Mathematics

Research article

Classification of nonnegative solutions to fractional Schrödinger-Hatree-Maxwell type system

Yaqiong Liu, Yunting Li, Qiuping Liao and Yunhui $\mathbf{Y i}^{*}$

School of Mathematics and Computer Science, Jiangxi Science and Technology Normal University, Nanchang 330038, China

* Correspondence: Email: yiyunhui1123@126.com; Tel: +13870934507;

Fax: +(0791)83831312.

Abstract

In this paper, we are concerned with the fractional Schrödinger-Hatree-Maxwell type system. We derive the forms of the nonnegative solution and classify nonlinearities by appling a variant (for nonlocal nonlinearity) of the direct moving spheres method for fractional Laplacians. The main ingredients are the variants (for nonlocal nonlinearity) of the maximum principles, i.e., narrow region principle (Theorem 2.3).

Keywords: fractional Laplacians; nonnegative solutions; nonlocal nonlinearities; direct method of moving spheres
Mathematics Subject Classification: 35B08, 35B50, 35J61, 35R11

1. Introduction

In this paper, we consider the following fractional Schrödinger-Hatree-Maxwell type system

$$
\begin{cases}(-\Delta)^{\frac{\alpha}{2}} u(x)=\left(\frac{1}{1 \cdot \sigma^{1}} * f_{1}(v(x))\right) f_{2}(v(x)), & x \in \mathbb{R}^{n}, \tag{1.1}\\ (-\Delta)^{\frac{\alpha}{2}} v(x)=\left(\frac{1}{1 \cdot \sigma^{2}} * g_{1}(u(x))\right) g_{2}(u(x)), & x \in \mathbb{R}^{n}, \\ u(x) \geq 0, v(x) \geq 0, \quad x \in \mathbb{R}^{n}, & \end{cases}
$$

where $0<\alpha \leq 2, n \geq 2,0<\sigma_{1}, \sigma_{2}<n, f_{i}, g_{i}(i=1,2)$ are strictly increasing on $[0,+\infty)$, and $f_{i}(t) \cdot t^{-p_{i}}$, $g_{i}(t) \cdot t^{-q_{i}}(i=1,2)$ are nonincreasing on $(0,+\infty)$.

We assume $u, v \in C_{\text {loc }}^{1,1} \cap \mathcal{L}_{\alpha}\left(\mathbb{R}^{n}\right)$ if $0<\alpha<2$, and $u, v \in C^{2}\left(\mathbb{R}^{n}\right)$ if $\alpha=2$, where

$$
\begin{equation*}
\mathcal{L}_{\alpha}\left(\mathbb{R}^{n}\right):=\left\{u: \mathbb{R}^{n} \rightarrow \mathbb{R} \left\lvert\, \int_{\mathbb{R}^{n}} \frac{|u(y)|}{1+|y|^{n+\alpha}} d y<\infty\right.\right\} . \tag{1.2}
\end{equation*}
$$

The nonlocal fractional Laplacians $(-\Delta)^{\frac{\alpha}{2}}$ with $0<\alpha<2$ are defined by [10, 16, 20, 51,54]

$$
\begin{equation*}
(-\Delta)^{\frac{\alpha}{2}} u(x)=C_{\alpha, n} P . V . \int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+\alpha}} d y:=C_{\alpha, n} \lim _{\epsilon \rightarrow 0} \int_{|y-x| \geq \epsilon} \frac{u(x)-u(y)}{|x-y|^{n+\alpha}} d y \tag{1.3}
\end{equation*}
$$

for functions $u, v \in C_{l o c}^{1,1} \cap \mathcal{L}_{\alpha}\left(\mathbb{R}^{n}\right)$, where $C_{\alpha, n}=\left(\int_{\mathbb{R}^{n}} \frac{1-\cos \left(2 \pi \zeta_{\zeta}\right)}{\mid \xi \zeta^{n+\alpha}} d \zeta\right)^{-1}$ is the normalization constant. The fractional Laplacians $(-\Delta)^{\frac{\alpha}{2}}$ can also be defined equivalently [17] by Caffarelli and Silvestre's extension method [6] for $u, v \in C_{\text {loc }}^{1,1} \cap \mathcal{L}_{\alpha}\left(\mathbb{R}^{n}\right)$.

We should mention that the fractional Laplacian is different from the fractional differentiation. Both are defined through a singular convolution integral, but the former is guaranteed to be the positive definition via the Riesz potential as the standard Laplace operator, while the latter via the RiemannLiouville integral is not. It is noted that the fractional Laplacian can not be interpreted by the fractional differentiation in the sense of either Riemann-Liouville or Caputo. Both the fractional Laplacian and the fractional differentiation have found applications in many complicated engineering problems. In particular, the fractional Laplacian attracts new attentions in recent years owing to its unique capability describing anomalous diffusion problems [34].

The fractional Laplacian can be regarded as an infinitesimal generator of a stable Lévy process, which has many applications in probability, optimization and finance [1,4]. It is also widely used to simulate various physical phenomena, such as anomalous diffusion and quasi-geostrophic flows, turbulence and water waves, molecular dynamics and relativistic quantum mechanics of stars (see $[2,22,23,36]$ and the references therein). But, it is difficult to study the fractional Laplacians because of its non-local feature. In order to overcome this difficulty, Chen, Li and Ou [18] put forward the method of moving planes in integral forms. Subsequently, Caffarelli and Silvestre [6] introduced an extension method to conquer this difficulty, which transformed this nonlocal problem into a local one in higher dimensions. This extension method provides a powerful tool and leads to a very active study in equations containing the fractional Laplacians, and obtains a series of fruitful results (see [3,21] and the references therein).

Chen, Li and Li developed a direct method of moving planes for the fractional Laplacians in [16,25]. Rather than use the extension method of Caffarelli and Silvestre [6], they worked directly on the nonlocal operator to establish strong maximum principles for anti-symmetric functions and narrow region principles, and then for nonnegative solutions they obtained classification and Liouville type results. The direct method of moving planes introduced in [16] has been used to study more general nonlocal operators with general nonlinearities [15,25]. In the early 1950s, the method of moving planes was originally invented by Alexanderoff. Later, it was further developed by Serrin [51], Gidas, Ni and Nirenberg [33], Caffarelli, Gidas and Spruck [5], Chen and Li [11], Li and Zhu [40], Lin [43], Chen, Li and Ou [18], Chen, Li and Li [16], and so on. For more literatures on the classification of solutions and Liouville type theorems for various PDE and IE problems through the methods of moving planes or spheres, please refer to $[7,9,10,14,20,24,27,29,30,44-47,52]$ and the references therein.

In [20], Chen, Li and Zhang introduced another direct method--the method of moving spheres on the fractional Laplacians, which is more convenient than the method of moving planes. The method of moving spheres was initially used by Padilla [49], Chen and Li [12] and Li and Zhu [40]. It can be applied to obtain the explicit form of solutions directly instead of deriving radial symmetry of solutions and then classifying radial solutions.

There are many literatures on the qualitative properties of solutions to Hartree and Choquard
equations of fractional or higher order, please see e.g., Cao and Dai [7], Chen and Li [13], Dai, Fang, et al., [24], Dai and Qin [29], Dai and Liu [26], Lei [38], Liu [44], Le [37], Ma and Zhao [48], Xu and Lei [53] and the references therein.

System (1.1) is closely related to the following integral system

$$
\left\{\begin{array}{l}
u(y)=\int_{\mathbb{R}^{n}} \frac{R_{\alpha, n}}{|y-z|^{n-\alpha}}\left(\int_{\mathbb{R}^{n}} \frac{f_{1}(v(\xi))}{\left.|z-\xi|\right|^{\sigma_{1}}} d \xi\right) f_{2}(v(z)) d z \tag{1.4}\\
v(y)=\int_{\mathbb{R}^{n}} \frac{R_{\alpha, n}}{|y-z|^{n-\alpha}}\left(\int_{\mathbb{R}^{n}} \frac{g_{1}(u(\zeta))}{|z-\zeta|^{\sigma^{2}}} d \zeta\right) g_{2}(u(z)) d z
\end{array}\right.
$$

where the Riesz potential's constants $R_{\alpha, n}:=\frac{\Gamma\left(\frac{n-\alpha}{2}\right)}{\pi^{\frac{n}{2}} 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)}$ [50].
In the special case $f_{i}(t)=t^{p_{i}}, g_{i}(t)=t^{q_{i}}(i=1,2)$, system (1.4) turns into the following Schrödinger-Hatree-Maxwell type system

$$
\left\{\begin{array}{l}
u(y)=\int_{\mathbb{R}^{n}} \frac{R_{\alpha, n}}{|y-z-|^{n-\alpha}}\left(\int_{\mathbb{R}^{n}} \frac{v^{p_{1}}(x)}{|z-\xi|^{\sigma_{1}}} d \xi\right) v^{p_{2}}(x) d z, \tag{1.5}\\
v(y)=\int_{\mathbb{R}^{n}} \frac{R_{\alpha, n}}{|y-z|^{n-\alpha}}\left(\int_{\mathbb{R}^{n}} \frac{v^{q_{1}}(x)}{|z-\zeta|^{\sigma_{2}}} d \zeta\right) u^{q_{2}}(x) d z .
\end{array}\right.
$$

When $p_{1}=q_{1}=2$ and $p_{2}=q_{2}=1$, PDEs of type (1.1) arise in the Hartree-Fock theory of the nonlinear Schrödinger equations [41]. When $f_{1}(v(x))=v^{2}(x), f_{2}(v(x))=v(x), g_{1}(u(x))=u^{2}(x)$, $g_{2}(u(x))=u(x)$, and $\sigma_{1}=\sigma_{2}=2 \alpha$, the solution (u, v) to problem (1.1) is also a ground state or a stationary solution to the following $\dot{H}^{\frac{\alpha}{2}}$-critical focusing dynamic Schrödinger-Hartree system

$$
\begin{cases}i \partial_{t} u+(-\Delta)^{\frac{\alpha}{2}} u=\left(\frac{1}{\mid x x^{2 \alpha}} *|v|^{2}\right) v, & (t, x) \in \mathbb{R} \times \mathbb{R}^{n}, \tag{1.6}\\ i \partial_{t} v+(-\Delta)^{\frac{\alpha}{2}} v=\left(\frac{1}{|x|^{2 \alpha}} *|u|^{2}\right) u, & (t, x) \in \mathbb{R} \times \mathbb{R}^{n}\end{cases}
$$

In the special case $\alpha=2$, the above Schrödinger-Hartree equations have many interesting applications in the quantum theory of large systems of non-relativistic bosonic atoms and molecules [32].

When $\sigma_{1}, \sigma_{2}=2 \alpha, \alpha \in\left(0, \frac{n}{2}\right), p_{1}=q_{1}=2, p_{2}=q_{2}=1$, Dai, Fang, et al., [24] classified all the positive $H^{\frac{\alpha}{2}}\left(\mathbb{R}^{n}\right)$ weak solutions to (1.5) by using the method of moving planes in integral forms for the equivalent integral equation system (1.4) due to $\mathrm{Chen}, \mathrm{Li}$ and $\mathrm{Ou}[18,19]$. They also classified all the $L^{\frac{2 n}{n-\alpha}}\left(\mathbb{R}^{n}\right)$ integrable solutions to the equivalent integral equations. For $0<\alpha<\min \left\{2, \frac{n}{2}\right\}$, Dai, Fang and Qin [25] classified all the $C_{l o c}^{1,1} \cap \mathcal{L}_{\alpha}$ solutions to (1.5) with $\sigma_{1}, \sigma_{2}=2 \alpha, p_{1}=q_{1}=2, p_{2}=q_{2}=1$ by applying a variant (for nonlocal nonlinearity) of the direct method of moving planes for fractional Laplacians. The qualitative properties of solutions to general fractional order or higher order elliptic equations have also been extensively studied, for instance, see Chen, Fang and Yang [10], Chen, Li and Li [16], Chen, Li and Ou [18], Caffarelli and Silvestre [6], Chang and Yang [9], Dai and Qin [29], Cao, Dai and Qin [8], Dai, Liu and Qin [28], Fang and Chen [30], Lin [43], Wei and Xu [52] and the references therein.

Our main theorem is the following classification theorem for PDEs system (1.1).
Theorem 1.1. Let $(u, v) \in C^{0}\left(\mathbb{R}^{n}\right) \times C^{0}\left(\mathbb{R}^{n}\right)$ be a pair of nonnegative solution to the problem (1.4). Assume that $f_{1}, f_{2}, g_{1}, g_{2}:[0,+\infty) \rightarrow \mathbb{R}_{+}$satisfy the following conditions:
(i) $f_{1}(t), f_{2}(t), g_{1}(t)$ and $g_{2}(t)$ are strictly increasing on $[0,+\infty)$;
(ii) $F_{1}(t)=f_{1}(t) \cdot t^{-p_{1}}, F_{2}(t)=f_{2}(t) \cdot t^{-p_{2}}, G_{1}(t)=g_{1}(t) \cdot t^{-q_{1}}$ and $G_{2}(t)=g_{2}(t) \cdot t^{-q_{2}}\left(p_{1}=\frac{2 n-\sigma_{1}}{n-\alpha}\right.$, $\left.p_{2}=\frac{n+\alpha-\sigma_{1}}{n-\alpha}, q_{1}=\frac{2 n-\sigma_{2}}{n-\alpha}, q_{2}=\frac{n+\alpha-\sigma_{2}}{n-\alpha}\right)$ are nonincreasing on $(0,+\infty)$.

Then for some $z_{0} \in \mathbb{R}^{n}$, for any $y \in \mathbb{R}^{n}, u$, v must take the following form as

$$
u(y)=\frac{c_{1}}{\left(d^{2}+\left|y-z_{0}\right|^{\frac{n-\alpha}{2}}\right.}, \quad v(y)=\frac{c_{2}}{\left(d^{2}+\left|y-z_{0}\right|^{2}\right)^{\frac{n-\alpha}{2}}},
$$

for some $c_{1}>0, c_{2}>0$ and $d>0$.
Furthermore, $f_{1}(t), f_{2}(t), g_{1}(t)$ and $g_{2}(t)$ must be the form of

$$
\begin{aligned}
& f_{1}(t)=C_{1} t^{p_{1}}, f_{2}(t)=C_{2} t^{p_{2}}, t \in\left(0, \max _{x \in \mathbb{R}^{n}} v(x)\right], \\
& g_{1}(t)=C_{3} t^{q_{1}}, g_{2}(t)=C_{4} t^{q_{2}}, t \in\left(0, \max _{x \in \mathbb{R}^{n}} u(x)\right],
\end{aligned}
$$

where C_{1}, C_{2}, C_{3} and C_{4} are some positive constants.
Remark 1.2. In the conformal invariant case ($p_{1}=\frac{2 n-\sigma_{1}}{n-\alpha}, p_{2}=\frac{n+\alpha-\sigma_{1}}{n-\alpha}, q_{1}=\frac{2 n-\sigma_{2}}{n-\alpha}, q_{2}=\frac{n+\alpha-\sigma_{2}}{n-\alpha}$), and $u=$ $v, \sigma_{1}=\sigma_{2}$, the classification of nonnegative solutions to system (1.1) would provide the best constants and extremal functions for the corresponding Hardy-Littlewood-Sobolev inequality [28, 31, 42].

In the following, we introduce some notation, we define the Kelvin transforms. Take arbitrary $x \in \mathbb{R}^{n}$ and $\lambda>0$,

$$
\begin{aligned}
& u_{x, \lambda}(y):=\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha} u\left(y^{x, \lambda}\right), \quad \forall y \in \mathbb{R}^{n} \backslash\{x\}, \\
& v_{x, \lambda}(y):=\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha} v\left(y^{x, \lambda}\right), \quad \forall y \in \mathbb{R}^{n} \backslash\{x\},
\end{aligned}
$$

where

$$
y^{x, \lambda}=\frac{\lambda^{2}(y-x)}{|y-x|^{2}}+x
$$

For any $\lambda>0$, we denote

$$
B_{\lambda}(x):=\left\{y \in \mathbb{R}^{n}| | y-x \mid<\lambda\right\},
$$

and $U_{x, \lambda}(y)=u_{x, \lambda}(y)-u(y), V_{x, \lambda}(y)=v_{x, \lambda}(y)-v(y)$ for any $y \in B_{\lambda}(x) \backslash\{x\}$.
The rest of our paper is organized as follows. In Section 2, we carry out our proof of Theorem 1.1. In order to prove Theorem 1.1, we divide the proof into two parts. In the first part, we will apply a variant (for nonlocal nonlinearity) of the direct method of moving spheres for fractional Laplacians developed by Chen, Li and Zhang [20] and Dai and Liu [26] to derive the forms for nonnegative solution (u, v). In the second part, we classify nonlinearities f_{1}, f_{2}, g_{1} and g_{2} due to Hu and Liu [35].

In the following, we will use C to denote general positive constants that may depend on n, α, p_{1}, $p_{2}, q_{1}, q_{2}, \sigma_{1}, \sigma_{2}, u$ and v, and whose values may differ from line to line.

2. Preparation of Theorem 1.1

In this section, we will use a direct method of moving spheres for nonlocal nonlinearity with the help of narrow region principle to classify the nonnegative solutions of PDEs system (1.1).

2.1. The direct method of moving spheres for nonlocal nonlinearity

Assume that, $n \geq 2,0<\sigma_{1}, \sigma_{2}<n, 0<\alpha \leq 2, f_{1}, f_{2}, g_{1}$ and g_{2} are strictly increasing on $[0,+\infty)$, furthermore, $F_{1}(t)=f_{1}(t) \cdot t^{-p_{1}}, F_{2}(t)=f_{2}(t) \cdot t^{-p_{2}}, G_{1}(t)=g_{1}(t) \cdot t^{-q_{1}}$ and $G_{2}(t)=g_{2}(t) \cdot t^{-q_{2}}$ are nonincreasing on $(0,+\infty) £$ with $p_{1}=\frac{2 n-\sigma_{1}}{n-\alpha}, p_{2}=\frac{n+\alpha-\sigma_{1}}{n-\alpha}, q_{1}=\frac{2 n-\sigma_{2}}{n-\alpha}$ and $q_{2}=\frac{n+\alpha-\sigma_{2}}{n-\alpha}$. Suppose (u, v) is a pair of nonnegative classical solution of (1.1) which is not identically zero. Then we can derive that $u, v>0$ in \mathbb{R}^{n} and $\int_{\mathbb{R}^{n}} \frac{f_{1}(v(x))}{|x|^{\sigma} \mid} d x<+\infty, \int_{\mathbb{R}^{n}} \frac{g_{1}(u(x))}{\left|x x^{\sigma}\right|} d x<+\infty$. Thus we assume (u, v) is actually a positive solution from now on. For convenience, we define the following conformal transforms. Take arbitrary $x \in \mathbb{R}^{n}$ and $\lambda>0$,

$$
\begin{aligned}
& u_{x, \lambda}(y):=\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha} u\left(y^{x, \lambda}\right), \quad \forall y \in \mathbb{R}^{n} \backslash\{x\}, \\
& v_{x, \lambda}(y):=\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha} v\left(y^{x, \lambda}\right), \quad \forall y \in \mathbb{R}^{n} \backslash\{x\},
\end{aligned}
$$

where

$$
y^{x, \lambda}=\frac{\lambda^{2}(y-x)}{|y-x|^{2}}+x
$$

Then, because (u, v) is a pair of positive classical solution of (1.1), we are able to verify that $u_{x, \lambda}, v_{x, \lambda} \in \mathcal{L}_{\alpha}\left(\mathbb{R}^{n}\right) \cap C_{\text {loc }}^{1,1}\left(\mathbb{R}^{n} \backslash\{x\}\right)$ if $0<\alpha<2\left(u_{x, \lambda}, v_{x, \lambda} \in C^{2}\left(\mathbb{R}^{n} \backslash\{x\}\right)\right.$ if $\left.\alpha=2\right)$ and satisfies the integral property

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \frac{f_{1}\left(v_{x, \lambda}(y)\right)}{\lambda^{\sigma_{1}}} d y=\int_{\mathbb{R}^{n}} \frac{f_{1}(v(x))}{|x|^{\sigma_{1}}} d x<+\infty, \\
& \int_{\mathbb{R}^{n}} \frac{g_{1}\left(u_{x, \lambda}(y)\right)}{\lambda^{\sigma_{2}}} d y=\int_{\mathbb{R}^{n}} \frac{g_{1}(u(x))}{|x|^{\sigma_{2}}} d x<+\infty,
\end{aligned}
$$

and a similar equation as u, v for any $x \in \mathbb{R}^{n}$ and $\lambda>0$. Actually, without loss of generality, we may assume $x=0$ for simplicity and get, for $0<\alpha<2$ ($\alpha=2$ is similar),

$$
\begin{aligned}
(-\Delta)^{\frac{\alpha}{2}} u_{0, \lambda}(y) & =C_{\alpha, n} P \cdot V \cdot \int_{\mathbb{R}^{n}} \frac{\left(\left(\frac{\lambda}{|y|}\right)^{n-\alpha}-\left(\frac{\lambda}{|z|}\right)^{n-\alpha}\right) u\left(\frac{\lambda^{2} y}{\left.|y|\right|^{2}}\right)+\left(\frac{\lambda}{\mid z}\right)^{n-\alpha}\left(u\left(\frac{\lambda^{2} y}{|y|^{2}}\right)-u\left(\frac{\lambda^{2} z}{|z|^{2}}\right)\right)}{|y-z|^{n+\alpha}} d z \\
& =u\left(\frac{\lambda^{2} y}{|y|^{2}}\right)(-\Delta)^{\frac{\alpha}{2}}\left[\left(\frac{\lambda}{|y|}\right)^{n-\alpha}\right]+C_{\alpha, n} P \cdot V \cdot \int_{\mathbb{R}^{n}} \frac{u\left(\frac{\lambda^{2} y}{|y|^{2}}\right)-u(z)}{\left|y-\frac{\lambda^{2} z}{|z|^{2}}\right|^{n+\alpha}} \cdot \frac{\lambda^{n+\alpha}}{|z|^{n+\alpha}} d z \\
& =\frac{\lambda^{n+\alpha}}{|y|^{n+\alpha}}(-\Delta)^{\frac{\alpha}{2}} u\left(\frac{\lambda^{2} y}{|y|^{2}}\right) \\
& =\frac{\lambda^{n+\alpha}}{\mid y y^{n+\alpha}} \int_{\mathbb{R}^{n}} \frac{f_{1}(v(z))}{\left|\frac{\lambda^{2} y}{|y|^{2}}-z\right|^{\sigma_{1}}} d z \cdot f_{2}\left(v\left(\frac{\lambda^{2} y}{|y|^{2}}\right)\right) \\
& =\frac{\lambda^{n+\alpha}}{|y|^{n+\alpha}} \int_{\mathbb{R}^{n} \mid} \frac{\lambda^{2 n}|z|^{-2 n}}{\left|\frac{\lambda^{2} y}{|y|^{2}}-\frac{\lambda^{2} z}{|z|^{2}}\right|^{\sigma_{1}}} f_{1}\left(v\left(\frac{\lambda^{2} z}{|z|^{2}}\right)\right) d z \cdot f_{2}\left(v\left(\frac{\lambda^{2} y}{|y|^{2}}\right)\right) \\
& =\int_{\mathbb{R}^{n}} \frac{v_{0, \lambda}^{p_{1}}(z)}{|y-z|^{\sigma_{1}}} F_{1}\left(v\left(z^{0, \lambda}\right)\right) d z \cdot v_{0, \lambda}^{p_{2}}(y) F_{2}\left(v\left(y^{0, \lambda}\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
(-\Delta)^{\frac{\alpha}{2}} v_{0, \lambda}(y) & =C_{\alpha, n} P \cdot V . \int_{\mathbb{R}^{n}} \frac{\left(\left(\frac{\lambda}{|y|}\right)^{n-\alpha}-\left(\frac{\lambda}{|z|}\right)^{n-\alpha}\right) v\left(\frac{\lambda^{2} y}{\left.| |\right|^{2}}\right)+\left(\frac{\lambda}{|z|}\right)^{n-\alpha}\left(v\left(\frac{\lambda^{2} y}{|y|^{2}}\right)-v\left(\frac{\lambda^{2} z}{|z|^{2}}\right)\right)}{|y-z|^{n+\alpha}} d z \\
& =v\left(\frac{\lambda^{2} y}{|y|^{2}}\right)(-\Delta)^{\frac{\alpha}{2}}\left[\left(\frac{\lambda}{|y|}\right)^{n-\alpha}\right]+C_{\alpha, n} P \cdot V \cdot \int_{\mathbb{R}^{n}} \frac{v\left(\frac{\lambda^{2} y}{|y|^{2}}\right)-v(z)}{\left|y-\frac{\lambda^{2} z}{|z|^{2}}\right|^{n+\alpha}} \cdot \frac{\lambda^{n+\alpha}}{|z|^{n+\alpha}} d z \\
& =\frac{\lambda^{n+\alpha}}{|y|^{n+\alpha}}(-\Delta)^{\frac{\alpha}{2}} v\left(\frac{\lambda^{2} y}{|y|^{2}}\right) \\
& =\frac{\lambda^{n+\alpha}}{|y|^{n+\alpha}} \int_{\mathbb{R}^{n}} \frac{g_{1}(u(z))}{\left|\frac{\lambda^{2} y}{|y|^{2}}-z\right|^{\sigma_{2}}} d z \cdot g_{2}\left(u\left(\frac{\lambda^{2} y}{|y|^{2}}\right)\right) \\
& =\frac{\lambda^{n+\alpha}}{|y|^{n+\alpha}} \int_{\mathbb{R}^{n}} \frac{\lambda^{2 n}|z|^{-2 n}}{\left\lvert\, \frac{\lambda^{2} y}{|y|^{2}}-\frac{\lambda^{2} z}{\left|\left.\right|^{2}\right|^{\sigma_{2}}}\right.} g_{1}\left(u\left(\frac{\lambda^{2} z}{|z|^{2}}\right)\right) d z \cdot g_{2}\left(u\left(\frac{\lambda^{2} y}{|y|^{2}}\right)\right) \\
& =\int_{\mathbb{R}^{n}} \frac{u_{0, \lambda}^{q_{1}}(z)}{|y-z|^{\sigma_{2}}} G_{1}\left(u\left(z^{0, \lambda}\right)\right) d z \cdot u_{0, \lambda}^{q_{2}}(y) G_{2}\left(u\left(y^{0, \lambda}\right)\right),
\end{aligned}
$$

this means, the conformal transforms $u_{x, \lambda}, v_{x, \lambda} \in \mathcal{L}_{\alpha}\left(\mathbb{R}^{n}\right) \cap C_{l o c}^{1,1}\left(\mathbb{R}^{n} \backslash\{x\}\right)$ if $0<\alpha<2\left(u_{x, \lambda}, v_{x, \lambda} \in\right.$ $C^{2}\left(\mathbb{R}^{n} \backslash\{x\}\right)$ if $\alpha=2$) satisfies

$$
\left\{\begin{array}{l}
(-\Delta)^{\frac{\alpha}{2}} u_{x, \lambda}(y)=\int_{\mathbb{R}^{n}} \frac{v_{x, \lambda}^{p_{1}}(z)}{\mid y q^{-}} z^{\sigma_{1}} \tag{2.1}\\
\sigma_{1}\left(v\left(z^{x, \lambda}\right)\right) d z \cdot v_{x, \lambda}^{p_{2}}(y) F_{2}\left(v\left(y^{x, \lambda}\right)\right), \\
(-\Delta)^{\frac{\alpha}{2}} v_{x, \lambda}(y)=\int_{\mathbb{R}^{n}} \frac{u_{x, \lambda}^{q_{1}}(z)}{|y-z|^{\sigma_{2}}} G_{1}\left(u\left(z^{x, \lambda}\right)\right) d z \cdot u_{x, \lambda}^{q_{2}}(y) G_{2}\left(u\left(y^{x, \lambda}\right)\right),
\end{array}\right.
$$

for every $y \in \mathbb{R}^{n} \backslash\{x\}$, where $p_{1}=\frac{2 n-\sigma_{1}}{n-\alpha}, p_{2}=\frac{n+\alpha-\sigma_{1}}{n-\alpha}, q_{1}=\frac{2 n-\sigma_{2}}{n-\alpha}$ and $q_{2}=\frac{n+\alpha-\sigma_{2}}{n-\alpha}$. For any $\lambda>0$, we denote

$$
B_{\lambda}(x):=\left\{y \in \mathbb{R}^{n}| | y-x \mid<\lambda\right\}
$$

and define

$$
\begin{array}{ll}
P(y):=\left(\frac{1}{|\cdot|^{\sigma_{1}}} * f_{1}\right)(y), & \widetilde{P}_{x, \lambda}(y):=\int_{B_{\lambda}(x)} \frac{v^{p_{1}-1}(z)}{|y-z|^{\sigma_{1}}} F_{1}(v(z)) d z, \\
Q(y):=\left(\frac{1}{|\cdot|^{\sigma_{2}}} * g_{1}\right)(y), & \widetilde{Q}_{x, \lambda}(y):=\int_{B_{\lambda}(x)} \frac{u^{q_{1}-1}(z)}{|y-z|^{\sigma_{2}}} G_{1}(u(z)) d z .
\end{array}
$$

Let $U_{x, \lambda}(y)=u_{x, \lambda}(y)-u(y), V_{x, \lambda}(y)=v_{x, \lambda}(y)-v(y)$ for any $y \in B_{\lambda}(x) \backslash\{x\}$. By the definitions of $u_{x, \lambda}$, $v_{x, \lambda}$ and $U_{x, \lambda}, V_{x, \lambda}$, we have

$$
\begin{align*}
U_{x, \lambda}(y) & =u_{x, \lambda}(y)-u(y)=\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha} u\left(y^{x, \lambda}\right)-u(y) \tag{2.2}\\
& =\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha}\left(u\left(y^{x, \lambda}\right)-\left(\frac{\lambda}{\left|y^{x, \lambda}-x\right|}\right)^{n-\alpha} u\left(\left(y^{x, \lambda}\right)^{x, \lambda}\right)\right) \\
& =-\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha} U_{x, \lambda}\left(y^{x, \lambda}\right)=-\left(U_{x, \lambda}\right)_{x, \lambda}(y),
\end{align*}
$$

$$
\begin{align*}
V_{x, \lambda}(y) & =v_{x, \lambda}(y)-v(y)=\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha} v\left(y^{x, \lambda}\right)-v(y) \tag{2.3}\\
& =\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha}\left(v\left(y^{x, \lambda}\right)-\left(\frac{\lambda}{\left|y^{x, \lambda}-x\right|}\right)^{n-\alpha} v\left(\left(y^{x, \lambda}\right)^{x, \lambda}\right)\right) \\
& =-\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha} V_{x, \lambda}\left(y^{x, \lambda}\right)=-\left(V_{x, \lambda}\right)_{x, \lambda}(y)
\end{align*}
$$

for every $y \in B_{\lambda}(x) \backslash\{x\}$.
We will first show that there exists a $\epsilon_{0}>0$ (depending on x) sufficiently small, such that, for any $0<\lambda \leq \epsilon_{0}$, it holds that $U_{x, \lambda}(y) \geq 0, V_{x, \lambda}(y) \geq 0$, for every $y \in B_{\lambda}(x) \backslash\{x\}$.

We first need to show that the nonnegative solution (u, v) to PDEs system (1.1) also satisfies the equivalent integral system (1.4).

Lemma 2.1. Suppose (u, v) is a nonnegative solution to (1.1), then (u, v) also satisfies the equivalent integral system (1.4), and vice versa.

The proof of Lemma 2.1 is similar to [25,26], so we omit the details here.
Based on Lemma 2.1, we can prove that $U_{x, \lambda}, V_{x, \lambda}$ has a strictly positive lower bound in a small neighborhood of x.

Lemma 2.2. For each fixed $x \in \mathbb{R}^{n}$, there exists a $\eta_{0}>0$ (depending on x) sufficiently small such that, if $0<\lambda \leq \eta_{0}$, then

$$
U_{x, \lambda}(y) \geq 1, V_{x, \lambda}(y) \geq 1, \quad y \in \overline{B_{\lambda^{2}}(x)} \backslash\{x\} .
$$

Proof. According to the idea of [20], we will prove Lemma 2.2 as follows. Define

$$
\begin{aligned}
& f(v(y)):=f_{2}(v(y)) \int_{\mathbb{R}^{n}} \frac{f_{1}(v(\xi))}{|y-\xi|^{\sigma_{1}}} d \xi, \\
& g(u(y)):=g_{2}(u(y)) \int_{\mathbb{R}^{n}} \frac{g_{1}(u(\zeta))}{|y-\zeta|^{\sigma_{2}}} d \zeta .
\end{aligned}
$$

For any $|y| \geq 1$, since (u, v) satisfy the integral system (1.4), $f_{i}, g_{i}(i=1,2)$ are positive on $[0,+\infty)$, so $f(v(z))$ and $g(u(z))$ have lower bounds on compact sets, we can derive that

$$
\begin{align*}
u(y) & =R_{\alpha, n} \int_{\mathbb{R}^{n}} \frac{f(v(z))}{|y-z|^{n-\alpha}} d z \\
& \geq R_{\alpha, n} \int_{B_{\frac{1}{2}}(0)} \frac{f(v(z))}{|y-z|^{n-\alpha}} d z \\
& \geq \frac{b_{1}}{|y|^{n-\alpha}} \int_{B_{\frac{1}{2}}(0)} f(v(z)) d z \tag{2.4}\\
& \geq \frac{\widetilde{b}_{1}}{|y|^{n-\alpha}},
\end{align*}
$$

$$
\begin{align*}
v(y) & =R_{\alpha, n} \int_{\mathbb{R}^{n}} \frac{g(u(z))}{|y-z|^{n-\alpha}} d z \\
& \geq R_{\alpha, n} \int_{B_{\frac{1}{2}}(0)} \frac{g(u(z))}{|y-z|^{n-\alpha}} d z \\
& \geq \frac{b_{2}}{|y|^{n-\alpha}} \int_{B_{\frac{1}{2}}(0)} g(u(z)) d z \tag{2.5}\\
& \geq \frac{\widetilde{b}_{2}}{|y|^{n-\alpha}},
\end{align*}
$$

where $\widetilde{b}_{1}:=b_{1} \cdot \int_{B_{\frac{1}{2}}(0)} f(v(z)) d z$ and $\widetilde{b}_{2}:=b_{2} \cdot \int_{B_{\frac{1}{2}}(0)} g(u(z)) d z$.
It follows immediately that

$$
\begin{aligned}
& u_{x, \lambda}(y)=\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha} u\left(y^{x, \lambda}\right) \geq\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha} \frac{\widetilde{b}_{1}}{\left|y^{x, \lambda \mid}\right|^{n-\alpha}}=\frac{\widetilde{b}_{1}}{\lambda^{n-\alpha}}, \\
& v_{x, \lambda}(y)=\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha} v\left(y^{x, \lambda}\right) \geq\left(\frac{\lambda}{|y-x|}\right)^{n-\alpha} \frac{\widetilde{b}_{2}}{\left|y^{x, \lambda}\right|^{n-\alpha}}=\frac{\widetilde{b}_{2}}{\lambda^{n-\alpha}},
\end{aligned}
$$

for all $y \in \overline{B_{\lambda^{2}}(x)} \backslash\{x\}$. Therefore, we have if $0<\lambda \leq \eta_{0}$ for some $\eta_{0}(x)>0$ small enough, then

$$
\begin{aligned}
& U_{x, \lambda}(y)=u_{x, \lambda}(y)-u(y) \geq \frac{\widetilde{b}_{1}}{\lambda^{n-\alpha}}-\max _{|y-x| \leq \lambda^{2}} u(y) \geq 1, \\
& V_{x, \lambda}(y)=v_{x, \lambda}(y)-v(y) \geq \frac{\widetilde{b}_{2}}{\lambda^{n-\alpha}}-\max _{|y-x| \leq \lambda^{2}} v(y) \geq 1,
\end{aligned}
$$

for any $y \in \overline{B_{\lambda^{2}}(x)} \backslash\{x\}$, this finishes the proof of Lemma 2.2.
For every fixed $x \in \mathbb{R}^{n}$, define

$$
B_{\lambda}^{-}=\left\{y \in B_{\lambda}(x) \backslash\{x\} \mid U_{x, \lambda}(y)<0, V_{x, \lambda}(y)<0\right\} .
$$

Now we need the main theorem, which is a variant (for nonlocal nonlinearity) of the Narrow region principle (Theorem 2.2 in [20]).

Theorem 2.3. (Narrow region principle) Assume $x \in \mathbb{R}^{n}$ is arbitrarily fixed. Let Ω be a narrow region in $B_{\lambda}(x) \backslash\{x\}$ with small thickness $0<l<\lambda$ such that $\Omega \subseteq A_{\lambda, l}(x):=\left\{y \in \mathbb{R}^{n}|\lambda-l<|y-x|<\lambda\}\right.$. Suppose $U_{x, \lambda}, V_{x, \lambda} \in \mathcal{L}_{\alpha}\left(\mathbb{R}^{n}\right) \cap C_{\text {loc }}^{1,1}(\Omega)$ if $0<\alpha<2\left(U_{x, \lambda}, V_{x, \lambda} \in C^{2}(\Omega)\right.$ if $\left.\alpha=2\right)$ and satisfies

$$
\left\{\begin{array}{l}
(-\Delta)^{\frac{\alpha}{2}} U_{x, \lambda}(y)-\mathcal{L}_{1}(y) V_{x, \lambda}(y)-p_{1}\left(\int_{B_{\lambda}^{-}} \frac{v_{1}^{p_{1}-1}(z) V_{, \lambda}(z)}{\left|y-|z| \tau^{\top}\right.} F_{1}(v(z)) d z\right) v^{p_{2}}(y) F_{2}(v(y)) \geq 0 \quad \text { in } \Omega \cap B_{\lambda}^{-}, \tag{2.6}\\
(-\Delta)^{\frac{\alpha}{2}} V_{x, \lambda}(y)-\mathcal{L}_{2}(y) U_{x, \lambda}(y)-q_{1}\left(\int_{B_{\lambda}^{-}} \frac{u^{q_{1}-1}(z) U_{x_{\lambda}(z)}}{|y-z|^{\sigma_{2}^{2}}} G_{1}(u(z)) d z\right) u^{q_{2}}(y) G_{2}(u(y)) \geq 0 \text { in } \Omega \cap B_{\lambda}^{-}, \\
\text {negative minimum of } U_{x, \lambda}, V_{x, \lambda} \text { is attained in the interior of } B_{\lambda}(x) \backslash\{x\} \text { if } B_{\lambda}^{-} \neq \emptyset, \\
\text { negative minimum of } U_{x, \lambda}, V_{x, \lambda} \text { cannot be attained in }\left(B_{\lambda}(x) \backslash\{x\}\right) \backslash \Omega,
\end{array}\right.
$$

where $\mathcal{L}_{1}(y):=p_{2} v_{x, \lambda}^{p_{2}-1}(y) P(y) F_{2}(v(y)), \mathcal{L}_{2}(y):=q_{2} u_{x, \lambda}^{q_{2}-1}(y) Q(y) G_{2}(u(y))$. Then, we have
(i) there exists a sufficiently small constant $\gamma_{0}(x)>0$, such that, for all $0<\lambda \leq \gamma_{0}$,

$$
\begin{equation*}
U_{x, \lambda}(y) \geq 0, V_{x, \lambda}(y) \geq 0, \quad \forall y \in \Omega, \tag{2.7}
\end{equation*}
$$

(ii) there exists a sufficiently small $l_{0}(x, \lambda)>0$ depending on λ continuously, such that, for all $0<l \leq l_{0}$,

$$
\begin{equation*}
U_{x, \lambda}(y) \geq 0, V_{x, \lambda}(y) \geq 0, \quad \forall y \in \Omega . \tag{2.8}
\end{equation*}
$$

Proof. Without loss of generality, we may assume $x=0$ here for convenience. Suppose (2.7) and (2.8) do not hold, we will obtain a contradiction for any $0<\lambda \leq \gamma_{0}$ with constant γ_{0} small enough and any $0<l \leq l_{0}(\lambda)$ with $l_{0}(\lambda)$ sufficiently small respectively. We divide the proof into two parts.

Part 1: For $0<\alpha<2$ and $\alpha=2$, if (2.7) fails, we show that there exists some $\hat{y} \in \Omega \cap B_{\lambda}^{-}$such that

$$
\begin{equation*}
(-\Delta)^{\frac{\alpha}{2}} U_{0, \lambda}(\hat{y}) \leq \frac{C}{l^{\alpha}} U_{0, \lambda}(\hat{y})<0 . \tag{2.9}
\end{equation*}
$$

Recall (2.6) and our hypothesis, there exists $\tilde{y} \in\left(\Omega \cap B_{\lambda}^{-}\right) \subseteq A_{\lambda, l}(0):=\left\{y \in \mathbb{R}^{n}|\lambda-l<|y|<\lambda\}\right.$ such that

$$
\begin{equation*}
U_{0, \lambda}(\tilde{y})=\min _{B_{\lambda}(0) \backslash\{0\}} U_{0, \lambda}(y)<0 \tag{2.10}
\end{equation*}
$$

We first consider the cases $0<\alpha<2$. Let $\tilde{U}_{0, \lambda}(y)=U_{0, \lambda}(y)-U_{0, \lambda}(\tilde{y})$, then $\tilde{U}_{0, \lambda}(\tilde{y})=0$ and

$$
(-\Delta)^{\alpha / 2} \tilde{U}_{0, \lambda}(y)=(-\Delta)^{\alpha / 2} U_{0, \lambda}(y)
$$

Using the anti-symmetry property $U_{x, \lambda}(y)=-\left(U_{x, \lambda}\right)_{x, \lambda}(y)$, it holds

$$
\begin{aligned}
\left(\frac{\lambda}{|y|}\right)^{n-\alpha} \tilde{U}_{0, \lambda}\left(y^{0, \lambda}\right) & =\left(\frac{\lambda}{|y|}\right)^{n-\alpha} U_{0, \lambda}\left(y^{0, \lambda}\right)-\left(\frac{\lambda}{|y|}\right)^{n-\alpha} U_{0, \lambda}(\tilde{y}) \\
& =-U_{0, \lambda}(y)+U_{0, \lambda}(\tilde{y})-\left(1+\left(\frac{\lambda}{|y|}\right)^{n-\alpha}\right) U_{0, \lambda}(\tilde{y}) \\
& =-\tilde{U}_{0, \lambda}(y)-\left(1+\left(\frac{\lambda}{|y|}\right)^{n-\alpha}\right) U_{0, \lambda}(\tilde{y}) .
\end{aligned}
$$

Consequently, it follows that

$$
\begin{aligned}
(-\Delta)^{\alpha / 2} \tilde{U}_{0, \lambda}(\tilde{y})= & C_{\alpha, n} P \cdot V \cdot \int_{\mathbb{R}^{n}} \frac{\tilde{U}_{0, \lambda}(\tilde{y})-\tilde{U}_{0, \lambda}(z)}{|\tilde{y}-z|^{n+\alpha}} d z \\
= & C_{\alpha, n} P \cdot V \cdot\left(\int_{B_{\lambda}(0)} \frac{-\tilde{U}_{0, \lambda}(z)}{|\tilde{y}-z|^{n+\alpha}} d z+\int_{\mathbb{R}^{n} \backslash B_{\lambda}(0)} \frac{-\tilde{U}_{0, \lambda}(z)}{|\tilde{y}-z|^{n+\alpha}} d z\right) \\
= & C_{\alpha, n} P \cdot V \cdot\left(\int_{B_{\lambda}(0)} \frac{-\tilde{U}_{0, \lambda}(z)}{|\tilde{y}-z|^{n+\alpha}} d z+\int_{\mathbb{R}^{n} \backslash B_{\lambda}(0)} \frac{\left(\frac{\lambda}{\left.\left\lvert\, \frac{1}{|z|}\right.\right)^{n \alpha}} \tilde{U}_{0, \lambda}\left(z^{0, \lambda}\right)\right.}{|\tilde{y}-z|^{n+\alpha}} d z\right. \\
& \left.+\int_{\mathbb{R}^{n} \backslash B_{\lambda}(0)} \frac{\left(1+\left(\frac{\lambda}{|z|}\right)^{n-\alpha}\right) U_{0, \lambda}(\tilde{z})}{|\tilde{y}-z|^{n+\alpha}} d z\right) \\
= & C_{\alpha, n} P \cdot V \cdot\left(\int_{B_{\lambda}(0)} \frac{-\tilde{U}_{0, \lambda}(z)}{|\tilde{y}-z|^{n+\alpha}} d z+\int_{B_{\lambda}(0)} \frac{\tilde{U}_{0, \lambda}(z)}{\left|\frac{z \mid \tilde{\tilde{y}}}{\lambda}-\frac{z z}{|z|}\right|^{n+\alpha}} d z\right. \\
& \left.+\int_{\mathbb{R}^{n} \backslash B_{\lambda}(0)} \frac{\left(1+\left(\frac{\lambda}{|z|}\right)^{n-\alpha}\right) U_{0, \lambda}(\tilde{z})}{|\tilde{y}-z|^{n+\alpha}} d z\right) .
\end{aligned}
$$

Notice that, for any $z \in B_{\lambda}(0) \backslash\{0\}$,

$$
\left|\frac{|z| \tilde{y}}{\lambda}-\frac{\lambda z}{|z|}\right|^{2}-|\tilde{y}-z|^{2}=\frac{\left(|\tilde{\mid}|^{2}-\lambda^{2}\right)\left(|z|^{2}-\lambda^{2}\right)}{\lambda^{2}}>0 .
$$

Then combining this with $U_{0, \lambda}(\tilde{y})<0$, we get

$$
\begin{align*}
(-\Delta)^{\alpha / 2} U_{0, \lambda}(\tilde{y}) & \leq C_{\alpha, n} U_{0, \lambda}(\tilde{y}) \int_{\mathbb{R}^{n} \backslash B_{\lambda}(0)} \frac{1}{|\tilde{y}-z|^{n+\alpha}} d z \\
& \leq C_{\alpha, n} U_{0, \lambda}(\tilde{y}) \int_{\left(\mathbb{R}^{n} \backslash B_{\lambda}(0)\right) n\left(B_{4 l}(\tilde{y}) \backslash B_{l}(\tilde{y})\right)} \frac{1}{\mid \tilde{y}-z^{n+\alpha}} d z \tag{2.11}\\
& \leq \frac{C}{l^{\alpha}} U_{0, \lambda}(\tilde{y})<0 .
\end{align*}
$$

Now we consider $\alpha=2$, we can also derive the same estimate as (2.11) at some point $y_{0} \in \Omega \cap B_{\lambda}^{-}$. The last, we define

$$
\begin{equation*}
\phi(y):=\cos \frac{|y|-\lambda+l}{l} \tag{2.12}
\end{equation*}
$$

then it is obvious that $\phi(y) \in[\cos 1,1]$ for any $y \in \overline{A_{\lambda, l}(0)}=\left\{y \in \mathbb{R}^{n}|\lambda-l \leq|y| \leq \lambda\}\right.$ and $-\frac{\Delta \phi(y)}{\phi(y)} \geq \frac{1}{2}$. Define

$$
\begin{equation*}
\bar{U}_{0, \lambda}(y):=\frac{U_{0, \lambda}(y)}{\phi(y)} \tag{2.13}
\end{equation*}
$$

for $y \in \overline{A_{\lambda, l}(0)}$. Then there exists a $y_{0} \in \Omega \cap B_{\lambda}^{-}$such that

$$
\begin{equation*}
\bar{U}_{0, \lambda}\left(y_{0}\right)=\frac{\min }{A_{\lambda, l}(0)} \bar{U}_{0, \lambda}(y)<0 . \tag{2.14}
\end{equation*}
$$

Since

$$
\begin{equation*}
-\Delta U_{0, \lambda}\left(y_{0}\right)=-\Delta \bar{U}_{0, \lambda}\left(y_{0}\right) \cdot \phi\left(y_{0}\right)-2 \nabla \bar{U}_{0, \lambda}\left(y_{0}\right) \cdot \nabla \phi\left(y_{0}\right)-\bar{U}_{0, \lambda}\left(y_{0}\right) \cdot \Delta \phi\left(y_{0}\right) \tag{2.15}
\end{equation*}
$$

it can be deduced immediately that

$$
\begin{equation*}
-\Delta U_{0, \lambda}\left(y_{0}\right) \leq \frac{1}{l^{2}} U_{0, \lambda}\left(y_{0}\right) \tag{2.16}
\end{equation*}
$$

In summary, we have proved that for both $0<\alpha<2$ and $\alpha=2$, there exists some $\hat{y} \in \Omega \cap B_{\lambda}^{-}$such that

$$
\begin{equation*}
(-\Delta)^{\frac{\alpha}{2}} U_{0, \lambda}(\hat{y}) \leq \frac{C}{l^{\alpha}} U_{0, \lambda}(\hat{y})<0 \tag{2.17}
\end{equation*}
$$

Similar, we have

$$
V_{0, \lambda}(\hat{y})<0,
$$

then we know that exists a \bar{y} such that

$$
V_{0, \lambda}(\bar{y})=\min _{B_{\chi}(0) \backslash(0)} V_{0, \lambda}(y)<0,
$$

and we can derive that

$$
\begin{equation*}
(-\Delta)^{\frac{\alpha}{2}} V_{0, \lambda}(\bar{y}) \leq \frac{C}{l^{\alpha}} V_{0, \lambda}(\bar{y})<0 . \tag{2.18}
\end{equation*}
$$

Part 2: We obtain a contradiction for any $0<\lambda \leq \gamma_{0}$ with constant γ_{0} small enough and any $0<l \leq l_{0}(\lambda)$ with $l_{0}(\lambda)$ sufficiently small respectively.

By (2.6), we have at the point \hat{y},

$$
\begin{align*}
0 \leq & (-\Delta)^{\frac{\alpha}{2}} U_{0, \lambda}(\hat{y})-\mathcal{L}_{1}(\hat{y}) V_{0, \lambda}(\hat{y}) \tag{2.19}\\
& -p_{1}\left(\int_{B_{\lambda}^{-}} \frac{v^{p_{1}-1}(z) V_{0, \lambda}(z)}{|\hat{y}-z|^{\sigma_{1}}} F_{1}(v(z)) d z\right) v^{p_{2}}(\hat{y}) F_{2}(v(\hat{y})) \\
\leq & (-\Delta)^{\frac{\alpha}{2}} U_{0, \lambda}(\hat{y})-\mathcal{L}_{1}(\hat{y}) V_{0, \lambda}(\bar{y}) \tag{2.20}\\
& -\left(p_{1} \int_{B_{\lambda}^{\prime}} \frac{v^{p_{1}-1}(z)}{|\hat{y}-z|^{\sigma_{1}}} F_{1}(v(z)) d z \cdot v^{p_{2}}(\hat{y}) F_{2}(v(\hat{y}))\right) V_{0, \lambda}(\bar{y}) \\
\leq & (-\Delta)^{\frac{\sigma_{2}^{2}}{2}} U_{0, \lambda}(\hat{y})-c_{0, \lambda}^{\prime}(\hat{y}) V_{0, \lambda}(\bar{y}),
\end{align*}
$$

where

$$
\begin{aligned}
c_{x, \lambda}^{\prime}(y) & :=\mathcal{L}_{1}(y)+p_{1} \widetilde{P}_{x, \lambda}(y) v^{p_{2}}(y) F_{2}(v(y)) \\
& =p_{2} P(y) v_{x, \lambda}^{p_{2}-1}(y) F_{2}(v(y))+p_{1} \widetilde{P}_{x, \lambda}(y) v^{p_{2}}(y) F_{2}(v(y))>0 .
\end{aligned}
$$

Since $\lambda-l<|y|<\lambda$, we have

$$
\begin{align*}
P(y) & \leq\left\{\int_{|y-z|<\frac{\theta}{2}}+\int_{|y-z| \geq \frac{y}{2}}\right\} \frac{f_{1}(v(z))}{|y-z|^{\sigma_{1}}} d z \tag{2.21}\\
& \leq\left[\max _{|y| \leq 2 \lambda} f_{1}(v(y))\right] \int_{|y-z|<\lambda} \frac{1}{|y-z|^{\sigma_{1}}} d z+2^{\sigma_{1}} \int_{\mathbb{R}^{n}} \frac{f_{1}(v(z))}{|z|^{\sigma_{1}}} d z \\
& \leq C \lambda^{n-\sigma_{1}}\left[\max _{|y| \leq 2 \lambda} f_{1}(v(y))\right]+2^{\sigma_{1}} \int_{\mathbb{R}^{n}} \frac{f_{1}(v(x))}{|x|^{\sigma_{1}}} d x=: C_{1, \lambda}^{\prime},
\end{align*}
$$

and

$$
\begin{align*}
\widetilde{P}_{0, \lambda}(y) & \leq \int_{|y-z|<2 \lambda} \frac{1}{|y-z|^{\sigma_{1}}} v^{p_{1}-1}(z) F_{1}(v(z)) d z \tag{2.22}\\
& \leq C \lambda^{n-\sigma_{1}}\left[\max _{\mid y \leq 4 \lambda} \frac{f_{1}(v(y))}{v(y)}\right]=: C_{1, \lambda}^{\prime \prime} .
\end{align*}
$$

It is obvious that $C_{1, \lambda}^{\prime}$ and $C_{1, \lambda}^{\prime \prime}$ depend on λ continuously and monotone increasing with respect to $\lambda>0$.

Therefore, we can derive from (2.21) and (2.22) that, for any $\lambda-l \leq|y| \leq \lambda$,

$$
\begin{align*}
0 & <c_{0, \lambda}^{\prime}(y)=p_{2} P(y) v_{0, \lambda}^{p_{2}-1}(y) F_{2}(v(y))+p_{1} \widetilde{P}_{0, \lambda}(y) v^{p_{2}}(y) F_{2}(v(y)) \tag{2.23}\\
& \leq p_{2} C_{1, \lambda}^{\prime}\left[\min _{|y| \leq \lambda} v_{0, \lambda}(y)\right]^{p_{2}-1}\left[\max _{|y| \leq \lambda} F_{2}(v(y))\right]+p_{1} C_{1, \lambda}^{\prime \prime}\left[\max _{|y| \leq \lambda} f_{2}(v(y))\right]=: C_{1, \lambda},
\end{align*}
$$

where $C_{1, \lambda}$ depends continuously on λ and monotone increasing with respect to $\lambda>0$.
From (2.17) and (2.19) we have

$$
\begin{equation*}
U_{0, \lambda}(\hat{y}) \geq c_{0, \lambda}^{\prime}(\hat{y}) l^{\alpha} V_{0, \lambda}(\bar{y}) \tag{2.24}
\end{equation*}
$$

According to (2.6), we also have at the point \bar{y}

$$
\begin{align*}
0 & \leq(-\Delta)^{\frac{\alpha}{2}} V_{0, \lambda}(\bar{y})-\mathcal{L}_{2}(\bar{y}) U_{0, \lambda}(\bar{y}) \tag{2.25}\\
& -q_{1}\left(\int_{B_{\lambda}^{-}} \frac{u^{q_{1}-1}(z) U_{0, \lambda}(z)}{|\bar{y}-z|^{\sigma_{2}}} G_{1}(u(z)) d z\right) u^{q_{2}}(\bar{y}) G_{2}(u(\bar{y})) \\
\leq & (-\Delta)^{\frac{\alpha}{2}} V_{0, \lambda}(\bar{y})-\mathcal{L}_{2}(\bar{y}) U_{0, \lambda}(\hat{y}) \tag{2.26}\\
& -\left(q_{1} \int_{B_{\lambda}^{-}} \frac{u^{q_{1}-1}(z)}{|\bar{y}-z|^{\sigma_{2}}} G_{1}(u(z)) d z \cdot u^{q_{2}}(\bar{y}) G_{2}(u(\bar{y}))\right) U_{0, \lambda}(\hat{y}) \\
\leq & (-\Delta)^{\frac{\alpha}{2}} V_{0, \lambda}(\bar{y})-c_{0, \lambda}^{\prime \prime}(\bar{y}) U_{0, \lambda}(\hat{y}),
\end{align*}
$$

where

$$
\begin{aligned}
c_{x, \lambda}^{\prime \prime}(y) & :=\mathcal{L}_{2}(y)+q_{1} \widetilde{Q}_{x, \lambda}(y) u^{q_{2}}(y) G_{2}(u(y)) \\
& =q_{2} Q(y) u_{x, \lambda}^{q_{2}-1}(y) G_{2}(u(y))+q_{1} \widetilde{Q}_{x, \lambda}(y) u^{q_{2}}(y) G_{2}(u(y))>0 .
\end{aligned}
$$

Since $\lambda-l<|y|<\lambda$, we have

$$
\begin{align*}
Q(y) & \leq\left\{\int_{|y-z|<\frac{|| |}{2}}+\int_{|y-z| \left\lvert\, \frac{|y|}{2}\right.} \frac{g_{1}(u(z))}{|y-z|^{\sigma_{2}}} d z\right. \tag{2.27}\\
& \leq\left[\max _{\mid y \leq 2 \lambda} g_{1}(u(y))\right] \int_{|y-z| \lambda \lambda} \frac{1}{|y-z|^{\sigma_{2}}} d z+2^{\sigma_{2}} \int_{\mathbb{R}^{n}} \frac{g_{1}(u(z))}{|z|^{\sigma_{2}}} d z \\
& \leq C \lambda^{n-\sigma_{2}}\left[\max _{|y| \leq 2 \lambda} g_{1}(u(y))\right]+2^{\sigma_{2}} \int_{\mathbb{R}^{n}} \frac{g_{1}(u(x))}{|x|^{\sigma_{2}}} d x=: C_{2, \lambda}^{\prime},
\end{align*}
$$

and

$$
\begin{align*}
\widetilde{Q}_{0, \lambda}(y) & \leq \int_{|y-z|<2 \lambda} \frac{1}{|y-z|^{\sigma_{2}}} u^{q_{1}-1}(z) G_{1}(u(z)) d z \tag{2.28}\\
& \leq C \lambda^{n-\sigma_{2}}\left[\max _{|y| \leq 4 \lambda} \frac{g_{1}(u(y))}{u(y)}\right]=: C_{2, \lambda}^{\prime \prime} .
\end{align*}
$$

It is obvious that $C_{2, \lambda}^{\prime}$ and $C_{2, \lambda}^{\prime \prime}$ depend on λ continuously and monotone increasing with respect to $\lambda>0$.

As a result, we obtain from (2.27) and (2.28) that, for any $\lambda-l \leq|y| \leq \lambda$

$$
\begin{align*}
0 & <c_{0, \lambda}^{\prime \prime}(y)=q_{2} Q(y) u_{0, \lambda}^{q_{2}-1}(y) G_{2}(u(y))+q_{1} \widetilde{Q}_{0, \lambda}(y) u^{q_{2}}(y) G_{2}(u(y)) \tag{2.29}\\
& \leq q_{2} C_{2, \lambda}^{\prime}\left[\min _{|y| \leq \lambda} u_{0, \lambda}(y)\right]\left[\max _{|y| \leq \lambda} G_{2}(u(y))\right]+q_{1} C_{2, \lambda}^{\prime \prime}\left[\max _{\mid y \leq \lambda} g_{2}(u(y))\right]=: C_{2, \lambda},
\end{align*}
$$

where $C_{2, \lambda}$ depends continuously on λ and monotone increasing with respect to $\lambda>0$.
From (2.18) and (2.25), we have

$$
\begin{equation*}
V_{0, \lambda}(\bar{y}) \geq c_{0, \lambda}^{\prime \prime}(\bar{y}) l^{\alpha} U_{0, \lambda}(\hat{y}) . \tag{2.30}
\end{equation*}
$$

As a consequence, it follows from (2.17), (2.19), (2.23), (2.29) and (2.30) that

$$
0 \leq(-\Delta)^{\frac{\alpha}{2}} U_{0, \lambda}(\hat{y})-c_{0, \lambda}^{\prime}(\hat{y}) V_{0, \lambda}(\bar{y})
$$

$$
\begin{aligned}
& \leq \frac{C}{l^{\alpha}} U_{0, \lambda}(\hat{y})-c_{0, \lambda}^{\prime}(\hat{y}) c_{0, \lambda}^{\prime \prime}(\bar{y}) l^{\alpha} U_{0, \lambda}(\hat{y}) \\
& \leq \frac{C}{l^{\alpha}} U_{0, \lambda}(\hat{y})-C_{1, \lambda} C_{2, \lambda} l^{\alpha} U_{0, \lambda}(\hat{y}) \\
& =\left(\frac{C}{l^{\alpha}}-C_{\lambda} l^{\alpha}\right) U_{0, \lambda}(\hat{y}),
\end{aligned}
$$

that is,

$$
\begin{equation*}
\frac{C}{\lambda^{\alpha}} \leq \frac{C}{l^{\alpha}} \leq C_{\lambda} l^{\alpha} . \tag{2.31}
\end{equation*}
$$

We can draw a contradiction from (2.31) directly if $0<\lambda \leq \gamma_{0}$ for some constants γ_{0} small enough, or if $0<l \leq l_{0}$ for some sufficiently small l_{0} depending on λ continuously. This shows that (2.7) and (2.8) must hold. Moreover, by (2.6), we can actually deduce from $U_{x, \lambda}(y) \geq 0, V_{x, \lambda} \geq 0$ in Ω that

$$
\begin{equation*}
U_{x, \lambda}(y) \geq 0, V_{x, \lambda}(y) \geq 0, \quad \forall y \in B_{\lambda}(x) \backslash\{x\} . \tag{2.32}
\end{equation*}
$$

This completes the proof of Theorem 2.3.
The following lemma provides a start point for us to move the spheres.

Lemma 2.4. For every $x \in \mathbb{R}^{n}$, there exists $\epsilon_{0}(x)>0$ such that, $u_{x, \lambda}(y) \geq u(y)$ and $v_{x, \lambda}(y) \geq v(y)$ for all $\lambda \in\left(0, \epsilon_{0}(x)\right]$ and $y \in B_{\lambda}(x) \backslash\{x\}$.

Proof. For every $x \in \mathbb{R}^{n}$, recalling that

$$
B_{\lambda}^{-}=\left\{y \in B_{\lambda}(x) \backslash\{x\} \mid U_{x, \lambda}(y)<0, V_{x, \lambda}(y)<0\right\} .
$$

Define $\epsilon_{0}(x):=\min \left\{\eta_{0}(x), \gamma_{0}(x)\right\}$, where $\eta_{0}(x)$ and $\gamma_{0}(x)$ are defined the same as in Lemma 2.2 and Theorem 2.3. We will show via contradiction arguments that, for any $0<\lambda \leq \epsilon_{0}$,

$$
\begin{equation*}
B_{\lambda}^{-}=\emptyset . \tag{2.33}
\end{equation*}
$$

Suppose (2.33) does not hold, that is, $B_{\lambda}^{-} \neq \emptyset$ and hence $U_{x, \lambda}, V_{x, \lambda}$ is negative somewhere in $B_{\lambda}(x) \backslash$ $\{x\}$. For arbitrary $y \in B_{\lambda}^{-}$, we deduce from (1.1) and (2.1) that

$$
\begin{align*}
(-\Delta)^{\frac{\alpha}{2}} U_{x, \lambda}(y)= & \int_{\mathbb{R}^{n}} \frac{v_{x, \lambda}^{p_{1}}(z)}{\mid y-z \sigma^{\sigma_{1}}} F_{1}\left(\left(\frac{\lambda}{|z-x|}\right)^{\alpha-n} v_{x, \lambda}(z)\right) d z \cdot v_{x, \lambda}^{p_{2}}(y) F_{2}\left(\left(\frac{\lambda}{|y-x|}\right)^{\alpha-n} v_{x, \lambda}(y)\right) \tag{2.34}\\
& -\int_{\mathbb{R}^{n}} \frac{v^{p_{1}}(z)}{\mid y-z \sigma^{\sigma_{1}}} F_{1}(v(z)) d z \cdot v^{p_{2}}(y) F_{2}(v(y))
\end{align*}
$$

$$
\begin{align*}
& \geq \int_{\mathbb{R}^{n}} \frac{v_{x, \lambda}^{p_{1}}(z)}{|y-z|^{\sigma_{1}}} F_{1}\left(v_{x, \lambda}(z)\right) d z \cdot v_{x, \lambda}^{p_{2}}(y) F_{2}(v(y))-\int_{\mathbb{R}^{n}} \frac{v^{p_{1}}(z)}{|y-z|^{\sigma_{1}}} F_{1}(v(z)) d z \cdot v^{p_{2}}(y) F_{2}(v(y)) \\
& \geq p_{2} \int_{\mathbb{R}^{n}} \frac{v^{p_{1}}(z)}{|y-z|^{\sigma_{1}}} F_{1}(v(z)) d z \cdot v_{x, \lambda}^{p_{2}-1}(y) F_{2}(v(y)) V_{x, \lambda}(y) \\
&+\int_{\mathbb{R}^{n}} \frac{v_{x, \lambda}^{p_{1}}(z) F_{1}\left(v_{x, \lambda}(z)\right)-v^{p_{1}}(z) F_{1}(v(z))}{|y-z|^{\sigma_{1}}} d z \cdot v_{x, \lambda}^{p_{2}}(y) F_{2}(v(y)) \\
& \geq \mathcal{L}_{1}(y) V_{x, \lambda}(y)+v_{x, \lambda}^{p_{2}}(y) F_{2}(v(y)) \int_{B_{\lambda}(x)}\left(\frac{1}{\left|\frac{\mid(y-x| | z-x \mid}{\lambda}-\frac{\lambda(z-x \mid}{|z-x|}\right|^{\sigma_{1}}}-\frac{1}{|y-z|^{\sigma_{1}}}\right) \tag{2.35}\\
&\left(v^{p_{1}}(z) F_{1}(v(z))-v_{x, \lambda}^{p_{1}}(z) F_{1}\left(v_{x, \lambda}(z)\right)\right) d z \\
& \geq \mathcal{L}_{1}(y) V_{x, \lambda}(y)+v^{p_{2}}(y) F_{2}(v(y)) \int_{B_{\lambda}^{-}(x)} \frac{1}{|y-z|^{\sigma_{1}}}\left(v_{x, \lambda}^{p_{1}}(z) F_{1}\left(v_{x, \lambda}(z)\right)-v^{p_{1}}(z) F_{1}(v(z))\right) d z \\
& \geq \mathcal{L}_{1}(y) V_{x, \lambda}(y)+v^{p_{2}}(y) F_{2}(v(y)) \int_{B_{\lambda}^{-}(x)} \frac{1}{|y-z|^{\sigma_{1}}}\left(v_{x, \lambda}^{p_{1}}(z)-v^{p_{1}}(z)\right) F_{1}(v(z)) d z \\
& \geq \mathcal{L}_{1}(y) V_{x, \lambda}(y)+p_{1}\left(\int_{B_{\lambda}^{-}} \frac{v^{p_{1}-1}(z) V_{x, \lambda}(z)}{\mid y-z \sigma^{\sigma_{1}}} F_{1}(v(z)) d z\right) v^{p_{2}}(y) F_{2}(v(y)),
\end{align*}
$$

where $\mathcal{L}_{1}=p_{2} v_{x, \lambda}^{p_{2}-1}(y) P(y) F_{2}(v(y))$.
Similarly, one can calculate

$$
\begin{align*}
& (-\Delta)^{\frac{\alpha}{2}} V_{x, \lambda}(y) \\
& \geq \mathcal{L}_{2}(y) U_{x, \lambda}(y)+q_{1}\left(\int_{B_{\bar{\lambda}}^{-}} \frac{u^{q_{1}-1}(z) U_{x, \lambda}(z)}{|y-z|^{\sigma_{2}}} G_{1}(u(z)) d z\right) u^{q_{2}}(y) G_{2}(u(y)), \tag{2.36}
\end{align*}
$$

where $\mathcal{L}_{2}=q_{2} u_{x, \lambda}^{q_{2}-1}(y) Q(y) G_{2}(u(y))$.
Then (2.35) and (2.36) imply that, for all $y \in B_{\lambda}^{-}$,

$$
\begin{align*}
& (-\Delta)^{\frac{\alpha}{2}} U_{x, \lambda}(y)-\mathcal{L}_{1}(y) V_{x, \lambda}(y)-p_{1}\left(\int_{B_{\lambda}^{-}} \frac{v^{p_{1}-1}(z) V_{x, \lambda}(z)}{|y-z|^{\sigma_{1}}} F_{1}(v(z)) d z\right) v^{p_{2}}(y) F_{2}(v(y)) \geq 0, \tag{2.37}\\
& (-\Delta)^{\frac{\alpha}{2}} V_{x, \lambda}(y)-\mathcal{L}_{2}(y) U_{x, \lambda}(y)-q_{1}\left(\int_{B_{\lambda}^{-}} \frac{u^{q_{1}-1}(z) U_{x, \lambda}(z)}{|y-z|^{\sigma_{2}}} G_{1}(u(z)) d z\right) u^{q_{2}}(y) G_{2}(u(y)) \geq 0 . \tag{2.38}
\end{align*}
$$

Due to $\epsilon_{0}(x):=\min \left\{\eta_{0}(x), \gamma_{0}(x)\right\}$, by Lemma 2.2, we have, for any $0<\lambda \leq \epsilon_{0}$,

$$
\begin{equation*}
U_{x, \lambda}(y) \geq 1, V_{x, \lambda}(y) \geq 1, \quad \forall y \in \overline{B_{\lambda^{2}}(x)} \backslash\{x\} . \tag{2.39}
\end{equation*}
$$

Thus, by taking $l=\lambda-\lambda^{2}$ and $\Omega=A_{\lambda, l}(x)$, then it follows from (2.37)-(2.39) that all the conditions in (2.6) in Theorem 2.3 are satisfied, we can derive from (i) in Theorem 2.3 that $U_{x, \lambda} \geq 0, V_{x, \lambda} \geq 0$ in $\Omega=A_{\lambda, l}(x)$ for any $0<\lambda \leq \epsilon_{0}(x)$. In other words, there exists a $\epsilon_{0}(x)>0$ such that, for all $\lambda \in\left(0, \epsilon_{0}(x)\right]$,

$$
U_{x, \lambda}(y) \geq 0, V_{x, \lambda}(y) \geq 0, \quad \forall y \in B_{\lambda}(x) \backslash\{x\} .
$$

This completes the proof of Lemma 2.4.

For each fixed $x \in \mathbb{R}^{n}$, we define

$$
\begin{equation*}
\bar{\lambda}(x)=\sup \left\{\lambda>0 \mid u_{x, \mu} \geq u, v_{x, \mu} \geq v \text { in } B_{\mu}(x) \backslash\{x\}, \forall 0<\mu \leq \lambda\right\} . \tag{2.40}
\end{equation*}
$$

By Lemma 2.4, $\bar{\lambda}(x)$ is well-defined and $0<\bar{\lambda}(x) \leq+\infty$ for any $x \in \mathbb{R}^{n}$.
We need the following lemma, which is crucial in our proof.
Lemma 2.5. If $\bar{\lambda}(\bar{x})<+\infty$ for some $\bar{x} \in \mathbb{R}^{n}$, then

$$
u_{\bar{x}, \bar{\lambda}(\bar{x})}(y)=u(y), v_{\bar{x}, \bar{\lambda}(\bar{x})}(y)=v(y), \quad \forall y \in B_{\bar{\lambda}}(\bar{x}) \backslash\{\bar{x}\} .
$$

Proof. Without loss of generality, we may assume $x=0$ for convenience. Since (u, v) is a pair of positive solution to integral system (1.4), one can verify that $u_{0, \lambda}, v_{0, \lambda}$ also satisfies a similar integral system as (1.4) in $\mathbb{R}^{n} \backslash\{0\}$. In fact, by (1.4) and direct calculations, we have, for any $y \in \mathbb{R}^{n} \backslash\{0\}$,

$$
\begin{aligned}
& u_{0, \lambda}(y)=\left(\frac{\lambda}{|y|}\right)^{n-\alpha} u\left(\frac{\lambda^{2} y}{\left|y^{2}\right|}\right) \\
& =\frac{\lambda^{n-\alpha}}{|y|^{n-\alpha}} \int_{\mathbb{R}^{n}} \frac{R_{\alpha, n}}{\left|\frac{\lambda^{2} y}{|y|^{2}}-z\right|^{n-\alpha}} \int_{\mathbb{R}^{n}} \frac{f_{1}(v(\xi))}{|z-\xi|^{\sigma_{\mid}}} d \xi \cdot f_{2}(v(z)) d z \\
& =\frac{\lambda^{n-\alpha}}{|y|^{n-\alpha}} \int_{\mathbb{R}^{n}} \frac{R_{\alpha, n}}{\left|\frac{\lambda^{2} y}{|y|^{2}}-\frac{\lambda^{2} z}{|k|^{2}}\right|^{n-\alpha}} \int_{\mathbb{R}^{n}} \frac{f_{1}\left(v\left(\frac{\lambda^{2} \xi}{\left.|\xi|\right|^{2}}\right)\right)}{\left|\frac{\lambda^{2} z}{|z|^{2}}-\frac{\lambda^{2} \xi}{|\xi|^{2}}\right|^{\sigma}} \frac{\lambda^{2 n}}{|\xi|^{2 n}} d \xi \cdot f_{2}\left(v\left(\frac{\lambda^{2} z}{|z|^{2}}\right)\right) \frac{\lambda^{2 n}}{|z|^{2 n}} d z \\
& =\int_{\mathbb{R}^{n}} \frac{R_{\alpha, n}}{|y-z|^{n-\alpha}} \int_{\mathbb{R}^{n}} \frac{v_{0, \lambda}^{p_{1}}(\xi)}{|z-\xi|^{\sigma_{1}}} F_{1}\left(v\left(\xi^{0, \lambda}\right)\right) d \xi \cdot v_{0, \lambda}^{p_{2}}(z) F_{2}\left(v\left(z^{0, \lambda}\right)\right) d z, \\
& v_{0, \lambda}(y)=\left(\frac{\lambda}{|y|}\right)^{n-\alpha} v\left(\frac{\lambda^{2} y}{\left|y^{2}\right|}\right) \\
& =\frac{\lambda^{n-\alpha}}{|y|^{n-\alpha}} \int_{\mathbb{R}^{n}} \frac{R_{\alpha, n}}{\left|\frac{x^{2} y}{|y|^{2}}-z\right|^{n-\alpha}} \int_{\mathbb{R}^{n}} \frac{g_{1}(u(\zeta))}{|z-\zeta|^{\sigma}} d \zeta \cdot g_{2}(u(z)) d z \\
& =\frac{\lambda^{n-\alpha}}{|y|^{n-\alpha}} \int_{\mathbb{R}^{n}} \frac{R_{\alpha, n}}{\left|\frac{\lambda^{2} y}{\left.|y|\right|^{2}}-\frac{\lambda^{2} z}{|z|^{2}}\right|^{n-\alpha}} \int_{\mathbb{R}^{n}} \frac{g_{1}\left(u\left(\frac{\lambda^{2} \zeta}{\mid \zeta^{2}}\right)\right)}{\left|\frac{\lambda^{2} z}{|z|^{2}}-\frac{\lambda^{2} \zeta}{|\zeta|^{2}}\right|^{\sigma}} \frac{\lambda^{2 n}}{|\zeta|^{2 n}} d \zeta \cdot g_{2}\left(u\left(\frac{\lambda^{2} z}{|z|^{2}}\right)\right) \frac{\lambda^{2 n}}{|z|^{2 n}} d z \\
& =\int_{\mathbb{R}^{n}} \frac{R_{\alpha, n}}{|y-z|^{n-\alpha}} \int_{\mathbb{R}^{n}} \frac{u_{0, \lambda}^{q_{1}}(\zeta)}{|z-\zeta|^{\sigma_{2}}} G_{1}\left(u\left(\zeta^{0, \lambda}\right)\right) d \zeta \cdot u_{0, \lambda}^{q_{2}}(z) G_{2}\left(u\left(z^{0, \lambda}\right)\right) d z .
\end{aligned}
$$

Suppose on the contrary that $U_{0, \bar{\lambda}} \geq 0$ but $U_{0, \bar{\lambda}}$ is not identically zero in $B_{\bar{\lambda}}(0) \backslash\{0\}$, then we will get a contradiction with the definition (2.40) of $\bar{\lambda}$. Now, we divide the proof into two parts.

Part 1: We prove that

$$
\begin{equation*}
U_{0, \bar{\lambda}}(y)>0, V_{0, \bar{\lambda}}(y)>0, \quad \forall y \in B_{\bar{\lambda}}(0) \backslash\{0\} . \tag{2.41}
\end{equation*}
$$

Actually, if there exists a point $y^{0} \in B_{\bar{\lambda}}(0) \backslash\{0\}$ such that $U_{0, \bar{\lambda}}\left(y^{0}\right)>0$, by continuity, there exists a small $\gamma>0$ and a constant $c_{0}>0$ such that

$$
B_{\gamma}\left(y^{0}\right) \subset B_{\bar{\lambda}}(0) \backslash\{0\} \quad \text { and } \quad U_{0, \bar{\lambda}}(y) \geq c_{0}>0, \quad \forall y \in B_{\gamma}\left(y^{0}\right) .
$$

For any $y \in B_{\bar{\lambda}}(0) \backslash\{0\}$, one can deduce that

$$
\begin{aligned}
u(y)= & \int_{\mathbb{R}^{n}} \frac{R_{\alpha, n}}{|y-z|^{n-\alpha}} P(z) f_{2}(v(z)) d z \\
= & \int_{B_{\bar{\lambda}}(0)} \frac{R_{\alpha, n}}{|y-z|^{n-\alpha}} P(z) f_{2}(v(z)) d z+\int_{\mathbb{R}^{n} \backslash B_{\bar{\lambda}}(0)} \frac{R_{\alpha, n}}{|y-z|^{n-\alpha}} P(z) f_{2}(v(z)) d z \\
= & \int_{B_{\bar{\lambda}(0)}} \frac{R_{\alpha, n}}{|y-z|^{n-\alpha}} P(z) f_{2}(v(z)) d z \\
& +\int_{B_{\bar{\lambda}}(0)} \frac{R_{\alpha, n}}{\left|\frac{|z|}{\bar{\lambda}}-\frac{\bar{\lambda}}{|z|}\right| n-\alpha} P\left(z^{\bar{\lambda}}\right)\left(\frac{\bar{\lambda}}{|z|}\right)^{\sigma_{1}} v_{0, \bar{\lambda}}^{p_{2}}(z) F_{2}\left(\left(\frac{\bar{\lambda}}{|z|}\right)^{\alpha-n} v_{0, \bar{\lambda}}(z)\right) d z,
\end{aligned}
$$

and

$$
\begin{aligned}
u_{0, \bar{\lambda}}(y)= & \int_{\mathbb{R}^{n}} \frac{R_{\alpha, n}}{|y-z|^{n-\alpha}} \int_{\mathbb{R}^{n}} \frac{v_{0, \bar{\lambda}}^{p_{1}}(\xi)}{|z-\xi| \sigma_{1}} F_{1}\left(v\left(\xi^{0, \bar{\lambda}}\right)\right) d \xi \cdot v_{0, \bar{\lambda}}^{p_{2}}(z) F_{2}\left(v\left(z^{0, \bar{\lambda}}\right)\right) d z \\
= & \int_{B_{\bar{\lambda}}(0)} \frac{R_{\alpha, n}}{|y-z|^{n-\alpha}} \bar{P}_{0, \bar{\lambda}}(z) v_{0, \bar{\lambda}}^{p_{2}}(z) F_{2}\left(\left(\frac{\bar{\lambda}}{|z|}\right)^{\alpha-n} v_{0, \bar{\lambda}}(z)\right) d z \\
& +\int_{B_{\bar{\lambda}}(0)} \frac{R_{\alpha, n}}{\left|\frac{|z| \bar{\lambda} \mid}{\bar{\lambda}}-\frac{\bar{\lambda} z \mid}{|z|}\right| \bar{P}_{0, \bar{\lambda}}\left(z^{\bar{\lambda}}\right)\left(\frac{\bar{\lambda}}{|z|}\right)^{\sigma_{1}} v^{p_{2}}(z) F_{2}(v(z)) d z,}
\end{aligned}
$$

where

$$
\bar{P}_{x, \lambda}(y):=\int_{\mathbb{R}^{n}} \frac{v_{x, \lambda}^{p_{1}}(\xi)}{|y-\xi|^{\sigma_{1}}} F_{1}\left(\left(\frac{\lambda}{|x-\xi|}\right)^{\alpha-n} v_{x, \lambda}(\xi)\right) d \xi
$$

Let us define

$$
\begin{gathered}
K_{1, \lambda}(y, z)=R_{\alpha, n}\left(\frac{1}{|y-z|^{n-\alpha}}-\frac{1}{\left|\frac{y|z|}{\bar{\lambda}}-\frac{\bar{\lambda} z}{|z|}\right|^{n-\alpha}}\right), \\
K_{2, \bar{\lambda}}(y, z)=R_{\alpha, n}\left(\frac{1}{|y-z|^{\sigma_{1}}}-\frac{1}{\left|\frac{y|z|}{\bar{\lambda}}-\frac{\bar{\lambda} z}{|z|}\right|^{\sigma_{1}}}\right) .
\end{gathered}
$$

It is easy to verify that $K_{1, \bar{\lambda}}(y, z)>0, K_{2, \bar{\lambda}}(y, z)>0$, and

$$
\bar{P}_{0, \bar{\lambda}}(z)=P\left(z^{\bar{\lambda}}\right)\left(\frac{\bar{\lambda}}{|z|}\right)^{\sigma_{1}}, \quad P(z)=\bar{P}_{0, \bar{\lambda}}\left(z^{\bar{\lambda}}\right)\left(\frac{\bar{\lambda}}{|z|}\right)^{\sigma_{1}},
$$

and moreover,

$$
\bar{P}_{0, \bar{\lambda}}(z)-P(z)=\int_{B_{\bar{\lambda}}(0)} K_{2, \bar{\lambda}}(z, \xi)\left(v_{0, \bar{\lambda}}^{p_{1}}(\xi) F_{1}\left(\left(\frac{\bar{\lambda}}{|\xi|}\right)^{\alpha-n} v_{0, \bar{\lambda}}(\xi)\right)-v^{p_{1}}(\xi) F_{1}(v(\xi))\right) d \xi>0 .
$$

As a result, it follows immediately that, for any $y \in B_{\bar{\lambda}}(0) \backslash\{0\}$,

$$
\begin{align*}
U_{0, \bar{\lambda}}(y)= & \int_{B_{\bar{\lambda}}(0)} K_{1, \bar{\lambda}}(y, z) \bar{P}_{0, \bar{\lambda}}(z) v_{0, \bar{\lambda}}^{p_{2}}(z) F_{2}\left(\left(\frac{\bar{\lambda}}{|z|}\right)^{\alpha-n} v_{0, \bar{\lambda}}(z)\right) d z \\
& -\int_{B_{\bar{\lambda}}(0)} K_{1, \bar{\lambda}}(y, z) P(z) v^{p_{2}}(z) F_{2}(v(z)) d z \\
= & \int_{B_{\bar{\lambda}}(0)} K_{1, \bar{\lambda}}(y, z)\left[\bar{P}_{0, \bar{\lambda}}(z) v_{0, \bar{\lambda}}^{p_{2}}(z) F_{2}\left(\left(\frac{\bar{\lambda}}{|z|}\right)^{\alpha-n} v_{0, \bar{\lambda}}(z)\right)-P(z) v^{p_{2}}(z) F_{2}(v(z))\right] d z \tag{2.42}\\
\geq & \int_{B_{\bar{\lambda}}(0)} K_{1, \bar{\lambda}}(y, z) P(z)\left[v_{0, \bar{\lambda}}^{p_{2}}(z) F_{2}\left(\left(\frac{\bar{\lambda}}{|z|}\right)^{\alpha-n} v_{0, \bar{\lambda}}(z)\right)-v^{p_{2}}(z) F_{2}(v(z))\right] d z \\
\geq & \int_{B_{\bar{\lambda}}(0)} K_{1, \bar{\lambda}}(y, z) P(z)\left[v_{0, \bar{\lambda}}^{p_{2}}(z) F_{2}\left(v_{0, \bar{\lambda}}(z)\right)-v^{p_{2}}(z) F_{2}(v(z))\right] d z \\
\geq & \int_{B_{\gamma}\left(y^{0}\right)} K_{1, \bar{\lambda}}(y, z) P(z)\left(f_{2}\left(v_{0, \bar{\lambda}}(z)\right)-f_{2}(v(z))\right) d z>0,
\end{align*}
$$

therefore we arrive at (2.41).
Part 2: We draw a contradiction with the definition (2.40) of $\bar{\lambda}(0)$.
Furthermore, (2.42) also shows that there exists a $0<\eta<\bar{\lambda}$ small enough such that, for any $y \in \overline{B_{\eta}(0)} \backslash\{0\}$,

$$
\begin{equation*}
U_{0, \bar{\lambda}}(y) \geq \int_{B_{\frac{\gamma}{2}}\left(y^{0}\right)} c_{8} c_{7} c_{0} d z=: \widetilde{c}_{0}>0 . \tag{2.43}
\end{equation*}
$$

Now we define

$$
\begin{equation*}
\tilde{l}_{0}:=\min _{\lambda \in[\bar{\lambda}, 2 \bar{\lambda}]} l_{0}(0, \lambda)>0, \tag{2.44}
\end{equation*}
$$

where $l_{0}(0, \lambda)$ is given by Theorem 2.3. For a fixed small $0<r_{0}<\frac{1}{2} \min \left\{\tilde{l}_{0}, \bar{\lambda}\right\}$, by (2.41) and (2.43), we can define

$$
\begin{equation*}
m_{1}:=\inf _{y \in \bar{B}_{\bar{\lambda}-r_{0}}(0) \backslash\{0\}} U_{0, \bar{\lambda}}(y)>0 . \tag{2.45}
\end{equation*}
$$

Similarly, we can define

$$
\begin{equation*}
m_{2}:=\inf _{y \in \bar{B}_{\bar{\lambda}-r_{0}}(0) \backslash(0)} V_{0, \bar{\lambda}}(y)>0 . \tag{2.46}
\end{equation*}
$$

Since u is uniformly continuous on arbitrary compact set $K \subset \mathbb{R}^{n}$ (say, $K=\overline{B_{4 \bar{\lambda}}(0)}$), we can deduce from (2.45) that, there exists a $0<\varepsilon_{0}<\frac{1}{2} \min \left\{\tilde{l}_{0}, \bar{\lambda}\right\}$ sufficiently small, such that, for any $\lambda \in\left[\bar{\lambda}, \bar{\lambda}+\varepsilon_{0}\right]$,

$$
\begin{equation*}
U_{0, \lambda}(y) \geq \frac{m_{1}}{2}>0, \quad \forall y \in \overline{B_{\bar{\lambda}-r_{0}}(0)} \backslash\{0\} . \tag{2.47}
\end{equation*}
$$

In order to prove (2.47), one should observe that (2.45) is equivalent to

$$
\begin{equation*}
|y|^{n-\alpha} u(y)-\bar{\lambda}^{n-\alpha} u\left(y^{0, \bar{\lambda}}\right) \geq m_{1} \bar{\lambda}^{n-\alpha}, \quad \forall|y| \geq \frac{\bar{\lambda}^{2}}{\bar{\lambda}-r_{0}} . \tag{2.48}
\end{equation*}
$$

Since u is uniformly continuous on $\overline{B_{4 \bar{\lambda}}(0)}$, we infer from (2.48) that there exists a $0<\varepsilon_{0}<\frac{1}{2} \min \left\{\tilde{l}_{0}, \bar{\lambda}\right\}$ sufficiently small, such that, for any $\lambda \in\left[\bar{\lambda}, \bar{\lambda}+\varepsilon_{0}\right]$,

$$
\begin{equation*}
|y|^{n-\alpha} u(y)-\lambda^{n-\alpha} u\left(y^{0, \lambda}\right) \geq \frac{m_{1}}{2} \lambda^{n-\alpha}, \quad \forall|y| \geq \frac{\lambda^{2}}{\lambda-r_{0}}, \tag{2.49}
\end{equation*}
$$

which is equivalent to (2.47), hence we have proved (2.47).
Similarly, we can prove

$$
\begin{equation*}
V_{0, \lambda}(y) \geq \frac{m_{2}}{2}>0, \quad \forall y \in \overline{B_{\bar{\lambda}-r_{0}}(0)} \backslash\{0\} . \tag{2.50}
\end{equation*}
$$

For any $\lambda \in\left[\bar{\lambda}, \bar{\lambda}+\varepsilon_{0}\right]$, let $l:=\lambda-\bar{\lambda}+r_{0} \in\left(0, \tilde{l}_{0}\right)$ and $\Omega:=A_{\lambda, l}(0)$, then it follows from (2.37), (2.38) and (2.47) that all the conditions (2.6) in Theorem 2.3 are satisfied, hence we can derive from (ii) in Theorem 2.3 that

$$
\begin{equation*}
U_{0, \lambda}(y) \geq 0, V_{0, \lambda}(y) \geq 0, \quad \forall y \in \Omega=A_{\lambda, l}(0) . \tag{2.51}
\end{equation*}
$$

Thus, we get from (2.47) and (2.51) that, $B_{\lambda}^{-}=\emptyset$ for all $\lambda \in\left[\bar{\lambda}, \bar{\lambda}+\varepsilon_{0}\right]$, that is,

$$
\begin{equation*}
U_{0, \lambda}(y) \geq 0, V_{0, \lambda}(y) \geq 0, \quad \forall y \in B_{\lambda}(0) \backslash\{0\}, \tag{2.52}
\end{equation*}
$$

which contradicts with the definition (2.40) of $\bar{\lambda}(0)$. As a result, in the case $0<\bar{\lambda}(0)<+\infty$, we must have $U_{0, \bar{\lambda}} \equiv 0, V_{0, \bar{\lambda}} \equiv 0$ in $B_{\bar{\lambda}}(0) \backslash\{0\}$, that is,

$$
\begin{equation*}
u_{0, \bar{\lambda}(0)}(y) \equiv u(y), v_{0, \bar{\lambda}(0)}(y) \equiv v(y), \quad \forall y \in B_{\bar{\lambda}}(0) \backslash\{0\} . \tag{2.53}
\end{equation*}
$$

This finishes our proof of Lemma 2.5.
We also need the following property about the limiting radius $\bar{\lambda}(x)$.
Lemma 2.6. If $\bar{\lambda}(\bar{x})=+\infty$ for some $\bar{x} \in \mathbb{R}^{n}$, then $\bar{\lambda}(x)=+\infty$ for all $x \in \mathbb{R}^{n}$.
Proof. Since $\bar{\lambda}(\bar{x})=+\infty$, recalling the definition of $\bar{\lambda}$, we get

$$
u_{\bar{x}, \lambda}(y) \geq u(y), v_{\bar{x}, \lambda}(y) \geq v(y), \quad \forall y \in B_{\lambda}(\bar{x}) \backslash\{\bar{x}\}, \quad \forall 0<\lambda<+\infty .
$$

That is,

$$
u(y) \geq u_{\bar{x}, \lambda}(y), v(y) \geq v_{\bar{x}, \lambda}(y), \quad \forall|y-\bar{x}| \geq \lambda, \quad \forall 0<\lambda<+\infty .
$$

It follows immediately that

$$
\begin{equation*}
\lim _{|y| \rightarrow \infty}|y|^{n-\alpha} u(y)=+\infty, \lim _{|y| \rightarrow \infty}|y|^{n-\alpha} v(y)=+\infty . \tag{2.54}
\end{equation*}
$$

On the other hand, if we assume $\bar{\lambda}(x)<+\infty$ for some $x \in \mathbb{R}^{n}$, then by Lemma 2.5, one gets that

$$
\begin{aligned}
& \lim _{|y| \rightarrow \infty}|y|^{n-\alpha} u(y)=\lim _{|y| \rightarrow \infty}|y|^{n-\alpha} u_{x, \bar{\lambda}(x)}(y)=(\bar{\lambda}(x))^{n-\alpha} u(x)<+\infty, \\
& \lim _{|y| \rightarrow \infty}|y|^{n-\alpha} v(y)=\lim _{|y| \rightarrow \infty}|y|^{n-\alpha} v_{x, \bar{\lambda}(x)}(y)=(\bar{\lambda}(x))^{n-\alpha} v(x)<+\infty,
\end{aligned}
$$

which contradicts with (2.54).
This finishes the proof of Lemma 2.6.
We are now ready to give a proof of Theorem 1.1.

3. Proof of Theorem 1.1

We derive the forms for nonnegative solution (u, v) by discussing two different possible cases. Case (i). $\bar{\lambda}(\bar{z})=+\infty$ for some $\bar{z} \in \mathbb{R}^{n}$.

By Lemma 2.6, one can derive that

$$
\bar{\lambda}(z)=+\infty, \quad \forall z \in \mathbb{R}^{n} .
$$

Thus, for all $z \in \mathbb{R}^{n}$ and $0<\lambda<+\infty$, we have

$$
\begin{aligned}
& u_{z, \lambda}(y) \geq u(y), \quad \forall y \in B_{\lambda}(z) \backslash\{z\}, \quad \forall 0<\lambda<+\infty, \\
& v_{z, \lambda}(y) \geq v(y), \quad \forall y \in B_{\lambda}(z) \backslash\{z\}, \quad \forall 0<\lambda<+\infty .
\end{aligned}
$$

By a calculus lemma (Lemma 11.2 in Li [39]), we conclude that $u=b_{1}, v=b_{2}$ is a constant.
This is a contradiction, therefore Case (i) is impossible.
Case (ii). $\bar{\lambda}(z)<\infty$ for all $z \in \mathbb{R}^{n}$.
By Lemma 2.5, we infer that

$$
\begin{equation*}
u_{z, \bar{\lambda}(z)}(y)=u(y), \quad v_{z, \bar{\lambda}(z)}(y)=v(y), \quad \forall y \in B_{\bar{\lambda}(z)}(z) \backslash\{z\} . \tag{3.1}
\end{equation*}
$$

From a calculus lemma (Lemma 11.1 in Li [39]) and (3.1), we derive that for any $y \in \mathbb{R}^{n}$,

$$
u(y)=\frac{c_{1}}{\left(d^{2}+\left|y-z_{0}\right|^{2}\right)^{\frac{n-\alpha}{2}}},
$$

for some $c_{1}>0, d>0, z_{0} \in \mathbb{R}^{n}$. In a similar way, for any $y \in \mathbb{R}^{n}$, we have

$$
v(y)=\frac{c_{2}}{\left(d^{2}+\left|y-z_{0}\right|^{2}\right)^{\frac{n-\alpha}{2}}},
$$

for some $c_{2}>0, d>0, z_{0} \in \mathbb{R}^{n}$.
Now we verify that F_{1}, F_{2}, G_{1} and G_{2} must be constants. It follows from Lemma 2.5 and (2.42) that

$$
\begin{aligned}
0 & =u_{x, \bar{\lambda}}(y)-u(y) \\
& =\int_{B_{\bar{\lambda}}(x)} K_{1, \bar{\lambda}}(y, z)\left[\bar{P}_{x, \bar{\lambda}}(z) v_{x, \bar{\lambda}}^{p_{2}}(z) F_{2}\left(\left(\frac{\bar{\lambda}}{|z-x|}\right)^{\alpha-n} v_{x, \bar{\lambda}}(z)\right)-P(z) v^{p_{2}}(z) F_{2}(v(z))\right] d z \\
& =\int_{B_{\bar{\lambda}}(x)} K_{1, \bar{\lambda}}(y, z)\left[\bar{P}_{x, \bar{\lambda}}(z) \frac{f_{2}\left(\left(\frac{\bar{\lambda}}{\mid z-x}\right)^{\alpha-n} v_{x, \bar{\lambda}}(z)\right)}{\left(\left(\frac{\bar{\lambda}}{|z-x|}\right)^{\alpha-n} v_{x, \bar{\lambda}}(z)\right)^{p_{2}}}-P(z) \frac{f_{2}(v(z))}{v^{p_{2}}(z)}\right] v^{p_{2}}(z) d z \\
& \geq \int_{B_{\bar{\lambda}}(x)} K_{1, \bar{\lambda}}(y, z) P(z) v^{p_{2}}(z)\left(\frac{f_{2}\left(\left(\frac{\bar{\lambda}}{|z-x|}\right)^{\alpha-n} v_{x, \bar{\lambda}}(z)\right)}{\left(\left(\frac{\bar{\lambda}}{| |-x \mid}\right)^{\alpha-n} v_{x, \bar{\lambda}}(z)\right)^{p_{2}}}-\frac{f_{2}(v(z))}{v^{p_{2}}(z)}\right) d z \\
& \geq 0,
\end{aligned}
$$

where

$$
\begin{align*}
\bar{P}_{x, \bar{\lambda}}(z)-P(z) & =\int_{B_{\bar{\lambda}}(x)} K_{2, \bar{\lambda}}(z, \xi)\left(v_{x, \bar{\lambda}}^{p_{1}}(\xi) F_{1}\left(\left(\frac{\bar{\lambda}}{|x-\xi|}\right)^{\alpha-n} v_{x, \bar{\lambda}}(\xi)\right)-v^{p_{1}}(\xi) F_{1}(v(\xi))\right) d \xi \\
& =\int_{B_{\bar{\lambda}}(x)} K_{2, \bar{\lambda}}(z, \xi) v^{p_{1}}(\xi)\left(\frac{f_{1}\left(\left(\frac{\bar{\lambda}}{|x-\xi|}\right)^{\alpha-n} v_{x, \bar{\lambda}}(\xi)\right)}{\left(\left(\frac{\bar{\lambda}}{|x-\xi|}\right)^{\alpha-n} v_{x, \bar{\lambda}}(\xi)\right)^{p_{1}}}-\frac{f_{1}(v(\xi))}{v^{p_{1}}(\xi)}\right) d \xi \tag{3.2}\\
& \geq 0,
\end{align*}
$$

that is,

$$
\bar{P}_{x, \bar{\lambda}}(z) \frac{f_{2}\left(\left(\frac{\bar{\lambda}}{|z-x|}\right)^{\alpha-n} v_{x, \bar{\lambda}}(z)\right)}{\left(\left(\frac{\bar{\lambda}}{|z-x|}\right)^{\alpha-n} v_{x, \bar{\lambda}}(z)\right)^{p_{2}}}=P(z) \frac{f_{2}(v(z))}{v^{p_{2}}(z)} .
$$

Consequently, it follows that for any $z \in B_{\bar{\lambda}}(x)$, we have

$$
\frac{f_{1}\left(\left(\frac{\bar{\lambda}}{|z-x|}\right)^{\alpha-n} v_{x, \bar{\lambda}}(z)\right)}{\left(\left(\frac{\bar{\lambda}}{|z-x|}\right)^{\alpha-n} v_{x, \bar{\lambda}}(z)\right)^{p_{1}}} \equiv \frac{f_{1}(v(\xi))}{v^{p_{1}}(\xi)},
$$

and

$$
\frac{f_{2}\left(\left(\frac{\bar{\lambda}}{|z-x|}\right)^{\alpha-n} v_{x, \bar{\lambda}}(z)\right)}{\left(\left(\frac{\bar{\lambda}}{|z-x|}\right)^{\alpha-n} v_{x, \bar{\lambda}}(z)\right)^{p_{2}}} \equiv \frac{f_{2}(v(\xi))}{v^{p_{2}}(\xi)} .
$$

Thus, for some positive constant C_{1} and C_{2}, we have

$$
\begin{aligned}
& F_{1}(t)=\frac{f_{1}(t)}{t^{p_{1}}}=C_{1}, \quad t \in\left(0, \max _{x \in \mathbb{R}^{n}} v(x)\right], \\
& F_{2}(t)=\frac{f_{2}(t)}{t^{p_{2}}}=C_{2}, \quad t \in\left(0, \max _{x \in \mathbb{R}^{n}} v(x)\right] .
\end{aligned}
$$

Similarly, we deduce that for some positive constant C_{3} and C_{4},

$$
\begin{aligned}
& G_{1}(t)=\frac{g_{1}(t)}{t^{q_{1}}}=C_{3}, \quad t \in\left(0, \max _{x \in \mathbb{R}^{n}} u(x)\right], \\
& G_{2}(t)=\frac{g_{2}(t)}{t^{q_{2}}}=C_{4}, \quad t \in\left(0, \max _{x \in \mathbb{R}^{n}} u(x)\right] .
\end{aligned}
$$

This completes our proof of Theorem 1.1.

4. Conclusions

In this paper, we obtain the forms of the nonnegative solution and classify nonlinearities by appling a variant (for nonlocal nonlinearity) of the direct moving spheres method for fractional Laplacians.

Acknowledgments

The authors would like to express their sincere thanks to the referees for their valuable suggestions. This work was partially supported by the NNSF of China (No. 11801237), the Natural Foundation of Jiangxi Province (No. 20202BABL211001), and the Fundamental Research Funds for the Central Universities (No. 2020QNBJRC005), the fourth author is also supported by the Educational Committee of Jiangxi Province (No. GJJ180618).

Conflict of interest

The authors declare that they have no competing interests in this paper.

References

1. J. Bertoin, Lévy processes, Cambridge: Cambridge University Press, 1996.
2. J. P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.
3. C. Brandle, E. Colorado, A. de Pablo, U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh, 143A (2013), 39-71.
4. X. Cabré, J. G. Tan, Positive solutions of nonlenear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.
5. L. A. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
6. L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Differ. Equ., 32 (2007), 1245-1260.
7. D. M. Cao, W. Dai, Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 979-994.
8. D. M. Cao, W. Dai, G. L. Qin, Super poly-harmonic properties, Liouville theorems and classification of nonnegative solutions to equations involving higher-order fractional Laplacians, Trans. Amer. Math. Soc., 374 (2021), 4781-4813.
9. S. A. Chang, P. C. Yang, On uniqueness of solutions of n-th order differential equations in conformal geometry, Math. Res. Lett., 4 (1997), 91-102.
10. W. Chen, Y. Fang, R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.
11. W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
12. W. Chen, C. Li, On Nirenberg and related problems-a necessary and sufficient condition, Comm. Pure Appl. Math., 48 (1995), 657-667.
13. W. X. Chen, C. M. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci., 29 (2009), 949-960.
14. W. X. Chen, C. M. Li, Methods on nonlinear elliptic equations, American Institute of Mathematical Sciences, 2010.
15. W. X. Chen, C. M. Li, G. F. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var., 56 (2017), 29.
16. W. X. Chen, C. M. Li, Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
17. W. X. Chen, Y. Li, P. Ma, The fractional laplacian, Hackensack, NJ: World Scitific, 2019.
18. W. X. Chen, C. M. Li, B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
19. W. X. Chen, C. M. Li, B. Ou, Classification of solutions for a system of integral equations, Commun. Part. Differ. Equ., 30 (2005), 59-65.
20. W. X. Chen, Y. Li, R. B. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.
21. W. X. Chen, J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differ. Equ., 260 (2016), 4758-4785.
22. P. Constantin, Euler equations, Navier-Stokes equations and turbulence, In: Mathematical foundation of turbulent viscous flows, Springer, Berlin, Heidelberg, 2006, 1-43.
23. L. Caffarelli, L. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. Math., 171 (2010), 1903-1930.
24. W. Dai, J. H. Huang, Y. Qin, B. Wang, Y. Q. Fang, Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, $D C D S, 39$ (2019), 1389-1403.
25. W. Dai, Y. Q. Fang, G. L. Qin, Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes, J. Differ. Equ., 265 (2018), 2044-2063.
26. W. Dai, Z. Liu, Classification of nonnegative solutions to static Schödinger-Hartree and Schrödinger-Maxwell equations with combined nonlinearities, Calc. Var. PDE, 58 (2019), 156.
27. W. Dai, Z. Liu, G. Z. Lu, Liouville type theorems for PDE and IE systems involving fractional Laplacian on a half space, Potential Anal., 46 (2017), 569-588.
28. W. Dai, Z. Liu, G. L. Qin, Classification of nonnegative solutions to static Schrödinger-HatreeMaxwell type equations, SIAM J. Math. Anal., 53 (2021), 1379-1410.
29. W. Dai, G. L. Qin, Classification of nonnegative classical solutions to third-order equations, $A d v$. Math., 328 (2018), 822-857.
30. Y. Q. Fang, W. X. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., 229 (2012), 2835-2867.
31. R. L. Frank, E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, In: Spectral theory, function spaces and inequalities, Basel: Springer, 2012, 55-67.
32. J. Frohlich, E. Lenzmann, Mean-field limit of quantum bose gases and nonlinear Hartree equation, Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire GoulaouicSchwart", 2003-2004.
33. B. Gidas, W. M. Ni, L. Nirenberg, Symmetry and related properties via maximum principle, Commun. Math. Phys., 68 (1979), 209-243.
34. A. Hanyga, Multidimensional solutions of time-fractional diffusion-wave equations, Proc. R. Soc. Lond. A, 458 (2002), 933-957.
35. Y. Y. Hu, Z. Liu, Classification of positive solutions for an integral system on the half space, Nonlinear Anal., 199 (2020), 111935.
36. S. Kheybari, M. T. Darvishi, M. S. Hashemi, A semi-analytical approach to Caputo type timefractional modified anomalous sub-diffusion equations, Appl. Numer. Math., 158 (2020), 103-122.
37. P. Le, Classification of nonnegative solutions to an equation involving the Laplacian of arbitrary order, DCDS, 41 (2021), 1605-1626.
38. Y. T. Lei, Qualitative analysis for the static Hartree-type equations, SIAM J. Math. Anal., 45 (2013), 388-406.
39. Y. Y. Li, L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. Anal. Math., 90 (2003), 27-87.
40. Y. Y. Li, M. J. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.
41. E. H. Lieb, B. Simon, The Hartree-Fock theory for Coulomb systems, Commun. Math. Phys., 53 (1977), 185-194.
42. E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.
43. C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in \mathbb{R}^{n}, Comment. Math. Helv., 73 (1998), 206-231.
44. S. M. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal.-Theor. 71 (2009), 1796-1806.
45. Z. Liu, Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains, J. Differ. Equ., 270 (2021), 1043-1078.
46. Z. Liu, Symmetry and monotonicity of positive solutions for an integral system with negative exponents, Pac. J. Math., 300 (2019), 419-430.
47. Z. Liu, W. Dai, A Liouville type theorem for poly-harmonic system with Dirichlet boundary conditions in a half space, Adv. Nonlinear Studi., 15 (2015), 117-134.
48. L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467.
49. P. Padilla, On some nonlinear elliptic equations, Doctoral dissertation, Thesis, New York: Courant Institute, 1994.
50. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton, New Jersey: Princeton University Press, 1970.
51. J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304318.
52. J. C. Wei, X. W. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.
53. D. Y. Xu, Y. T. Lei, Classification of positive solutions for a static Schrödinger-Maxwell equation with fractional Laplacian, Appl. Math. Lett., 43 (2015), 85-89.
54. R. Zhuo, W. X. Chen, X. W. Cui, Z. X. Yuan, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, $\operatorname{DCDS}, 36$ (2016), 1125-1141.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
