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1. Definition and notations

The special polynomials and numbers play an important role in many branches of mathematics
such as combinatorics, computer science, statistics, etc. The generating functions of the special
polynomials are used in the investigation of numerous properties satisfied by polynomials. A large
number of indispensable special polynomials such as the Bernoulli, Euler and monic Hermite
polynomials belong to the Appell class of sequences. These polynomials play crucial roles in many
aspects, most importantly, they provide solutions to certain specified problems of physics, engineering
and mathematics (see for more details [5–9, 21, 22, 34, 35]).
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Throughout this paper, we use the following standard notations: N := {1, 2, 3, · · · },N0 := N ∪
{0} := {0, 1, 2, 3, · · · },Z− := {−1,−2,−3, · · · },Z denotes the set of integers and R denotes the set of real
numbers.

The generating function of the Euler polynomials Eq(v) [23], which arise in various classical and
numerical analysis (and also of analytic number theory) is defined as:

2
ew + 1

evw =

∞∑
q=0

Eq(v)
wq

q!
, (|w| < π). (1.1)

The corresponding Euler numbers (appear in the Taylor series expansions of the secant and the
hyperbolic secant functions) Eq := Eq(0) are given as:

2
ew + 1

=

∞∑
q=0

Eq
wq

q!
, (|w| < π). (1.2)

Recently, Kim et al., [31] introduced the Changhee polynomials and numbers and established
certain explicit formulae and identities for these polynomials. The Changhee polynomials Chq(v) are
specified by the following generating function [31]:

2
2 + w

(1 + w)v =

∞∑
q=0

Chq(v)
wq

q!
, (1.3)

which for v = 0 gives the corresponding Changhee numbers Chq := Chq(0). Thereafter, Lee et al.,
[32] introduced a new form of Changhee polynomials, called the Appell-type Changhee polynomials
Ch∗q(v), and defined by the following generating equation [32]:

2
2 + w

evw =

∞∑
q=0

Ch∗q(v)
wq

q!
, (1.4)

and have the following explicit relation [32, P3, Theorem 1]:

Ch∗q(v) =

q∑
p=0

(
q
p

)
Ch∗q vq−p, (1.5)

where Ch∗q := Ch∗q(0) are the corresponding Appell-type Changhee numbers:

2
2 + w

=

∞∑
q=0

Ch∗q
wq

q!
. (1.6)

The above Appell-type Changhee numbers Ch∗q satisfy the following relation [32, P4, Theorem 4]:

2Ch∗q + qCh∗q−1 = 0, in the case when q ≥ 1, (1.7)

with initial condition Ch∗0 = 1.
Motivated by the work of Kim et al., [24, 26–31] and Lee et al., [31, 32], in this paper we introduce

the generating function of the Appell-type Changhee-Euler polynomials (ATCEP) and derive its
properties.
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2. Appell-type Changhee-Euler polynomials

In this section, the Appell-type Changhee-Euler polynomials (ATCEP), denoted by ChE∗q(v) are
introduced and certain properties of these polynomials are established.
Definition 1. The Appell-type Changhee-Euler polynomials ChE∗q(v) are defined by the following
generating relation:

4
(ew + 1)(2 + w)

evw =

∞∑
q=0

ChE∗q(v)
wq

q!
. (2.1)

Utilizing Eqs (1.1) and (1.6) in the left hand side of generating function (2.1) and then using Cauchy-
product rule in the left hand side of the obtained equation, we get

∞∑
q=0

q∑
l=0

(
q
l

)
El(v) Ch∗q−l

wq

q!
=

∞∑
q=0

ChE∗q(v)
wq

q!
.

Comparing the coefficients of identical powers of w in both sides of the foregoing equation, we get
the following series expansion for Appell-type Changhee-Euler polynomials ChE∗q(v):

q∑
l=0

(
q
l

)
El(v) Ch∗q−l = ChE∗q(v). (2.2)

Motivated by the importance of the Euler numbers [36, 38] in various branches of mathematics
specially in number theory and combinatorics, we introduce the numbers related to the polynomial
families introduced here. Taking v = 0 in series definition (2.2) of the ATCEP ChE∗q(v) and using
notation:

ChE∗q := ChE∗q(0), (2.3)

in the left hand side, we get the following series form for Appell-type Changhee-Euler number
(ATCEN) ChE∗q:

q∑
l=0

(
q
l

)
El Ch∗q−l = ChE∗q. (2.4)

Also, we find the following generating functions for ATCEN ChE∗q:

4
(ew + 1)(2 + w)

=

∞∑
q=0

ChE∗q
wq

q!
. (2.5)

Theorem 2.1. Let u, v ∈ C and q ∈ N0, then the following addition formulas hold:

ChE∗q(u + v) =

q∑
p=0

(
q
p

)
Ep(u) Ch∗q−p(v). (2.6)

ChE∗q(u + v) =

q∑
p=0

(
q
p

)
uq−p ChE∗p(v). (2.7)
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Proof. Replacing v by u + v in Eq (2.1), we get(
2

ew + 1

)(
2

2 + w

)
e(v+u)w =

∞∑
q=0

ChE∗q(v + u)
wq

q!
, (2.8)

which on using Eqs (1.4) and (1.1) in the l.h.s. and then on comparing the coefficients of the identical
powers of w in both sides of the obtained relation, we get assertion (2.6).

Equation (2.8) can be written as
∞∑

q=0

ChE∗q(v + u)
wq

q!
=

4
(ew + 1)(2 + w)

evw euw, (2.9)

which on using Eq (2.1) and expanding the second exponential of the right side gives
∞∑

q=0

ChE∗q(v + u)
wq

q!
=

∞∑
q=0

(uw)q

q!

∞∑
p=0

ChE∗p(v)
wp

p!
. (2.10)

Using the Cauchy product rule on the right side of Eq (2.10) and on comparing the coefficients of
w, we are lead to assertion (2.7).

Theorem 2.2. Let q ∈ N0 and v ∈ C, then the following identities hold true:

2 Eq(v) = 2 Ch∗Eq(v) + q ChE∗q−1(v). (2.11)

2 Ch∗q(v) = Ch∗Eq(v) +

q∑
p=o

(
q
p

)
ChE∗q−p(v). (2.12)

ChE∗q(v) =

q∑
p=0

(
q
p

)
(−1)p p! Eq−p(v)

2p . (2.13)

ChE∗q(v) =

q∑
p=0

(
q
p

)
ChE∗q−p(v)p. (2.14)

ChE∗q(v) =

q∑
p=0

(
q
p

)
Ch∗q−p

(v
2

)
Ep

(v
2

)
. (2.15)

d
dv
ChE∗q(v) = q ChE∗q−1(v). (2.16)

dp

dvpChE∗q(v) =
q!

(q − p)!
ChE∗q−p(v). (2.17)∫ v

a
ChE∗q−1(u)du =

1
q

(
ChE∗q(v) − ChE∗q(a)

)
. (2.18)

ChE∗q =

q∑
p=0

(
q
p

)
(−v)p ChE∗q−p(v). (2.19)

2 Ch∗q =

q∑
p=0

(
q
p

)
ChE∗q−p(v)(−v)p

(
1 +

(
1 −

1
v

)p)
. (2.20)
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Proof. These identities are easily derivable with the help of generating Eqs (1.1), (1.4) and (2.1) by
manipulating double series. Now, rewriting the generating Eq (2.1) as

4
(ew + 1)(2 + w)

=

∞∑
q=0

ChE∗q(v)
wq

q!
(
e−vw) , (2.21)

which on using generating relation (2.5) in the l.h.s. and expanding the exponential on the r.h.s. and
then on equating the coefficients of identical powers of w in both sides, we are led to assertion (2.19).

From Eq (2.21), we have

4
2 + w

=

∞∑
q=0

ChE∗q(v)
wq

q!
(
e−vw(ew + 1)

)
, (2.22)

which on using generating relation (1.6) in l.h.s. and expanding the exponentials on the r.h.s. and
then on equating the coefficients of identical powers of w in both sides of the obtained result, yields
assertion (2.20).

Many researchers have established the determinant form of certain special and q-special
polynomials [4, 12, 16, 18–20, 33]. Costabile [10, 11, 13] has given several approaches to Bernoulli
polynomials. An important approach based on a determinant definition was given in [10]. This
approach is further extended to provide determinant definitions of the Appell and Sheffer polynomial
sequences by Costabile and Longo in [12] and [14] respectively. Motivated by the recent work on the
determinant approaches, here we give the determinant representation of ATCEP ChE∗q(v). We recall
the determinant form of the Euler polynomials Eq(v):

The Euler polynomials Eq(v) of degree q = 0, 1, 2, · · · are defined by

E0(v) = 1,

Eq(v) = (−1)q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 v v2 · · · vq−1 vq

1 1
2

1
2 · · · 1

2
1
2

0 1 1
2

(
2
1

)
· · · 1

2

(
q−1

1

)
1
2

(
q
1

)
0 0 1 · · · 1

2

(
q−1

2

)
1
2

(
q
2

)
. . . · · · . .

. . . · · · . .

0 0 0 · · · 1 1
2

(
q

q−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, q = 1, 2, ....
(2.23)
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Definition 2. The Appell-type Changhee-Euler polynomials ChE∗q(v) of degree q are defined by

ChE∗0(v) = 1,

ChE∗q(v) = (−1)q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ch∗1(v) Ch∗2(v) · · · Ch∗q−1(v) Ch∗q(v)

1 1
2

1
2 · · · 1

2
1
2

0 1 1
2

(
2
1

)
· · · 1

2

(
q−1

1

)
1
2

(
q
1

)
0 0 1 · · · 1

2

(
q−1

2

)
1
2

(
q
2

)
. . . · · · . .

. . . · · · . .

0 0 0 · · · 1 1
2

(
q

q−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, q = 1, 2, ....
(2.24)

where the Appell-type Changhee polynomials Ch∗q(v) (q = 0, 1, 2, ...) are given by Eq (1.4).
In the forthcoming section, a family of linear differential equations arising from the generating

function of ATCEN ChE∗q is derived by following the approach presented in [26].

3. Differential equations

Differential equations, besides playing important role in pure mathematics, constitute fundamental
part of mathematical description of physical processes. Thus, obtaining the solutions for differential
equations is of paramount importance. Few types of differential equations allow explicit and
straightforward analytical solutions. Many researchers obtained the differential equations for special
polynomials and numbers utilizing their generating functions [17, 25, 30].

Theorem 3.1. For n ∈ N the following family of differential equations for Appell-type Changhee-Euler
polynomials ChE∗q(v) holds true:

n∑
j=1

β j(n)ewG( j−1)(w) + (ew + 1)G(n)(w) = (−1)n β0(n)
(2 + w)(n+1) , (3.1)

where G(n)(w) :=
( d

dw

)nG(w),

G = G(w) =
4

(ew + 1)(2 + w)
, (3.2)

β0(n) = 4 n!, β1(n) = 1, βn(n) = n, (3.3)

and

βi(n + 1) = 1 +

n−i+1∑
j1=0

βi−1(n − j1), (2 ≤ i ≤ n). (3.4)

Proof. Let

G = G(w) =
4

(ew + 1)(2 + w)
,
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which can be rewritten as:
(ew + 1)G(w) =

4
2 + w

. (3.5)

Taking the derivative of Eq (3.5) with respect to w, it follows that:

(ew + 1)G(1)(w) + ewG(w) = (−1)
4

(2 + w)2 , (3.6)

Again, by taking the derivative with respect to w of Eq (3.6), we find

(ew + 1)G(2)(w) + 2ewG(1)(w) + ewG(w) = (−1)2 8
(2 + w)3 , (3.7)

and consequently

(ew + 1)G(3)(w) + 3ewG(2)(w) + 3ewG(1)(w) + ewG(w) = (−1)3 24
(2 + w)4 . (3.8)

Continuing this process, we find

n∑
j=1

β j(n)ewG( j−1)(w) + (ew + 1)G(n)(w) = (−1)n β0(n)
(2 + w)(n+1) . (3.9)

Further, taking the derivative with respect to w of Eq (3.9), we get

β1(n)ewG(w) +

n∑
j=2

ew(β j(n) + β j−1(n))G( j−1)(w) + (βn(n) + 1)ewG(n)(w)

+ (ew + 1)G(n+1)(w) = (−1)n+1(n + 1)β0(n)(2 + w)−(n+2).

(3.10)

Replacing n by n + 1, Eq (3.9) may be rewritten as:

n+1∑
j=1

β j(n + 1)ewG( j−1)(w) + (ew + 1)G(n+1)(w)

= (−1)n+1 β0(n + 1)
(2 + w)(n+2) .

(3.11)

Comparison of the coefficients of G(i)’s on both sides of Eqs (3.10) and (3.11), yields the following
recursive formulas:

β0(n + 1) = (n + 1)β0(n), (3.12)

β1(n + 1) = β1(n), (3.13)

β j(n + 1) = β j(n) + β j−1(n), (2 ≤ j ≤ n) (3.14)

and
βn+1(n + 1) = βn(n) + 1. (3.15)
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From Eqs (3.6) and (3.9), we have

β0(1) = 4, β1(1) = 1. (3.16)

Again, from Eq (3.12), we note that

β0(n + 1) = (n + 1)β0(n) = (n + 1)nβ0(n) = . . . = (n + 1)n(n − 1). . .2.1 β0(1),

that is
β0(n + 1) = 4 (n + 1)! . (3.17)

In view of Eq (3.13), we have

β1(n + 1) = β1(n) = β1(n − 1) = . . . = β1(1) = 1. (3.18)

Further, from Eq (3.15), it follows that:

βn+1(n + 1) = βn(n) + 1 = βn−1(n − 1) + 2 = . . . = β1(1) + n,

that is
βn+1(n + 1) = 1 + n. (3.19)

Taking j = 2 in Eq (3.14), we find

β2(n + 1) = β2(n) + β1(n) = β2(n − 1) + β1(n − 1) + β1(n)

= . . . =

n−2∑
j=0

β1(n − j) + β2(2),

that is

β2(n + 1) = 1 +

n−1∑
j=0

β1(n − j). (3.20)

Similarly, for j = 3 Eq (3.14) gives

β3(n + 1) = 1 +

n−2∑
j=0

β2(n − j), (3.21)

consequently for j = 4, we have

β4(n + 1) = 1 +

n−3∑
j=0

β3(n − j). (3.22)

Continuing this process, we deduce that

βi(n + 1) = 1 +

n−i+1∑
j1=0

βi−1(n − j1), (2 ≤ j ≤ n). (3.23)

Equation (3.9) together with Eqs (3.17), (3.18) and (3.23) completes the proof of Theorem 3.1. �
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Theorem 3.2. For i, n ∈ N, p ∈ N0 the following identity for the Appell-type Changhee-Euler numbers
ChE∗q holds true:

n∑
j=1

i∑
p=0

(
i
p

)
β j(n) ChE∗p+ j−1 +

i∑
p=0

(
i
p

)
ChE∗p+n + ChE∗i+n

= (−1)n+i(n + 1)i

(
β0(n)
2n+i+1

)
,

(3.24)

where (n + 1)i is the pochhammer symbol [37, P21] and β j(n), (0 ≤ j ≤ n) defined in Eqs (3.3) and
(3.4).

Proof. Making use of Eq (2.5) in the first term of the left hand side of Eq (3.1), we find

n∑
j=1

β j(n)ewG( j−1)(w) =

n∑
j=1

β j(n)
∞∑

l=0

wl

l!

∞∑
p=0

ChE∗p+ j−1
wp

p!
,

or equivalently

n∑
j=1

β j(n)ewG( j−1)(w) =

∞∑
i=0

( n∑
j=1

i∑
p=0

(
i
p

)
β j(n) ChE∗p+ j−1

)
wi

i!
. (3.25)

Again, using Eq (2.5) in the second term of the left hand side of Eq (3.1), we find

(ew + 1)G(n)(w) =

( ∞∑
p=0

wp

p!
+ 1

)(( d
dw

)n
∞∑

l=0

ChE∗l
wl

l!

)
,

that is

(ew + 1)G(n)(w) =

∞∑
i=0

( i∑
p=0

(
i
p

)
ChE∗p+n + ChE∗i+n

)
wi

i!
. (3.26)

Finally, from the right hand side of Eq (3.1), we have

β0(n)(−1)n(2 + w)−(n+1) = β0(n)(−1)n2−(n+1)(1 + w/2)−(n+1),

which on using the following identity [37, P34]:

(1 − z)−a =

∞∑
n=0

(a)n
zn

n!
,

gives

β0(n)(−1)n(2 + w)−(n+1) =

∞∑
i=0

(
(−1)n+iβ0(n)(n + 1)i

2n+i+1

)
wi

i!
. (3.27)

Use of Eqs (3.25)–(3.27) in Eq (3.1), yields assertion (3.24). �

In the next section, the graphical representations of the ATCEP ChE∗q(v) and distribution of their
zeros are discussed.
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4. Graphical approach

Over the years, there has been increasing interest in solving mathematical problems with the aid
of computers. The software Mathematica is used to show the behaviour of these newly introduced
polynomials using the graphs plotted for the special values of indices. The manual computation of
the zeros is too complicated, therefore, we use Mathematica to investigate the zeros of the ATCEP
ChE∗q(v). By using numerical investigations and computer experiments, we find the real and complex
zeros for certain values of index q. The investigation in this direction will lead to a new approach
employing numerical methods in the field of the hybrid special polynomials to appear in mathematics
and physics, see for example [18, 19].

With the help of Mathematica and using Eqs (1.5) and (1.7) in relation (2.2), Figures 1 and 2 are
drawn for odd values of index q:

-6 -4 -2 2 4 6

1´ 10
11

2´ 10
11

3´ 10
11

4´ 10
11

5´ 10
11

6´ 10
11

-6 -4 -2 2 4 6

-1.2´ 10
22

-1.0´ 10
22

-8.0´ 10
21

-6.0´ 10
21

-4.0´ 10
21

-2.0´ 10
21

Figure 1. Curve of ChE∗15(v). Figure 2. Curve of ChE∗25(v).

Similarly, for even values of index q, Figures 3 and 4 are drawn:

-6 -4 -2 2 4 6

-3´ 1014

-2´ 1014

-1´ 1014

1´ 1014

2´ 1014

3´ 1014

-6 -4 -2 2 4 6

-3´ 1021

-2´ 1021

-1´ 1021

1´ 1021

2´ 1021

3´ 1021

Figure 3. Curve of ChE∗20(v). Figure 4. Curve of ChE∗30(v).

Next, a remarkably regular structure of the zeros of ATCEP ChE∗q(v) are explored with the help of
Mathematica in Figures 5–8.
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Figure 5. Zeros of ChE∗15(v). Figure 6. Zeros of ChE∗20(v).
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Figure 7. Zeros of ChE∗25(v). Figure 8. Zeros of ChE∗30(v).

Further properties, applications and theoretical investigation of scattering of zeros of the ATCEP
ChE∗q(v) introduced here are left to the authors and the interested researchers, for future study.

5. Concluding remarks

Exclusive role have been played by special polynomials in applied mathematics. It is not
astonishing when new classes of special polynomials are established as the issues associated with
special polynomials are too immense. In this paper, by incorporating the Appell-type Changhee
polynomials Ch∗q(v) and the Euler polynomials Eq(v) in a natural way, the so-called Appell-type
Changhee-Euler polynomials ChE∗q(v) are introduced. Then, we investigate certain properties and
identities for these new polynomials such as series representation, determinant form and some novel
identities. We also present non-homogeneous linear differential equations for the Appell-type
Changhee-Euler numbers ChE∗q. Further we discuss the shape and zero distributions of these
polynomials by observing their graphs drawn by Mathematica. The ATCEP ChE∗q(v) were found to be
the member of well-known Appell family and therefore many important properties and identities for
this new polynomials were easily established by employing those in the well-developed theory of
Appell polynomials. A unifying tool for studying polynomial sequences, namely the representation of
Appell polynomials in matrix form has been studied in [1] and extended in [3] to the hypercomplex
case. After that, Aceto and Caçāo [2] extends this approach to find the matrix representation of the
Sheffer polynomials. The matrix which represents the Sheffer polynomial coefficients can be
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factorized into two matrices, one associated to Appell polynomials and the other linked to the
binomial type polynomial sequences. This approach can be further extended to find the matrix
representations of mixed special polynomials related to the Appell polynomials.
Posing a problem

If we consider the Genocchi polynomials [15] in place of Euler polynomials in Eq (2.1), we get the
following generating function for the Appell-type Changhee-Genocchi polynomials (ATCGP)
ChG∗q(v):

4w
(ew + 1)(2 + w)

evw =

∞∑
q=0

ChG∗q(v)
wq

q!
. (5.1)

We are believed to be able to establish the corresponding results for the Appell-type Changhee-
Genocchi polynomials ChG∗q(v) as those established in this paper. This posed problem is left to the
interested researchers and authors for further investigation.
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