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1. Introduction

The Hunter-Saxton (HS) equation reads

uxxt + uuxxx + 2uxuxx − 2κux = 0, (1.1)

where u(x, t) depends on a time variable t and a space variable x, κ is a positive constant. This equation
was derived as a model for propagation of orientation waves in a massive nematic liquid crystal director
field [1]. In fact, it can be regarded as a short wave limit of the well known Camassa-Holm equation
[2, 3].

The two-component Hunter-Saxton (2-HS) equation [1] isuxxt + uuxxx + 2uxuxx − 2κux = σρρx,

ρt + (ρu)x = 0,
(1.2)
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where u(x, t) and ρ(x, t) depend on variables t and x, σ, κ are positive constants. The 2-HS equation has
attracted much attention and it has been studied extensively and some results were obtained, we can
see [4, 5].

Meanwhile, there is a generalized 2-HS system [6] as follow:uxxt + uuxxx + (1 − α)uxuxx − κρρx = 0,
ρt + uρx = αuxρ,

(1.3)

where α(α , 1), κ are constants. The model with (α, κ) = (−1,−1) in system (1.3) appeared initially in
the work of Lenells [7]. The author showed that system (1.3) is the geodesic equation on a manifold K
which admits a Kähler structure. The blow-up phenomena of system (1.3) was investigated in [4, 8].

Our goal is to study exact solutions of system (1.3) by applying classical Lie group method [9–14].
Firstly, the vector field for the system (1.3) will be given by Lie symmetry analysis. Secondly,
similarity variables and its symmetry reductions equations are obtained. Thirdly, by solving the
reduced equations, some exact solutions of the system (1.3) will be presented. Finally, we give a
conservation law of system (1.3).

2. Lie symmetry analysis of the system (1.3)

First of all, let us consider a one-parameter Lie group of infinitesimal transformation:

x→ x + εξ(x, t, u, ρ),

t → t + ετ(x, t, u, ρ),

u→ u + εφ(x, t, u, ρ),

ρ→ ρ + εψ(x, t, u, ρ),

with a small parameter ε � 1. The vector field associated with the above group of transformations can
be written as

V = ξ(x, t, u, ρ)
∂

∂x
+ τ(x, t, u, ρ)

∂

∂t
+ φ(x, t, u, ρ)

∂

∂u
+ ψ(x, t, u, ρ)

∂

∂ρ
, (2.1)

where the coefficient functions ξ(x, t, u, ρ), τ(x, t, u, ρ), φ(x, t, u, ρ) and ψ(x, t, u, ρ) of the vector field are
to be determined later.

If the vector field (2.1) generates a symmetry of the system (1.3), then V must satisfy the Lie
symmetry condition pr(3)V(∆1)|∆1=0 = 0,

pr(1)V(∆2)|∆2=0 = 0,
(2.2)

where pr(3)V, pr(1)V denote the third and the first prolongation of V respectively, and ∆1 = uxxt + uuxxx +

(1−α)uxuxx − κρρx, ∆2 = ρt + uρx −αuxρ for system (1.3). Expanding (2.2), we find that the coefficient
functions ξ, τ, φ and ψ must satisfy the symmetry conditionφxxt + φuxxx + uφxxx + (1 − α)φxuxx + (1 − α)uxφ

xx − κψρx − κρψ
x = 0,

ψt + φρx + uψx − αφxρ − αuxψ = 0,
(2.3)
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where φ, ψ, φx, ψx, ψt, φxx, φxxx, φxxt are the coefficient functions given by

φt = Dtφ − uxDtξ − utDtτ, ψ
t = Dtψ − ρxDtξ − ρtDtτ,

φx = Dxφ − uxDxξ − utDxτ, ψ
x = Dxψ − ρxDxξ − ρtDxτ,

φxx = D2
xφ − uxD2

xξ − utD2
xτ − 2uxxDxξ − 2uxtDxτ,

φxxx = D3
xφ − uxD3

xξ − utD3
xτ − 3uxxD2

xξ − 3uxtD2
xτ − 3uxxxDxξ − 3uxxtDxτ,

φxxt = DtD2
xφ − uxDtD2

xξ − uxtD2
xξ − 2uxxDtDxξ − 2uxxtDxξ − utDtD2

xτ − uttD2
xτ

− 2uxtDtDxτ − 2uxttDxτ − uxxxDtξ − uxxtDtτ,

(2.4)

where Dx,Dt are the total derivatives with respect to x and t respectively.

Substituting (2.4) into (2.3), combined with system (1.3) and setting the coefficients of the various
monomials in u and v and their partial derivatives equal to zero one obtains the determining equations
for the symmetry group of (1.3) as follows

ξu = 0, ξρ = 0, τx = 0, τu = 0, τρ = 0, φρ = 0, φuu = 0, φxxu = 0, ψu = 0,
ρτt + ψ = 0, φu − ξx − ψρ = 0, (1 − α)(φu − ξx + τt) = 0, ξxx − 2φxu = 0,
uφxxx + φtxx − κρψx = 0, −αρφx + uψx + ψt = 0, −u(ξx − τt) − ξt + φ = 0,
uξxxx − (1 − α)φxx = 0, −2ξtx + (1 − α)φx + 3u(φxu − ξxx) + φtu = 0.

(2.5)

Solving these determining equations yields


ξ = (F′1(t) + C1 + C2)x + F2(t) + C3,

τ = −F1(t)α + C2t + C4,

φ = F′′1 (t)x + ((1 + α)F′1(t) + C1)u + F′2(t),
ψ = (αF′1(t) −C2)ρ,

(2.6)

where F1(t), F2(t) are arbitrary functions of t, C1,C2,C3 and C4 are arbitrary constants.

Thus, the Lie algebra of infinitesimal symmetries of system (1.3) is spanned by the following vector
fields

V1 = F′1(t)x
∂

∂x
− αF1(t)

∂

∂t
+ [F′′1 (t)x + (1 + α)uF′1(t)]

∂

∂u
+ αρF′1(t)

∂

∂ρ
,

V2 = F2(t)
∂

∂x
+ F′2(t)

∂

∂u
, V3 = x

∂

∂x
+ u

∂

∂u
,

V4 = x
∂

∂x
+ t

∂

∂t
− ρ

∂

∂ρ
, V5 =

∂

∂x
, V6 =

∂

∂t
,

where V1 and V2 are the vector fields corresponding to the arbitrary functions F1(t) and F2(t)
respectively.
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The commutation relations of Lie algebra determined by Vi(i = 1, 2, · · · , 6), which are shown as

[Vi,Vi] = 0, i = 1, 2, · · · , 6,
[V1,V2] = −[V2,V1] = V6(−F′1F2 − αF1F′2), [V1,V3] = −[V3,V1] = [V2,V5] = −[V5,V2] = 0,
[V3,V4] = −[V4,V3] = [V3,V6] = −[V6,V3] = [V5,V6] = −[V6,V5] = 0,
[V1,V4] = −[V4,V1] = V1(F1 − tF′1), [V1,V5] = −[V5,V1] = V2(−F′1),
[V1,V6] = −[V6,V1] = V1(−F′1), [V2,V3] = −[V3,V2] = V2(F2),
[V2,V4] = −[V4,V2] = V2(F2 − tF′2), [V2,V6] = −[V6,V2] = V2(−F′2),
[V3,V5] = −[V5,V3] = −V5, [V4,V5] = −[V5,V4] = −V5, [V4,V6] = −[V6,V4] = −V6.

It is obvious that the vector fields Vi(i = 1, 2, · · · , 6) are closed under the Lie bracket.

3. Symmetry reductions

In this section, we will get similarity variables and its symmetry reductions. By solving the reduced
equations, some exact solutions of the system (1.3) will be presented.

Based on the infinitesimals (2.6), the similarity variables are found by solving the corresponding
characteristic equations

dx
ξ

=
dt
τ

=
du
φ

=
dρ
ψ
.

Case 1 Let C1 = C2 = F1(t) = 0, C3(, 0) and C4 be arbitrary constants, F2(t) is an arbitrary functions
of t, then by solving the characteristic equation one can get the similarity variables

ω = x −
∫

F2(t) + C4

C3
dt, f (ω) = u −

F2(t)
C3

, g(ω) = ρ,

and the group-invariant solution is u =
F2(t)
C3

+ f (ω),

ρ = g(ω).
(3.1)

Substituting the group-invariant solution (3.1) into system (1.3), we reduce equation (1.3) to the
following ODE: C4 f ′′′ −C3 f f ′′′ − (1 − α)C3 f ′ f ′′ + C3κgg′ = 0,

C4g′ + αC3 f ′g −C3 f g′ = 0,
(3.2)

where f ′ = d f /dω, g′ = dg/dω.
Case 2 Let C1,C3 be arbitrary non-zero constants, C2 = C4 = F1(t) = F2(t) = 0, then by solving the
characteristic equation one can get the similarity variables

ω = x exp(−
C1t
C3

), f (ω) = u exp(−
C1t
C3

), g(ω) = ρ,

and the group-invariant solution is u = exp(
C1t
C3

) f (ω),

ρ = g(ω).
(3.3)
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Substituting the group-invariant solution (3.3) into system (1.3), we reduce (1.3) to the following
ODE: C1ω f ′′′ −C3 f f ′′′ + C3(α − 1) f ′ f ′′ + C1 f ′′ + C3κgg′ = 0,

C1ωg′ + αC3 f ′g −C3 f g′ = 0,
(3.4)

where f ′ = d f /dω, g′ = dg/dω.
Case 3 Let F1(t) = kt, F2(t) = 0, C1,C2,C3,C4 and k be constants which satisfy C2 − αk , 0 and
k + C1 + C2 , 0, then by solving the characteristic equation one can get the similarity variables

ω =
[(k + C1 + C2)x + C4](−αkt + C2t + C3)−

k+C1+C2
C2−αk

k + C1 + C2
,

f (ω) = u[(C2 − αk)t + C3]−
αk+C1+k

C2−αk ,

g(ω) = ρ[(C2 − αk)t + C3],

and the group-invariant solution is
u = [(C2 − αk)t + C3]

αk+C1+k
C2−αk f (ω),

ρ =
g(ω)

(C2 − αk)t + C3
.

(3.5)

Substituting the group-invariant solution (3.5) into system (1.3), we reduce (1.3) to the following
ODE: −(k + C1 + C2)ω f ′′′ + f f ′′′ + (1 − α) f ′ f ′′ − κgg′ = 0,

−(k + C1 + C2)ωg′ − α f ′g + f g′ = 0,
(3.6)

where f ′ = d f /dω, g′ = dg/dω.

4. Exact solutions

In this section, we will derive the solutions of system (1.3) by using the symbolic computation
[15–17]. Suppose that the solution of equation (3.2) is in the form

f = a0 + a1F + a2F2, g = b0 + b1F + b2F2 (4.1)

where F(ω) expresses the solution of the following generalized Riccati equation

F′ = r + pF + qF2, (4.2)

and r, p, q are real constants. Substituting (4.1) along with (4.2) into (3.2) and collecting all terms with
the same power in F i(i = 0, 1, · · · , 7) and setting the coefficients to zero yields a system of algebraic
equations. Solving the algebraic equations and we can have the following results

α = 2, a0 = ±

√
2κb2 p
4q2 +

C4

C3
, a1 = ±

√
2κb2

2q
, a2 = 0, b0 =

b2 p2

4q2 , b1 =
b2 p
q
, (4.3)

with b2, p, q, r,C3,C4 are constants and κ is a positive constant.
The solutions of equation (4.2) are listed as follows:
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(a) When p2 − 4qr > 0 and pq , 0 (qr , 0),

F1 = −
1

2q

p +
√

p2 − 4qr tanh

 √
p2 − 4qr

2
ω

,
F2 = −

1
2q

p +
√

p2 − 4qr coth

 √
p2 − 4qr

2
ω

,
F3 = −

1
2q

[
p +

√
p2 − 4qr

[
tanh

( √
p2 − 4qrω

)
± isech

( √
p2 − 4qrω

)]]
,

F4 =
1

2q

−p +

√
p2 − 4qr

[√
A2 + B2 − A cosh

( √
p2 − 4qrω

)]
A sinh

( √
p2 − 4qrω

)
+ B

,
F5 =

1
2q

−p −

√
p2 − 4qr

[√
B2 − A2 + A sinh

( √
p2 − 4qrω

)]
A cosh

( √
p2 − 4qrω

)
+ B

, B2 − A2 > 0,

F6 =

2r cosh
( √

p2−4qr
2 ω

)
√

p2 − 4qr sinh
( √

p2−4qr
2 ω

)
− p cosh

( √
p2−4qr

2 ω

) ,

F7 =

2r sinh
( √

p2−4qr
2 ω

)
√

p2 − 4qr cosh
( √

p2−4qr
2 ω

)
− p sinh

( √
p2−4qr

2 ω

) ,
where A, B are arbitrary constants.

(b) When p2 − 4qr < 0 and pq , 0 (qr , 0),

F8 =
1

2q

−p +
√

4qr − p2 tan

 √
4qr − p2

2
ω

,
F9 = −

1
2q

p +
√

4qr − p2 cot

 √
4qr − p2

2
ω

,
F10 =

1
2q

[
−p +

√
4qr − p2

[
tan

( √
4qr − p2ω

)
± sec

( √
4qr − p2ω

)]]
,

F11 =
1

2q

−p +

√
4qr − p2

[√
A2 − B2 − A cos

( √
4qr − p2ω

)]
A sin

( √
4qr − p2ω

)
+ B

, A2 − B2 > 0,

F12 =
1

2q

−p −

√
4qr − p2

[√
A2 − B2 − A sin

( √
4qr − p2ω

)]
A cos

( √
4qr − p2ω

)
+ B

, A2 − B2 > 0,

F13 =

−2r cos
( √

4qr−p2

2 ω

)
√

4qr − p2 sin
( √

4qr−p2

2 ω

)
+ p cos

( √
4qr−p2

2 ω

) ,
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F14 =

2r sin
( √

4qr−p2

2 ω

)
√

4qr − p2 cos
( √

4qr−p2

2 ω

)
− p sin

( √
4qr−p2

2 ω

) ,
where A, B are arbitrary constants.

(c) When r = 0 and pq , 0,

F15 = −
pC

q
[
cosh (pω) − sinh (pω) + C

] ,
F16 = −

p
[
sinh (pω) + cosh (pω)

]
q
[
sinh (pω) + cosh (pω) + C

] ,
where C is an arbitrary constant.

(d) When p = r = 0 and q , 0,

F17 = −
1

qω + C
,

where C is an arbitrary constant.
Substituting (4.3) into (4.1) and (3.1), then we can obtain the following different exact solutions of

system (1.3):
(a1) If ∆ = p2 − 4qr > 0 and pq , 0 (qr , 0), then the solutions of system (1.3) with α = 2 can be

derived as 
u1(x, t) =

F2(t) + C4

C3
±

√
2κb2

√
∆

4q2 tanh
 √∆

2
ω

,
ρ1(x, t) =

b2∆

4q2 tanh2

 √∆

2
ω

, (4.4)

where ω = x −
∫

F2(t)
C3

dt.

If we take F(t) =
F2(t) + C4

C3
,
√

∆ = 2c1(c1 > 0), b =
b2

4q2 , then the above solution can be expressed

as a simple form as u1(x, t) = F(t) ± 2
√

2κbc1 tanh (c1ω),
ρ1(x, t) = 4bc2

1 tanh2 (c1ω) ,
(4.5)

where ω = x −
∫

F(t)dt, and c1(> 0), b, κ are constants.

Similarly, we can derive the other solutions of system (1.3) asu2(x, t) = F(t) ± 2
√

2κbc1 coth (c1ω),
ρ2(x, t) = 4bc2

1 coth2 (c1ω) .
(4.6)

u3(x, t) = F(t) ± 2
√

2κbc1 [tanh (2c1ω) ± isech (2c1ω)],
ρ3(x, t) = 4bc2

1 [tanh (2c1ω) ± isech (2c1ω)]2 .
(4.7)
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
u4(x, t) = F(t) ± 2

√
2κbc1

√
A2 + B2 − A cosh (2c1ω)

A sinh (2c1ω) + B
,

ρ4(x, t) = 4bc2
1

 √A2 + B2 − A cosh (2c1ω)
A sinh (2c1ω) + B

2

,

(4.8)

where A, B are arbitrary constants.
u5(x, t) = F(t) ± 2

√
2κbc1

√
B2 − A2 + A sinh (2c1ω)

A cosh (2c1ω) + B
,

ρ5(x, t) = 4bc2
1

 √B2 − A2 + A sinh (2c1ω)
A cosh (2c1ω) + B

2

,

(4.9)

where B2 − A2 > 0. 
u6(x, t) = F(t) ± 2

√
2κbc1

[
p sinh (c1ω) − 2c1 cosh (c1ω)
2c1 sinh (c1ω) − p cosh (c1ω)

]
,

ρ6(x, t) = 4bc2
1

[
p sinh (c1ω) − 2c1 cosh (c1ω)
2c1 sinh (c1ω) − p cosh (c1ω)

]2

.

(4.10)


u7(x, t) = F(t) ± 2

√
2κbc1

[
p cosh (c1ω) − 2c1 sinh (c1ω)
2c1 cosh (c1ω) − p sinh (c1ω)

]
,

ρ7(x, t) = 4bc2
1

[
p cosh (c1ω) − 2c1 sinh (c1ω)
2c1 cosh (c1ω) − p sinh (c1ω)

]2

.

(4.11)

(a2) When ∆ = p2 − 4qr < 0 and pq , 0 (qr , 0), if we denote F(t) =
F2(t) + C4

C3
,
√
−∆ = 2c1(c1 >

0), b =
b2

4q2 , then the solutions of system (1.3) with α = 2 can be derived as

u8(x, t) = F(t) ± 2
√

2κbc1 tan (c1ω),
ρ8(x, t) = 4bc2

1 tan2(c1ω).
(4.12)

u9(x, t) = F(t) ± 2
√

2κbc1 cot (c1ω),
ρ9(x, t) = 4bc2

1 cot2 (c1ω) .
(4.13)

u10(x, t) = F(t) ± 2
√

2κbc1 [tan (2c1ω) ± isech (2c1ω)],
ρ10(x, t) = 4bc2

1 [tan (2c1ω) ± isech (2c1ω)]2 .
(4.14)


u11(x, t) = F(t) ± 2

√
2κbc1

√
A2 − B2 − A cos (2c1ω)

A sin (2c1ω) + B
,

ρ11(x, t) = 4bc2
1

 √A2 − B2 − A cos (2c1ω)
A sin (2c1ω) + B

2

,

(4.15)

where A, B are arbitrary constants and A2 − B2 > 0.
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
u12(x, t) = F(t) ± 2

√
2κbc1

√
A2 − B2 − A sin (2c1ω)

A cos (2c1ω) + B
,

ρ12(x, t) = 4bc2
1

 √A2 − B2 − A sin (2c1ω)
A cos (2c1ω) + B

2

,

(4.16)

where A2 − B2 > 0. 
u13(x, t) = F(t) ± 2

√
2κbc1

[
p sin (c1ω) − 2c1 cos (c1ω)
2c1 sin (c1ω) + p cos (c1ω)

]
,

ρ13(x, t) = 4bc2
1

[
p sin (c1ω) − 2c1 cos (c1ω)
2c1 sin (c1ω) + p cos (c1ω)

]2

.

(4.17)


u14(x, t) = F(t) ± 2

√
2κbc1

[
p cos (c1ω) + 2c1 sin (c1ω)
2c1 cos (c1ω) − p sin (c1ω)

]
,

ρ14(x, t) = 4bc2
1

[
p cos (c1ω) + 2c1 sin (c1ω)
2c1 cos (c1ω) − p sin (c1ω)

]2

.

(4.18)

(a3) When r = 0 and pq , 0, if we denote F(t) =
F2(t) + C4

C3
, b =

b2

4q2 , then the solutions of system

(1.3) with α = 2 can be derived as
u15(x, t) = F(t) ±

√
2κbp

(
1 −

2C
cosh (pω) − sinh (pω) + C

)
,

ρ15(x, t) = bp2
(
1 −

2C
cosh (pω) − sinh (pω) + C

)2

,

(4.19)

where ω = x −
∫

F(t)dt, F(t) is an arbitrary function and b,C are constants.
u16(x, t) = F(t) ±

√
2κbp

(
1 −

2C
sinh (pω) + cosh (pω) + C

)
,

ρ16(x, t) = bp2
(
1 −

2C
sinh (pω) + cosh (pω) + C

)2

.

(4.20)

(a4) When p = r = 0 and q , 0, if we denote F(t) =
F2(t) + C4

C3
, b =

b2

4q2 , then the solution of

system (1.3) with α = 2 can be derived as
u17(x, t) = F(t) ± 2

√
2κb

1
ω + C

,

ρ17(x, t) = 4b
(

1
ω + C

)2

,
(4.21)

where ω = x −
∫

F(t)dt, F(t) is an arbitrary function and b,C are constants.

In order to show the properties of the above solutions visually, we plot the 2D-graphs of some
typical solutions. Some wave figures are given as follows (Figures 1–5):
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For the solution (4.5), if we take the integration constant as 0 in ω = x −
∫

F(t)dt, then we plot the
solution for the plus sign in u1 as

(a) α=2, t=0.2 (b) α=2,t=0.2

Figure 1. (a) 2D figure of solution u1 with F = 0.05, κ = 2, b = 0.1, c1 = 1, (b) 2D figure of
solution ρ1 with F = 0.05, κ = 2, b = 0.1, c1 = 1.

For the solution (4.6), if we take the integration constant as 0 in ω = x −
∫

F(t)dt, then we plot the
solution for the plus sign in u2 as

(a) α=2, t=0.5 (b) α=2,t=0.5

Figure 2. (a) 2D figure of solution u2 with F = 0.05, κ = 2, b = 0.1, c1 = 1, (b) 2D figure of
solution ρ2 with F = 0.05, κ = 2, b = 0.1, c1 = 1.

For the solution (4.8), if we take the integration constant as 0 in ω = x −
∫

F(t)dt, then we plot the
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solution for the plus sign in u4 as

(a) α=2, t=0.2 (b) α=2,t=0.2

Figure 3. (a) 2D figure of solution u4 with F = 0.05, κ = 2, b = 0.1, c1 = 1, A = 2, B = 2, (b)
2D figure of solution ρ4 with F = 0.05, κ = 2, b = 0.1, c1 = 1, A = 2, B = 2.

For the solution (4.10), if we take the integration constant as 0 in ω = x−
∫

F(t)dt, then we plot the
solution for the plus sign in u6 as

(a) α=2, t=0.2 (b) α=2,t=0.2

Figure 4. (a) 2D figure of solution u6 with F = 1, κ = 2, b = 0.1, c1 = 1, p = 1, (b) 2D figure
of solution ρ6 with F = 1, κ = 2, b = 0.1, c1 = 1, p = 1.

For the solution (4.17), if we take the integration constant as 0 in ω = x−
∫

F(t)dt, then we plot the
solution for the plus sign in u13 as

AIMS Mathematics Volume 6, Issue 2, 1087–1100.



1098

(a) α=2, t=0.02 (b) α=2,t=0.02

Figure 5. (a) 2D figure of solution u13 with F = 0.02, κ = 2, b = 0.1, c1 = 1, p = 1, (b) 2D
figure of solution ρ13 with F = 0.02, κ = 2, b = 0.1, c1 = 1, p = 1.

Remark 1 If we take F(t) as a constant, then all of the above solutions of system (1.3) are traveling
wave solutions.
Remark 2 For the reduced equations (3.4) and (3.6), there exist a power series solutions [18, 19]. We
omit the details here for brevity.

5. Conservation law

In this section, we use the direct multiplier method [20] to derive a conservation law for system
(1.3). The zero-order multipliers Λ1(t, x, u, ρ), Λ2(t, x, u, ρ) for the system (1.3) are determined by

δ

δu
[
Λ1(uxxt + uuxxx + (1 − α)uxuxx − κρρx) + Λ2(ρt + uρx − αuxρ)

]
= 0

δ

δρ

[
Λ1(uxxt + uuxxx + (1 − α)uxuxx − κρρx) + Λ2(ρt + uρx − αuxρ)

]
= 0,

(5.1)

where δ
δu ,

δ
δρ

are Euler-Lagrange operators defined by

δ

δu
=
∂

∂u
− Dx

∂

∂ux
+ D2

x
∂

∂uxx
− DtD2

x
∂

∂uxxt
− D3

x
∂

∂uxxx
,

δ

δρ
=
∂

∂ρ
− Dt

∂

∂ρt
− Dx

∂

∂ρx
.

(5.2)

Expanding (5.1) and splitting with respect to derivative of u, ρ, we obtain the following determining
equations

Λ1u = 0, Λ1ρ = 0, Λ1x = 0, Λ2u = 0, Λ2t = 0, Λ2x = 0,
αρΛ2ρ + uΛ2u + (1 + α)Λ2 = 0.

(5.3)
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Then we obtain the solution

Λ1(t, x, u, ρ) = H(t), Λ2(t, x, u, ρ) = Aρ−
1+α
α , (5.4)

where A is an arbitrary constant, H(t) is an arbitrary functions with respect to t. From the solution
(5.4), we can see that system (1.3) has one zero-order multiplier in the form of Λ1 = H(t), Λ2 = ρ−

1+α
α .

So a conservation law of system (1.3) is

Dt

(
−αρ−

1
α

)
+ Dx

(
H(t)uxt + H(t)uuxx −

α

2
H(t)u2

x −
κ

2
H(t)ρ2 − αuρ−

1
α

)
= 0. (5.5)

6. Conclusions

In this paper, a generalized 2-HS system is investigated by using the classical Lie group method.
First, Lie symmetry analysis was performed for the generalized 2-HS system, and its infinitesimal
generator, geometric vector fields and commutation table of Lie algebra were obtained. Then, all of
the similarity variables and its symmetry reductions of this equation are obtained. And by solving the
reduced equations, some new exact solutions including traveling wave solutions of this generalized
2-HS system are constructed successfully. These are new solutions for the generalized 2-HS system.
Finally, a conservation law of the generalized 2-HS system are shown by using the multiplier method.
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