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1. Introduction
The Hunter-Saxton (HS) equation reads
Uyt + Uy + 2UsUy e — 2ku, = 0, (1.1)

where u(x, ) depends on a time variable ¢ and a space variable x, « is a positive constant. This equation
was derived as a model for propagation of orientation waves in a massive nematic liquid crystal director
field [1]. In fact, it can be regarded as a short wave limit of the well known Camassa-Holm equation
[2,3].

The two-component Hunter-Saxton (2-HS) equation [1] is

{uxxt + Ullyyxy + zuxuxx - 2Kux = 0LPPx, (1 2)

pl + (pu)x = 0’
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where u(x, t) and p(x, ) depend on variables 7 and x, o, k are positive constants. The 2-HS equation has
attracted much attention and it has been studied extensively and some results were obtained, we can
see [4,5].

Meanwhile, there is a generalized 2-HS system [6] as follow:

(1.3)

Uyxt + Ulyxx + (1 - a)uxuxx — KPPy = O,
Pr T UP = au,p,

where a(a # 1), k are constants. The model with (@, k) = (=1, —1) in system (1.3) appeared initially in
the work of Lenells [7]. The author showed that system (1.3) is the geodesic equation on a manifold K
which admits a Kdhler structure. The blow-up phenomena of system (1.3) was investigated in [4, 8].

Our goal is to study exact solutions of system (1.3) by applying classical Lie group method [9—-14].
Firstly, the vector field for the system (1.3) will be given by Lie symmetry analysis. Secondly,
similarity variables and its symmetry reductions equations are obtained. Thirdly, by solving the
reduced equations, some exact solutions of the system (1.3) will be presented. Finally, we give a
conservation law of system (1.3).

2. Lie symmetry analysis of the system (1.3)

First of all, let us consider a one-parameter Lie group of infinitesimal transformation:
X — x+ €é(x, t,u,p),

t = t+et(x, t,u,p),
u— u+ ep(x,t,u,p),

p = p+ey(x,t,u,p),

with a small parameter € < 1. The vector field associated with the above group of transformations can
be written as

0 0 0 0
V=&, t,u,p)— +7(x, t,u,p)— + ¢(x, 1, u, p0)— + ¥(x, t,u,p)—, (2.1)
0x ot ou op

where the coefficient functions &(x, t, u, p), 7(x, t, u, p), ¢(x, t, u, p) and ¥(x, t, u, p) of the vector field are
to be determined later.
If the vector field (2.1) generates a symmetry of the system (1.3), then V must satisfy the Lie
symmetry condition
SV(A))|a=0 = 0,
{Pr (Apla=0 2.2)

priV(Ay)la,=0 = 0,

where pr®V, pr'VV denote the third and the first prolongation of V respectively, and A; = u, + Uy, +
(1 = @)uu, — kPP, Ay = p; +up, — au,p for system (1.3). Expanding (2.2), we find that the coeflicient
functions &, 7, ¢ and ¢ must satisfy the symmetry condition

{¢xxt + ¢uxxx + u¢xxx + (1 _ Q)¢xuxx + (1 - Q)ux¢XX — K!//px - prx = 0, (2 3)

Y+ dpy +upt — ad'p — auyy =0,
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where ¢, ¥, ¢*, U* W', ¢, ¢, o™ are the coefficient functions given b
g y

¢t =D —uDé& —u,Djt, ‘»//[ =Dy — pDi& — p:Dyt,

¢* = D¢ —u D& —u D7, ' = Dy — p D& — p,D,,

¢ = D*¢p — u,D*¢ — u,D*t — 2u, D& — 2uyD,T,

o = Did) - uXDig - u,DiT - 3uxxD§§ - 3uxtD)2€T — Buy D€ — U, DT,

¢ = D,D>¢ — u,D,D*¢ — uy D> — 2u, D, D& — 2u, D& — u,D, D>t — u,D*t
— 2uy DD, — 21, DT — Uy Di& — Uty DT,

(2.4)

where D,, D, are the total derivatives with respect to x and ¢ respectively.

Substituting (2.4) into (2.3), combined with system (1.3) and setting the coeflicients of the various
monomials in # and v and their partial derivatives equal to zero one obtains the determining equations
for the symmetry group of (1.3) as follows

é:u:O, gp:O’ Tx:()’ Tuzoa Tp:oa ¢p:O’ ¢uu:07 ¢xxu:(), wu:()v
th+w:0’ ¢u_§x_l;0p:0» (1_0')(¢u_§x+7t):0’ gxx_2¢xu:()9

(2.5
u¢xxx + ¢txx - prx = 0’ _ap¢x + uwx + lpt =0, _u('fx - Tt) - 'ft + ¢ = 0’
ufxxx - (1 - a)¢xx = 07 _thx + (1 - a)¢x + 3M(¢xu - fxx) + ¢tu =0.
Solving these determining equations yields
E=(F|(1)+ Cy+Co)x + Fa(t) + Cs,
=-F(t Cot + Cy,
T 1(Da + Cat + Cy (2.6)

¢ =F/(Ox+ (1 + a)F|(t) + C)u + F5(1),
¥ = (aF (1) - Cy)p,

where F(1), F,(t) are arbitrary functions of ¢, Cy, C,, C5 and C, are arbitrary constants.

Thus, the Lie algebra of infinitesimal symmetries of system (1.3) is spanned by the following vector
fields

4 a a "’ ’ a ’ a
V= Fl(t)xa - aFl(t)ﬁ_t +[F{(O)x+(1+ a)uFl(t)]a + apFl(t)%,

v, = 02 0l vi=xd 2
2 T T e T e
o o 0 0 P

= X— [— — —, V:—’ V:—,
Vasxg i =Py V= gy V=5

where V; and V, are the vector fields corresponding to the arbitrary functions F;(¢) and F,(¢)
respectively.
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The commutation relations of Lie algebra determined by V(i = 1,2, --- , 6), which are shown as

[Vi,Vi]1=0,i=1,2,---,6,

[Vi, Vol = =[V2, Vil = V§(=F | Fy — aFF}), [Vi,V3] = ~[V3,Vi] = [Va, V5] = —[V5, V2] =0,
[V3, Va] = =[V4, V3] = [V3, V6] = =[ Vi, V3] = [Vs, Vsl = —[Ve, V5] = 0,

[Vi, Val = =[V4, Vil = Vi(Fy = tF)), [V, Vs] = =[Vs5, Vi] = Vo(=F)),

[Vi, Vel = =[Ves, Vil = Vi(=F"), [V2, V3] = =[V3, V2] = Va(F?),

[V2, Val = =[V4, Vo] = Vo(Fy = tF3), [V, Vsl = —[Ve, V2] = Va(=F)),

[V3, V5] = =[Vs5, V3] = =Vs, [V4, V5] = =[Vs, V4l = =Vs, [V, V6] = —[V, Va]l = = V.

It is obvious that the vector fields V;(i = 1,2, --- , 6) are closed under the Lie bracket.
3. Symmetry reductions

In this section, we will get similarity variables and its symmetry reductions. By solving the reduced
equations, some exact solutions of the system (1.3) will be presented.
Based on the infinitesimals (2.6), the similarity variables are found by solving the corresponding

characteristic equations
dx dt du dp
A
Case 1 Let C; = C; = Fi(t) = 0, C5(# 0) and C, be arbitrary constants, F,(¢) is an arbitrary functions

of ¢, then by solving the characteristic equation one can get the similarity variables

F,n+C Fy(t
w:x_fwdta f((.l)):u— 2()’ g(w):p’
C3 C3
and the group-invariant solution is
F
w="24 flw)
Cs 3.1
p = gw).

Substituting the group-invariant solution (3.1) into system (1.3), we reduce equation (1.3) to the
following ODE:

{Q " = Csff” = (1 = )Csf' f + Cskgg’ =0, (3.2)

Cig' +aCsf'g—Csfg =0,

where f' =df/dw, g’ = dg/dw.
Case 2 Let Cy, C; be arbitrary non-zero constants, C, = C4 = F(t) = F»(t) = 0, then by solving the
characteristic equation one can get the similarity variables

Cit Cit
w = xexp(-—-), f(w)=uexp(-—), gw)=p,
C; C;
and the group-invariant solution is

C
{u - exp(c—f)f(w), 53

p = g(w).
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Substituting the group-invariant solution (3.3) into system (1.3), we reduce (1.3) to the following
ODE:
{clwf"’ — Gff” + Csla =D f" + Cif” + Csxgg' =0, 34
Ciwg' +aCsf'g — Csfg =0, ‘
where [’ =df/dw, g = dg/dw.
Case 3 Let F(t) = kt,Fy(t) = 0, C;,C,,C3,Cy4 and k be constants which satisfy C, — ak # 0 and
k+ C, + C, # 0, then by solving the characteristic equation one can get the similarity variables

k+C1+Co

w = [(k + C1 + Cz)x + C4](—akt + sz + C3)_ Cy-ak
- k+C,+C, :

ak+Cy+k

f(w) = ul(Cy — ak)t + C3] 2%,
g(w) = p[(C — k)t + G5,

and the group-invariant solution is

U = [(Cy — ak)t + C3] 5 f(w),

P =G —aki+Cs

Substituting the group-invariant solution (3.5) into system (1.3), we reduce (1.3) to the following
ODE:

3.6
—(k+C +CHwg’ —af'g+ fg =0, -0

where £’ = df/dw, g’ = dg/dw.

{—(k+ Cl + Cz)wf/// +ff/u + (1 _ a,)f/fu _Kgg/ — O,

4. Exact solutions

In this section, we will derive the solutions of system (1.3) by using the symbolic computation
[15-17]. Suppose that the solution of equation (3.2) is in the form

f:(10+611F+612F2,g:b0+b1F+b2F2 (41)
where F(w) expresses the solution of the following generalized Riccati equation
F' =r+ pF + gF?, 4.2)

and r, p, g are real constants. Substituting (4.1) along with (4.2) into (3.2) and collecting all terms with
the same power in Fi(i = 0,1,---,7) and setting the coefficients to zero yields a system of algebraic
equations. Solving the algebraic equations and we can have the following results

VZkbyp  C VZkb byp* b
@=2a0=+~—L y 2 4 = s D —0,by = 2L = 2L (4.3)
4q Cs 29 4q q

with b, p, g, r, C3, C4 are constants and « is a positive constant.
The solutions of equation (4.2) are listed as follows:
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(a) When p? — 4gr > 0 and pg # 0 (gr # 0),

[)2
F, = _Z_Iq p+ \p? —4qrtanh[—p 7 4qer’
1 p* —4qr
F> = _Z_q p+ \p* - 4qrcoth[TcuH,
Fy= _2_161 [+ N7 = Agr | tanh (y/p? = dgre) = isech ( Vp? — 4qro)| |
il \/pz—4qr[VA2+B2—Acosh(Mw)]
Fy=—|-p+ ,
' 2 i P Asinh(\/p2—4qrw)+B
re 1 >_p ) N 4511’[\/32 - A? +Asinh(\/p2 —4qrw)] E_aso
2q i A cosh ( \p? - 4qra)) + B
2r cosh (_,;;22—4qrw)
Fe¢ =

\P? — 4grsinh ( ,p22—4qrw) — pcosh ( @w)
2rsinh (—W’“qw)

2
F7:

\p? —4qr cosh( ,p22—4qrw) — psinh (#w)

where A, B are arbitrary constants.
(b) When p? — 4gr < 0 and pq # 0 (qr # 0),

1 Jdar — p?
Fg = o V4qr — p? tan [#wﬂ,
q
1 Vagr— 2
Fq = o L Vaqr - p? cot[#w] ,
q

Fy = %} [—p + W[tan(mw) + sec( 4gr — pzw)”,

[ 4qr — p*| VA2 —B2 - A aqr — p?
Fllzi—p+\/qr P[ COS( ” pw)],Az—B2>0,
29 | Asin(\/4qr—p2w)+B
Fo 1 —_p_ \/4qr—p2[\/A2 - B2 —Asin(\/4qr—p2w)] s
2q | Acos(\/4qr—p2w)+B
—2rcos(—‘4qzr_p2w)
Fi3 =

\4ar—p? 2 ’
Végr — p?sin (#w) + pcos (#w)

AIMS Mathematics Volume 6, Issue 2, 1087-1100.
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. 4qr—p2
2rsin ( w

r—2 . r—2 ’
\/4qr—p2c0s( ‘4q2 pw)—psm( '42 pa))

where A, B are arbitrary constants.
(c) When r = 0 and pg # 0,

Fiy =

pC
Fis =— - ,
g [cosh (pw) — sinh (pw) + C]
P p [sinh (pw) + cosh (pw)]
16 =

g [sinh (pw) + cosh (pw) + C]’

where C is an arbitrary constant.
(d) Whenp=r=0and g # 0,
1

Fiy;=—- ,
v qw + C

where C is an arbitrary constant.

Substituting (4.3) into (4.1) and (3.1), then we can obtain the following different exact solutions of
system (1.3):

(al) If A = p?> —4qr > 0 and pg # 0 (gr # 0), then the solutions of system (1.3) with @ = 2 can be

derived as
Fy(f) + Cy  2kby VA VA
= + tanh wl,
C3 46]2 2

ul(x, t)

4.4
(x,0) boA tanh? \/Zw o
X, = - A s
o1 e 2
F
where w = x — f 2(l‘)a’t.
G
F+C b
If we take F(r) = %, VA = 2¢i(c; > 0),b = 4—22, then the above solution can be expressed
3 q
as a simple form as
ui(x, 1) = F(f) £ 2 V2«bc, tanh (¢ w), 45)
pi1(x, 1) = 4bc? tanh® (c ), '
where w = x — f F(t)dt, and ¢, (> 0), b, k are constants.
Similarly, we can derive the other solutions of system (1.3) as
ur(x, 1) = F(£) £ 2 V2«bc, coth (ciw), “46)
p2(x, 1) = 4bc? coth’ (ciw) . '
us(x, 1) = F(t) + 2 V2kbe [tanh (2¢;0) + isech (2¢;0)], @
p3(x, 1) = 4bc? [tanh (2c,w) + isech (2c;w)]* . '
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VA? + B2 — A cosh (2c w)

1) = F(1) 2 V2kb i ’
uy(x, 1) (1) + Vaube, Asinh 2c,w) + B

vV 4.8
(x,1) = 4bc? A% + B> — A cosh 2¢,w) ’ (4.8)
Pl D) = o T G Caa) + B |
where A, B are arbitrary constants.
VB% — A2 + Asinh (2
us(x, 1) = F(2) £ 2 V2«bc, sinh (2c1w)
A cosh (2C1(4))2 + B “9)
(x,t) = 4bct B> — A? + Asinh 2c,0) :
P U= Acosh(2c,w) + B ’
where B> — A% > 0.
s, 1) = F(1) % 2 Vabe, | LM C10) = 2ci cosh (@)
2c; sinh (c;w) — pcosh (ciw)
i 2 (4.10)
(x t) — 4bC2 pSIHh (C](L)) - 2C1 cosh (Cla))
pos ' 2¢; sinh (cjw) - pcosh(ciw) |
h — 2¢) sinh
(. 1) = F(1) + 2 Vxbe, | LOSC1w) = 2¢1 sinh (cw) |
2¢y cosh (cjw) — psinh (cjw)
i 2 4.11)
(x.1) = 4bc? pcosh (cjw) — 2¢; sinh (cjw)
T ' 2¢; cosh (c;w) — psinh (ciw) |

)+ C
(a2) When A = p? —4qr < 0 and pg # 0 (gr # 0), if we denote F(t) = %, V=A =2c¢(c; >
3

b
0),b = 4—22, then the solutions of system (1.3) with @ = 2 can be derived as
q

ug(x,t) = F(t) £2 \/ﬂbcl tan (cyw), 4.12)
ps(x, 1) = 4bc? tan®(ciw). '
uo(x, 1) = F(f) = 2 V2kbc; cot (ciw), “.13)
po(x, 1) = 4bc? cot? (¢ w) . '
uo(x, 1) = F(t) + 2 V2kbc, [tan 2ciw) + isech 2ciw)], @14
pio(x, ) = 4bc? [tan (2c;w) + isech 2c w)]* . '

VA2 — B2 — A cos (2c,w)
,1) = F(t) £2V2«b -
uyi(x, 1) (1) + 2 V2«be, Asin (2ciw) + B

4.15
VA2 — B2 — Acos 2cw) ? (4.15)
Asin(2ciw) + B ’

9

p11(x, 1) = 4bci

where A, B are arbitrary constants and A2 — B > 0.
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VAZ — B? — Asin (2¢,w)
1) = F(t) + 2V2«b
a(%,1) = F(2) O A cos 2ciw) + B

4.16
VAT B - Asin Qciw) || (4.16)
Acos (2ciw) + B

b

p(x, 1) = 4bcf

b

where A2 — B2 > 0.

i -2
wis(ot) = F(f) + 2 Varbe, | PSIR(19) = 2¢1 cos ()|
2c¢; sin(ciw) + pcos (ciw) @.17)
. 2 .
(n.1) = 4bc? p sin (ciw) — 2c¢; cos (c1w)
P35 ' 2¢; sin (cjw) + pcos (ciw) |
+ 2c; si
w1 = F(f) + 2 \rbe, | LE08(1@) + 2cisin(0) |
2c¢;1 cos (ciw) — psin(ciw)
) 2 (4.18)
(0.1) = dbe? pcos (ciw) + 2cy sin (c;w)
pratts " 2¢; cos (ciw) — psin (ciw) |

F0+Cy, _ b

(a3) When r = 0 and pg # 0, if we denote F(t) = — b= 17 then the solutions of system
3 q
(1.3) with @ = 2 can be derived as
— 2C
s(x, 1) @) . p( cosh (pw) — sinh (pw) + C)
2C 2 (4.19)
7t = b 2 1 - . s
P15060) P ( cosh (pw) — sinh (pw) + C)
where w = x — f F(t)dt, F(t) is an arbitrary function and b, C are constants.
2C
,1) = F(t) £ V2«kbp |1 — — ,
(%, 1) = F(1) £ N2k p( sinh (pw) + cosh (pw) + C)
2C 2 (4.20)
1) =bp*|1 - :
pio(x.0) = bp ( sinh (pw) + cosh (pw) + c)
F,+C b
(a4) When p = r = 0 and g # O, if we denote F(¢) = %,b = 4—22 then the solution of
3 q
system (1.3) with @ = 2 can be derived as
up7(x, 1) = F(t) £ 2 V2kb R
w+C
1\ (4.21)
,Hh=4b|——| ,
p17(x, 1) (a) n C)

where w = x — f F(t)dt, F(t) is an arbitrary function and b, C are constants.

In order to show the properties of the above solutions visually, we plot the 2D-graphs of some
typical solutions. Some wave figures are given as follows (Figures 1-5):
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For the solution (4.5), if we take the integration constant as 0 in w = x — f F(t)dt, then we plot the
solution for the plus sign in u; as

0.4
0.4
0.31
0.31
0.2
0.17
0.2
0—
_0.1.
0.14
-0.29
-0.3
7 7 T T 0% T T T
-20 -10 0 10 20 -5 0 5 10
X X
(a) a=2,1t=0.2 (b) @=2,t=0.2

Figure 1. (a) 2D figure of solution u#; with F = 0.05,x = 2,b = 0.1,¢; = 1, (b) 2D figure of
solution p; with F = 0.05,xk=2,b=0.1,c; = 1.

For the solution (4.6), if we take the integration constant as 0 in w = x — f F(t)dt, then we plot the
solution for the plus sign in u, as

-2 0
-10 0 10 20 -5 0 5 10
(a) a=2,1t=0.5 (b) @=2,t=0.5

Figure 2. (a) 2D figure of solution u, with F = 0.05,x = 2,b = 0.1,¢; = 1, (b) 2D figure of
solution p, with F = 0.05,xk =2,b =0.1,c; = 1.

For the solution (4.8), if we take the integration constant as 0 in w = x — f F(t)dt, then we plot the

AIMS Mathematics Volume 6, Issue 2, 1087-1100.
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solution for the plus sign in uy as

0.4
0.4+
0.3
0.3
0.2
0.1
0.2
0—
-0.11
0.14
_0.2-
-0.31
¢ T T 7 0 T T T
-10 -5 0 5 10 -5 0 5 10
X X
(a) @=2,t=0.2 (b) @=2,t=0.2

Figure 3. (a) 2D figure of solution uy with F = 0.05,k =2,b=0.1,¢; =1,A=2,B =2, (b)
2D figure of solution py with F = 0.05,k =2,b=0.1,c; =1,A=2,B =2.

For the solution (4.10), if we take the integration constant as O in w = x — f F(t)dt, then we plot the
solution for the plus sign in ug as

31 6
5-
2
4
1H
3-
0 24
1
-1
T T T 0 T T T
-10 -5 0 5 10 -5 0 5 10
x x
(a) @=2,1t=0.2 (b) a=2,t=0.2

Figure 4. (a) 2D figure of solution ug with F = 1,k =2,b =0.1,¢; = 1, p = 1, (b) 2D figure
of solution pg with F = 1,k =2,b=0.1,c; = 1,p = 1.

For the solution (4.17), if we take the integration constant as 0 in w = x — f F(t)dt, then we plot the
solution for the plus sign in u;3 as

AIMS Mathematics Volume 6, Issue 2, 1087-1100.
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-10 5 0 5 10 5 0 5 10

(a) @=2,1=0.02 (b) @=2,t=0.02

Figure 5. (a) 2D figure of solution u3 with F = 0.02,x = 2,b = 0.1,¢; = 1,p = 1, (b) 2D
figure of solution p;3 with F = 0.02,k =2,b=0.1,¢c; =1,p = 1.

Remark 1 If we take F(¢) as a constant, then all of the above solutions of system (1.3) are traveling
wave solutions.

Remark 2 For the reduced equations (3.4) and (3.6), there exist a power series solutions [18, 19]. We
omit the details here for brevity.

5. Conservation law

In this section, we use the direct multiplier method [20] to derive a conservation law for system
(1.3). The zero-order multipliers A(t, x, u, p), Ax(t, x, u, p) for the system (1.3) are determined by

0

6_ [Al(uxxl + Ullyxy + (1 - a)uxuxx - Kppx) + AZ(pt + Upyx — mep)] =0

3 (5.1)
_ [Al(uxxt + Ul yyy + (1 - a’)uxuxx - Kppx) + AZ(pt + Upy — auxp)] = O,

op
where %, % are Euler-Lagrange operators defined by
6 0 0 0 0 0
— =—-D,— +D? - D,D? -D} ,
ou Ou Oou, Oy Oy Oy (5.2)
6 0 D 0 0 '

5o dp 'dp ap.

Expanding (5.1) and splitting with respect to derivative of u, p, we obtain the following determining
equations
A, =0, Alp =0, Aix =0, Ay, =0, Ay =0, Ay, =0,

(5.3)
apAo, + ulo, + (1 +a)Ar = 0.

AIMS Mathematics Volume 6, Issue 2, 1087-1100.



1099

Then we obtain the solution
Ai(t,x,u,p) = H(t), Ay(t,x,u,p) = Ap~ @, (5.4)

where A is an arbitrary constant, H(¢) is an arbitrary functions with respect to ¢. From the solution
I+a

(5.4), we can see that system (1.3) has one zero-order multiplier in the form of Ay = H(t), A, = p~ = .
So a conservation law of system (1.3) is

D, (-ap+) + D, (H(t)uxt + H(Ouuy, — %H(r)uﬁ - gH(t)p2 - aup-é) 0. (5.5)
6. Conclusions

In this paper, a generalized 2-HS system is investigated by using the classical Lie group method.
First, Lie symmetry analysis was performed for the generalized 2-HS system, and its infinitesimal
generator, geometric vector fields and commutation table of Lie algebra were obtained. Then, all of
the similarity variables and its symmetry reductions of this equation are obtained. And by solving the
reduced equations, some new exact solutions including traveling wave solutions of this generalized
2-HS system are constructed successfully. These are new solutions for the generalized 2-HS system.
Finally, a conservation law of the generalized 2-HS system are shown by using the multiplier method.
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