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1. Introduction

Due to the wide application in many disciplines such as the fields of physics, chemistry, automatic
control, signal processing, soft matter research, aerodynamics, etc., the fractional calculus have been
widely studied recently. An extensive literature can be found related to the fractional differential
equation systems [19,22].The solvability of boundary value problems(BVPs) with fractional derivative
are studied with various tools, specially, with topological degree, fixed-point theory, the continuation
theorems, and other nonlinear functional analysis method. For example, see fractional two-point BVPs
[8], fractional BVPs at resonance, fractional multi-point problems at nonresonance [12,14], fractional
initial value problems, fractional impulsive problems [14], fractional integral BVPs [9], fractional p-
Laplace problems [4,10,13,15–18], fractional BVPs with the Caputo-Fabrizio derivative [1–3,5], etc.

Zhang [20] has given the solvability results to the BVPs with Caputo fractional derivative

CDαy(x) = f (x, y), x ∈ (0, 1), 1 < α ≤ 2,
y(0) + y′(0) = y(1) + y′(1) = 0,
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by using some fixed point Theorems.
Salem [12] has researched the solvability of the following nonlinear m-point fractional BVPs

Dαy(x) + r(x) f (x, y(x)) = 0, a.e. x ∈ [0, 1], n − 1 < α ≤ n, n ≥ 2,

y(0) = y′(0) = y′′(0) = · · · = y(n−2)(0) = 0, y(1) =

m−2∑
i=1

aiy(xi),

where 0 < x1 < x2 < · · · < xm−2 < 1, ai > 0 and
m−2∑
i=1

aixα−1
i < 1.

Based upon the above research, some authors studied the differential equations with p-Laplacian by
the use of the topological method, Leray-Schauder Continuation theorems, fixed-point index theory,
etc. For example, in [15], the solvability of BVPs of RL-fractional differential equations with p-
Laplacian

Dγ(φp(Dαy(x))) = f (x, y(x)), x ∈ (0, 1),
y(0) = Dαy(0) = 0, Dβy(1) = aDβy(ξ), Dαy(1) = bDαy(η),

is discussed, where Dα is the RL-fractional differentiation and the function f : [0, 1] × [0,+∞) →
[0,+∞) is continuous. Using a monotone iterative technique, some solvability results are given. We
refer the readers to [4,10,13,15,16] for details.

This work is devoted to the study of the solvability of some p-Laplacian BVPs with Caputo
fractional derivative

CDβ(φp(CDαy(x))) = f (x, y(x)), x ∈ (0, 1), (1.1)
y(0) + y′(0) = 0, y(1) + y′(ξ) = 0, y′′(0) = 0, CDαy(0) = 0, (1.2)

where 2 < α < 3, 0 < β < 1, 0 < ξ < 1, φp(t) = |t|p−2t, p > 1, f ∈ C([0, 1] × [0,+∞)) is nonnegative,
CDq is the Caputo fractional derivative. With the use of some fixed point theorems and properties of
the corresponding completely continuous operator, some solvability results of the problem considered
are obtained.

2. Preliminaries and lemmas

Definition 2.1. [11] The Caputo fractional derivative of order γ of the function f : [0,∞) → R is
defined as

CDγ f (x) =
1

Γ(n − γ)

∫ x

0

f (n)(t)
(x − t)γ−n+1 dt, n = [γ] + 1,

here [γ] is the integer part of real number γ.

Definition 2.2. [11] The RL fractional integral of order γ of the function f : [0,∞) → R is defined
as

Iγ f (x) =
1

Γ(γ)

∫ x

0
(x − t)γ−1 f (t)dt, γ > 0,

provided the integral exists.
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Lemma 2.1. [11] Let γ > 0, n = [γ] + 1, the equation

CDγ f (x) = 0

has solution f (x) = c0 + c1x + c2x2 + · · · + cn−1xn−1, ci ∈ R, i = 0, 1, 2, · · · , n − 1 .

Lemma 2.2. [11] Let γ > 0, n = [γ] + 1, then there holds

IγCDγ f (x) = f (x) + c0 + c1x + c2x2 + · · · + cn−1xn−1

for ci ∈ R, i = 0, 1, 2, · · · , n − 1 .

Lemma 2.3 Given h ∈ C[0, 1], 2 < α < 3, 0 < β < 1, 0 < ξ < 1. A function y solves the BVPs

CDβ(φp(CDαy(x))) = h(x), x ∈ (0, 1), (2.1)
y(0) + y′(0) = 0, y(1) + y′(ξ) = 0, y′′(0) = 0, CDαy(0) = 0, (2.2)

iff y solves the following equation

y(x) =

∫ 1

0
G(x, t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt,

where φq = (φp)−1, 1
p + 1

q = 1, and

G(x, t) =


(x−t)α−1+(1−x)(1−t)α−1+(α−1)(1−x)(ξ−t)α−2

Γ(α) , 0 ≤ t ≤ x ≤ 1, t ≤ ξ,
(x−t)α−1+(1−x)(1−t)α−1

Γ(α) , 0 < ξ ≤ t ≤ x ≤ 1,
(1−x)(1−t)α−1+(α−1)(1−x)(ξ−t)α−2

Γ(α) , 0 ≤ x ≤ t ≤ ξ < 1,
(1−x)(1−t)α−1

Γ(α) , 0 ≤ x ≤ t ≤ 1, ξ ≤ t.

(5)

Proof By Lemma 2.2, we have

φp(CDαy(x)) = Iβh(x) − c =
1

Γ(β)

∫ x

0
(x − t)β−1h(t)dt − c

for some c ∈ R. Note that CDαy(0)) = 0, we have c = 0. So, we obtain

CDαy(x) = φq

(
1

Γ(β)

∫ x

0
(x − t)β−1h(t)dt

)
.

By the use of the Lemma 2.2, we holds

y(x) = Iαφq

(
1

Γ(β)

∫ x

0
(x − t)β−1h(t)dt

)
− d1 − d2x − d3x2

=
1

Γ(α)

∫ x

0
(x − t)α−1φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt − d1 − d2x − d3x2,
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for some d1, d2, d3 ∈ R. From above formula, one has

y′(x) =
1

Γ(α − 1)

∫ x

0
(x − t)α−2φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt − d2 − 2d3x,

y′′(x) =
1

Γ(α − 2)

∫ x

0
(x − t)α−3φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt − 2d3.

By y′′(0) = 0, we obtain d3 = 0, and further the boundary conditions y(0)+y′(0) = 0 and y(1)+y′(ξ) = 0
yields that

d1 + d2 = 0,

and

d1 + 2d2 =
1

Γ(α)

∫ 1

0
(1 − t)α−1φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt

+
1

Γ(α − 1)

∫ ξ

0
(ξ − t)α−2φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt.

Hence,

d1 = −
1

Γ(α)

∫ 1

0
(1 − t)α−1φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt

−
1

Γ(α − 1)

∫ ξ

0
(ξ − t)α−2φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt,

d2 =
1

Γ(α)

∫ 1

0
(1 − t)α−1φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt

+
1

Γ(α − 1)

∫ ξ

0
(ξ − t)α−2φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt.

So, we have

y(x) =
1

Γ(α)

∫ x

0
(x − t)α−1φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt

+
1 − x
Γ(α)

∫ 1

0
(1 − t)α−1φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt

+
1 − x

Γ(α − 1)

∫ ξ

0
(ξ − t)α−2φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt

=

∫ 1

0
G(x, t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1h(s)ds

)
dt.

Thus, the Lemma hold.

Lemma 2.4 The function G(x, t) satisfy:
(1) G(x, t) is continuous on C([0, 1] × [0, 1]), and positive for x, t ∈ (0, 1);
(2) min

1/4≤x≤3/4
G(x, t) ≥ ϕ(t), max

0≤x≤1
G(x, t) ≤ ω(t),

where

ϕ(t) =
(1 − t)α−1

4Γ(α)
, ω(t) =

2(1 − t)α−2(2 − t)
Γ(α)

, t ∈ [0, 1]. (6)
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Proof By the definition of the function G(x, t), the property (1) is clear.
Setting

g1(x, t) =
(x − t)α−1 + (1 − x)(1 − t)α−1 + (α − 1)(1 − x)(ξ − t)α−2

Γ(α)
,

for 0 ≤ t ≤ x ≤ 1, t ≤ ξ;

g2(x, t) =
(x − t)α−1 + (1 − x)(1 − t)α−1

Γ(α)
,

for 0 < ξ ≤ t ≤ x ≤ 1;

g3(x, t) =
(1 − x)(1 − t)α−1 + (α − 1)(1 − x)(ξ − t)α−2

Γ(α)
,

for 0 ≤ x ≤ t ≤ ξ < 1;

g4(x, t) =
(1 − x)(1 − t)α−1

Γ(α)
,

for 0 ≤ x ≤ t ≤ 1.
By the expression of the gi(x, t), i = 1, 2, 3, 4, one can check that

min
1/4≤x≤3/4

gi(x, t) ≥
(1 − t)α−1

4Γ(α)
, i = 1, 2, 3, 4,

max
0≤x≤1

gi(x, t) ≤
2(1 − t)α−1 + 2(1 − t)α−2

Γ(α)

=
2(1 − t)α−2(2 − t)

Γ(α)
, i = 1, 2, 3, 4.

So, we obtain

min
1/4≤x≤3/4

G(x, t) ≥
(1 − t)α−1

4Γ(α)
:= ϕ(t), t ∈ [0, 1],

max
0≤x≤1

G(x, t) ≤
2(1 − t)α−2(2 − t)

Γ(α)
:= ω(t), t ∈ [0, 1].

The Lemma hold now.

Lemma 2.5. [6] Let X be an order Banach space, K ⊂ X is a cone, and that Ω1,Ω2 are bounded
open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let T : K → K be a completely continuous operator
such that either

(A1) ‖Ty‖ ≤ ‖y‖, y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≥ ‖y‖, y ∈ K ∩ ∂Ω2, or
(A2) ‖Ty‖ ≥ ‖y‖, y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≤ ‖y‖, y ∈ K ∩ ∂Ω2

Then, T has a fixed point in K ∩Ω2\Ω1.

Lemma 2.6. [7] Let K be a cone in a real Banach space X,Kc = {y ∈ K | ‖y‖ ≤ c}, θ be a
nonnegative continuous concave functional on a cone K such that θ(y) ≤ ‖y‖, for all y ∈ Kc, and
K(θ, b, d) = {y ∈ K | b ≤ θ(y), ‖y‖ ≤ d}. Suppose T : Kc → Kc is completely continuous and there exist
constants 0 < a < b < d ≤ c such that

(B1) {y ∈ K(θ, b, d) | θ(y) > b} , ∅ and θ(Ty) > b for y ∈ K(θ, b, d);
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(B2) ‖Ty‖ < a for ‖y‖ ≤ a;
(B3) θ(Ty) > b for y ∈ K(θ, b, c) with ‖Ty‖ > d.

Then T has at least three fixed points y1, y2, y3 satisfying
‖y1‖ < a, b < θ(y2) and ‖y3‖ > a with θ(y3) < b.

3. Existence of positive solutions

Let X = C[0, 1] with the norm ‖y‖ = max
0≤x≤1

|y(x)|. The cone K ⊂ X is defined as K = {y ∈ X | y(x) ≥

0, 0 ≤ x ≤ 1} and the continuous concave functional θ on the K defined as

θ(y) = min
1
4≤x≤ 3

4

|y(x)|.

Lemma 3.1 Suppose T : K → X be defined by

Ty(x) =

∫ 1

0
G(x, t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, y(s))ds

)
dt.

Then T : K → K is completely continuous.

Proof Taking into account that two functions G(x, t) and f (x, y) are all nonnegative and continuity
in their domain, one has the operator T : K → K and it is continuous. Furthermore, by the use
of Lebesgue dominated convergence Theorem and Ascoli-Arzela Theorem, a standard argument can
show that T : K → K is completely continuous operator (see, for example, [21]).

For the convenience , the following notations are introduced.

χ(h) = max{ f (x, y), (x, y) ∈ [0, 1] × [0, h]},

ψ(h) = min{ f (x, y), (x, y) ∈ [0, 1] × [0, h]},

M−1 =

∫ 1

0
ω(t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1ds

)
dt,

N−1 =

∫ 1

0
ϕ(t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1ds

)
dt.

where ϕ(t), ω(t) are defined as (6) and f ∈ C([0, 1] × [0,+∞), [0,+∞)).

Theorem 3.1 Suppose that f : [0, 1]× [0,+∞)→ [0,+∞) is a continuous function, and there exists
two constants 0 < k < d such that

χ(d) ≤ φp(dM), ψ(k) ≥ φp(kN).

Then BVPs (1), (2) have at least one solution y ∈ K satisfying k ≤ ‖y‖ ≤ d.
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Proof We will use Lemma 2.5 to obtain the results. The proof is separated into two steps.
Step 1 Let Ωd = {y ∈ K | ‖y‖ < d}. For any y ∈ ∂Ωd, we have ‖y‖ = d and f (x, y(x)) ≤ χ(d) ≤

φp(dM) for (x, y) ∈ [0, 1] × [0, d]. Hence,

‖Ty‖ = max
0≤x≤1

|Ty(x)|

= max
0≤x≤1

∫ 1

0
G(x, t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, y(s))ds

)
dt

≤

∫ 1

0
ω(t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1φp(dM)ds

)
dt

= dM
∫ 1

0
ω(t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1ds

)
dt

= d.

That is to say that,
‖Ty‖ ≤ ‖y‖, ∀y ∈ ∂Ωd.

Step 2 Let Ωk = {y ∈ K | ‖y‖ < k}. For any y ∈ ∂Ωk, we have ‖y‖ = k and f (x, y(t)) ≥ ψ(k) ≥ φp(kN)
for (x, y) ∈ [0, 1] × [0, k]. Hence,

‖Ty‖ = max
0≤x≤1

|Ty(x)|

≥ min
1/4≤x≤3/4

|Ty(x)|

= min
1/4≤x≤3/4

∫ 1

0
G(x, t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, y(s))ds

)
dt

≥

∫ 1

0
ϕ(t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1φp(kN)ds

)
dt

≥ kN
∫ 1

0
ϕ(t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1ds

)
dt

= k.

That is to say that,
‖Ty‖ ≥ ‖y‖, ∀y ∈ ∂Ωk.

Combining step 1, step 2 and Lemma 2.5, one obtains the results that the operator T has at least
one fixed point y ∈ K ∩ Ωd\Ωk. Consequently, the BVPs (1),(2) have at least one solution y satisfying
k ≤ ‖y‖ ≤ d.

Theorem 3.2 Suppose that f : [0, 1] × [0,+∞) → [0,+∞) is a continuous function and there exist
constants 0 < a < b < c such that the following three assumptions hold

(C1) f (x, y) < φp(Ma), for (x, y) ∈ [0, 1] × [0, a];
(C2) f (x, y) > φp(Nb), for (x, y) ∈ [ 1

4 ,
3
4 ] × [b, c];

(C3) f (x, y) ≤ φp(Mc), for (x, y) ∈ [0, 1] × [0, c].
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Then the BVPs (1), (2) possess three non-negative solutions y1, y2 and y3 such that

0 ≤ y1(x) ≤ max
0≤x≤1

|y1(x)| < a,

b < min
1/4≤x≤3/4

|y2(x)| < max
0≤x≤1

|y2(x)| ≤ c,

a < max
0≤x≤1

|y3(x)| ≤ c, min
1/4≤x≤3/4

|y3(x)| < b.

Proof We will use Lemma 2.6 to obtain the multiplicity results.
Step 1. Firstly, for any y ∈ Kc, there is ‖y‖ ≤ c. Then the assumption (C3) yields that f (x, y(x)) ≤

φp(Mc) for 0 ≤ x ≤ 1. So,

‖Ty‖ = max
0≤x≤1

∣∣∣∣∣∣
∫ 1

0
G(x, t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, y(s))ds

)
dt

∣∣∣∣∣∣
≤

∫ 1

0
ω(t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1φp(Mc)ds

)
dt

= Mc
∫ 1

0
ω(t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1ds

)
dt

= c.

Hence the operator T : Kc → Kc.
Step 2 Secondly, We claim that the condition (B1) of Lemma 2.6 hold. Choosing y0(x) = (b + c)/2

aconstant function. It is clear that y0(x) ∈ K(θ, b, c), θ(y0) > b. That is to say that the set {y ∈ K(θ, b, c) |
θ(y) > b} is not empty. Moreover, for y ∈ K(θ, b, c), there holds b ≤ y(x) ≤ c for 1

4 ≤ x ≤ 3
4 . Then, the

assumption (C2) yields that
f (x, y(x)) > φp(Nb), for y ∈ K(θ, b, c)

So

θ(Ty) = min
1
4≤x≤ 3

4

|(Ty)(x)|

= min
1/4≤x≤3/4

∫ 1

0
G(x, t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, y(s))ds

)
dt

>

∫ 1

0
ϕ(t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1φp(Nb)ds

)
dt

= bN
∫ 1

0
ϕ(t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1ds

)
dt

= b.

Then, we have
θ(Ty) > b, ∀y ∈ K(θ, b, c).

The above arguments implies that the condition (B1) of Lemma 2.6 holds.
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Step 3 Thirdly, for y ∈ Ka, there holds ‖y‖ ≤ a. Then, the Assumption (C1) implies that f (x, y(x)) <
φp(Ma) for all 0 ≤ x ≤ 1. Thus

‖Ty‖ = max
0≤x≤1

∣∣∣∣∣∣
∫ 1

0
G(x, t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, y(s))ds

)
dt

∣∣∣∣∣∣
<

∫ 1

0
ω(t)φq

(
1

Γ(β)

∫ t

0
(t − s)β−1φp(Ma)ds

)
dt

= Ma
∫ 1

0
ω(t)φq

(∫ 1

0
(t − s)β−1ds

)
dt

= a.

That is to say that
‖Ty‖ < a, for all y ∈ Ka,

i.e., the condition (B2) of Lemma 2.6 is also satisfied.
Step 4 At last, we claim that the condition (B3) of Lemma 2.6 holds too. If y ∈ K(θ, b, c), taking

into account Step 2 , there holds θ(Ty) > b. Consequently, the condition (B3) of Lemma 2.6 holds.
The above four steps show that all the conditions By Lemma 2.6 hold. Thus, the BVPs (1),(2)

possess three non-negative solutions y1, y2 and y3 such that

0 ≤ y1(x) ≤ max
0≤x≤1

|y1(x)| < a,

b < min
1
4≤x≤ 3

4

|y2(x)| < max
0≤x≤1

|y2(x)| ≤ c,

a < max
0≤x≤1

|y3(x)| ≤ c, min
1
4≤x≤ 3

4

|y3(x)| < b.

The Theorem is proven.

4. Some examples

In the section, we give two examples to illustrate the main results obtained for BVPs (1),(2) in the
section 3.

Let p = 3
2 , α = 5

2 , β = 1
2 , ξ = 1

2 . By simple computation, we have

M ≈ 1.3703, N ≈ 36.5412.

Example 4.1 Consider the following BVPs: CD
1
2 (φ 3

2
(CD

5
2 y(x))) =

y2

9 + x
3
2

39 + 38
39 , 0 < x < 1,

y(0) + y′(0) = 0, y(1) + y′(1
2 ) = 0, y′′(0) = 0, CDαy(0)) = 0.

(4.1)

It is clear that the real function

f (x, y) =
y2

9
+

x
3
2

39
+

38
39
,
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is nonnegative continuous on [0, 1] × [0,+∞). Choosing d = 3, k = 1
39 , one can check that χ(d) ≤

2 < φp(dM) ≈ 2.0275 and ψ(k) ≥ 38
39 ≈ 0.9744 > φp(kN) ≈ 0.9680. By theorem 3.1, the BVPs (4.1)

possess one positive solution y such that 1
39 ≤ ‖y‖ ≤ 3.

Example 4.2 Consider the following BVPs: CD
1
2 (φ 3

2
(CD

5
2 y(x))) = f (x, y(x)), 0 < x < 1,

y(0) + y′(0) = 0, y(1) + y′( 1
2 ) = 0, y′′(0) = 0, CDαy(0)) = 0,

(4.2)

where

f (x, y) =

{ 1
6 x2 + 7y2, y < 1,
1
6 x2 + 1

60y + 419
60 , y ≥ 1.

Choosing a = 1
36 , b = 1, c = 60, then the function f (x, y) satisfies the following three conditions

(1) f (x, y) = 1
6 x2 + 7y2 < 0.1721 < φp(Ma) ≈ 0.1951, for (x, y) ∈ [0, 1] × [0, 1

36 ];
(2) f (x, y) = 1

6 x2 + 1
60y + 419

60 > 7.0104 > φp(Nb) ≈ 6.0449, for (x, y) ∈ [1
4 ,

3
4 ] × [1, 60];

(3) f (x, y) = 1
6 x2 + 1

60y + 419
60 < 8.1500 < φp(Mc) ≈ 9.0674, for (x, y) ∈ [0, 1] × [0, 60].

That is to say that all conditions of Theorem 3.2 hold. Then, Theorem 3.2 yields that the BVPs (4.2)
possess three non-negative solutions y1, y2 and y3 such that

0 ≤ y1(x) ≤ max
0≤x≤1

|y1(x)| <
1
36
, 1 < min

1/4≤x≤3/4
|y2(x)| < max

0≤x≤1
|y2(x)| ≤ 60,

1
36

< max
0≤x≤1

|y3(x)| ≤ 60, min
1/4≤x≤3/4

|y3(x)| < 1.

5. Conclusions

The present paper concentrated the solvability of some p-Laplace boundary value problems with
Caputo fractional derivative. In this work, we obtained some existence results of one or three non-
negative solutions by using the fixed-point theory. At the last we yielded two examples which fulfills
our findings.
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