1 − ‖h‖2

)
d(a, z) 4

1(
1 + ‖h‖2

)d(a, z) 4 d(a, z)
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and from (2.2), we have (2.6). If d(a, z) ≺ distC(a, f a), then

distC(a, f a) 4 d(a, z) + h∗distC(a, f a)h +
1
n

d(a, z)

so that

(1 − ‖h‖)distC(a, f a) 4
(
1 − ‖h‖2

)
distC(a, f a) 4

(
1 +

1
n

)
d(a, z).

On making limit as n → ∞, we have ξ(h)∗distC(a, f a)ξ(h) 4 d(a, z). Hence from (2.2), again we have
(2.6).

Finally, from (2.6), we have

distC(z, f z) 4 lim
n→∞

distC(an+1, f z)

4 lim
n→∞

h∗max
{
d(an, z), distC(an, f an), distC(z, f z),

distC(an, f z) + d(z, f an)
2

}
h

4 lim
n→∞

h∗max
{
d(an, z), d(an, an+1), distC(z, f z),

distC(an, f z) + d(z, an+1)
2

}
h

= h∗distC(z, f z)h,

yielding thereby

‖distC(z, f z)‖ ≤ ‖h∗distC(z, f z)h‖ ≤ ‖h‖2‖distC(z, f z)‖ < ‖distC(z, f z)‖

a contraction. Hence distC(z, f z) = 0C implies that z ∈ f z.
For uniqueness, suppose there are z,w ∈ A so that z ∈ f z and w ∈ f w. Thus by conditions (2.2), we

have

‖d(z,w)‖ ≤ ‖HC( f z, f w)‖

≤

∥∥∥∥∥h∗max
{
d(z,w), d(z, f z), distC(w, f w),

distC(z, f w) + d(w, f z)
2

}
h
∥∥∥∥∥

= ‖h∗d(z,w)h‖
≤ ‖h‖2‖‖d(z,w)‖ < ‖d(z,w)‖,

a contraction. Hence d(z,w) = 0C implies that z = w. This completes the proof. �

Example 2.1. Suppose A =
{
0, 1

10 ,
1
5

}
. The C∗-algebra valued metric d : A × A→ C is defined by

d(a, b) =

[
|a − b| 0

0 α|a − b|

]
, where α > 0. (2.7)
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Then (A,C, d) is a complete C∗-algebra valued metric space. Note that {0} and
{ 1

10

}
are bounded sets in

(A,C, d). In fact, if a ∈
{
0, 1

10 ,
1
5

}
then

a ∈ {0} ⇔ distC(a, {0}) = 0C

⇔

[
a 0
0 αa

]
=

[
0 0
0 0

]
⇔ a = 0 ⇔ a ∈ {0}.

Hence {0} is closed. Next,

a ∈
{

1
10

}
⇔ distC

(
a,

{
1

10

})
= 0C

⇔

[∣∣∣a − 1
10

∣∣∣ 0
0 α

∣∣∣a − 1
10

∣∣∣
]

=

[
0 0
0 0

]
⇔

∣∣∣∣∣a − 1
10

∣∣∣∣∣ = 0⇔ a =
1

10

⇔ a ∈
{ 1

10

}
.

Hence
{ 1

10

}
is also closed. Now, define f : A→ CBC(A) by:

f 0 = f
1

10
= {0} and f

1
5

=

{ 1
10

}
.

To prove the contractive condition (i) of Theorem 2.1, we need the following:
Case 1. Let a = 0, then

ξ(h)∗distC(0, f 0)ξ(h) = 0C 4 d(0, b), for all b ∈ A.

For a = 0 or b = 1
10 , we have

HC( f 0, f b) = HC({0}, {0}) = 0C 4 h∗d(0, b)h 4 h∗M(0, b)h.

For a = 0 or b = 1
5 , we have

HC

(
f 0, f

1
5

)
= HC

(
{0},

{
1

10

})
=

[∣∣∣0 − 1
10

∣∣∣ 0
0 α

∣∣∣0 − 1
10

∣∣∣
]

=
1
2

[∣∣∣0 − 1
5

∣∣∣ 0
0 α

∣∣∣0 − 1
5

∣∣∣
]

=
1
2

d
(
0,

1
5

)
4

1
2
M

(
0,

1
5

)
.

AIMS Mathematics Volume 6, Issue 2, 1126–1139.



1135

Case 2. Let a = 1
5 . Then

ξ(h)∗distC
(1
5
, f

1
5

)
ξ(h) = ξ(h)∗d

(1
5
,

1
10

)
ξ(h) 4 d

(1
5
,

1
10

)
this implies that

HC
(

f
1
5
, f

1
10

)
= HC({0}, {0}) = 0C 4 h∗d

(1
5
,

1
10

)
h 4 h∗M

(1
5
,

1
10

)
h.

Hence the contractive condition (i) of Theorem 2.1 is satisfied. Observe that, the mapping f has a
unique fixed point (namely a = 0).

Corollary 2.1. The conclusions of Theorem 2.1 remain true if the contractive condition (2.2) is re-
placed by any one of the following:
assume that there exists h ∈ OC such that ξ(h)∗distC(a, f a)ξ(h) 4 d(a, b) implies

(i) HC( f a, f b) 4 h∗d(a, b)h;

(ii) HC( f a, f b) 4 h∗max
{
d(a, b), distC(a, f a)

}
h;

(iii) HC( f a, f b) 4 h∗max {d(a, b), distC(a, f a), distC(b, f b)} h;

(iv) HC( f a, f b) 4 h∗max
{
d(a, b), distC(a, f a)+distC(b, f b)

2 , distC(a, f b)+distC(b, f a)
2

}
h.

for all a, b ∈ A, where ξ is defined as in Theorem 2.1. Then f has a unique fixed point.

The following corollary can be obtain from (iii) of Corollary 2.1:

Corollary 2.2. Let (A,C, d) be complete C∗-algebra valued metric space and f : A → CBA(A).
Suppose that there exists h ∈ OC such that f satisfies the following:

ξ(h)∗distC(a, f a)ξ(h) 4 d(a, b)

=⇒ HC( f a, f b) 4 γ∗d(a, b)γ + γ∗distC(a, f a)γ + γ∗distC(b, f b)γ,

for all a, b ∈ A, where γ = (1/3)h and ξ is defined as in Theorem 2.1. Then f has a unique fixed point.

Now, we are presenting following corollary, by considering f as a single-valued mapping:

Corollary 2.3. Let (A,C, d) be complete C∗-algebra valued metric space and f : A→ A. Suppose that
there exists h ∈ OC such that f satisfies the following:

ξ(h)∗d(a, f a)ξ(h) 4 d(a, b)

=⇒ d( f a, f b) 4 h∗max
{

d(a, b), d(a, f a), d(b, f b),
d(a, f b) + d(b, f a)

2

}
h,

for all a, b ∈ A and ξ is defined as in Theorem 2.1. Then f has a unique fixed point.
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3. Applications

Now, we provide the following system of Fredholm integral equations to examine the existence and
uniqueness of solution in support of Corollary 2.3.

a(x) =

∫
E

G(x, y, a(y))dy + l(x), x, y ∈ E, (3.1)

where, G : E × E × R→ R, l ∈ L∞(E) and E is a measurable set.
Suppose that A = L∞(E), H = L2(E) and L(H) = C. Assume that φu is a multiplicative operator

defined on H, that is, πu : H → H such that

πu(ψ) = u.ψ.

Define d : A × A→ C by:
d(a, b) = π|a−b| for all a, b ∈ A.

Hence (A,C, d) is a complete C∗-algebra valued b-metric space.

Now, we present our following theorem.

Theorem 3.1. Suppose that (for all a, b ∈ A)

(1) there exist a continuous function ψ : E × E → R and k ∈ (0, 1) such that

ξ(h)∗|a(y) − f a(y)|ξ(h) 4 |a(y) − b(y)|

implies that

| G(x, y, a(y)) −G(x, y, b(y)) | ≤ k | ψ(x, y) | max
{
| a(y) − b(y) |, | a(y) − f a(y) |,

| b(y) − f b(y) |,
| a(y) − f b(y) | + | b(y) − f a(y) |

2

}
,

f or all x, y ∈ E.

(2) supx∈E

∫
E
| ψ(x, y) | dy ≤ 1.

Then the integral equation (3.1) has a unique solution in A.

Proof. Define f : A→ A by:

f a(x) =

∫
E

G(x, y, a(y))dy + l(x), ∀ x, y ∈ E.

Set h = kI, then h ∈ C. For any u ∈ H, we have

‖d( f a, f b)‖ = sup
‖u‖=1

(π| f a− f b|u, u)

= sup
‖u‖=1

∫
E

[∣∣∣∣∣ ∫
E

G(x, y, a(y)) −G(x, y, b(y))dy
∣∣∣∣∣]u(x) ¯u(x)dµ
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≤ sup
‖u‖=1

∫
E

[ ∫
E

∣∣∣G(x, y, a(y)) −G(x, y, b(y))
∣∣∣dy

]
|u(x)|2dx

≤ sup
‖u‖=1

∫
E

[ ∫
E

∣∣∣kψ(x, y)
∣∣∣ max

{
| a(y) − b(y) |, | a(y) − f a(y) |,

| b(y) − f b(y) |,
| a(y) − f b(y) | + | b(y) − f a(y) |

2

}
dy

]
|u(x)|2dx

≤ k sup
‖u‖=1

∫
E

[ ∫
E
|ψ(x, y)|dy

]
|u(x)|2dx‖a − b‖∞

≤ k sup
x∈E

∫
E
|ψ(x, y)|dy sup

‖u‖=1

∫
E
|u(x)|2dx max

{
‖a(y) − b(y)‖∞,

‖a(y) − f a(y)‖∞, ‖b(y) − f b(y)‖∞,
‖a(y) − f b(y)‖∞ + ‖b(y) − f a(y)‖∞

2

}
≤ k‖N(x, y)‖ = ‖h‖ ‖N(x, y)‖,

where,

‖N(x, y)‖ = max
{
‖a(y) − b(y)‖∞, ‖a(y) − f a(y)‖∞, ‖b(y) − f b(y)‖∞,

‖a(y) − f b(y)‖∞ + ‖b(y) − f a(y)‖∞
2

}
Since ‖h‖ < 1, so all the requirements of Corollary 2.3 are satisfied. Therefore, f has a unique fixed
point, means that Equation (3.1) has a unique solution. �

4. Conclusions

As C∗-algebra valued metric space is a relatively new addition to the existing literature. Many re-
searchers proved fixed point theorems in such space in several directions. This note proved multivalued
fixed point theorems in C∗-algebra valued metric spaces wherein we generalized the Suzuki fixed point
theorem [12]. An example is also adopted to highlight the realized improvements in our newly proved
result. Finally, we apply Theorem 2.1 to examine the existence and uniqueness of the solution for a
system of Fredholm integral equation.
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