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Abstract: The problem of the onset of Marangoni bio-thermal convection is investigated for a
horizontal layer of fluid containing motile gyrotactic microorganisms. The fluid layer is assumed to rest
on a rigid surface with fixed temperature and the top boundary of the layer is assumed to be a free non
deformable surface. The resulting equations of the problem constitute an eigenvalue problem which
is solved using the Chebyshev tau numerical method. The critical values of the thermal Marangoni
number are calculated for several values of the bioconvection Péclet number, bioconvection Marangoni
number, bioconvection Lewis number and gyrotaxis number. The results of this study showed that the
existence of gyrotactic microorganisms increases the critical thermal Marangoni numbers. Moreover,
the critical eigenvalues obtained were real-valued indicating that the mode of instability is via a
stationary mode, however oscillatory mode is possible for some ranges of the parameters values.
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1. Introduction

Bioconvection patterns usually appear due to the upswimming of microorganisms which are more
dense than water in suspensions. When these species gather on the top boundary of the horizontal
layer, it becomes more dense and unstable and the microorganisms fall down causing what is called
bioconvection. The term was firstly introduced by Platt [1]. It refers to a phenomenon that happens
when instability is driven by the motion of upswimming microorganisms which are heavier than water.
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Bioconvection has applications in several areas such as environmental systems, mass transport,
fuel cells, biotechnology, and nanofluids stability. Childress et al. [2] were the first who proposed the
self-consistent theory for bioconvection containing gravitactic microorganisms and developed the
mathematical model for gravitactic bioconvection. The bioconvection in a suspension of gyrotactic
microorganisms has been investigated by several workers. Hill et al. [3] discussed the thermal
instability in a layer of fluid containing a suspension of gyrotactic microorganisms. Ghorai and
Hill [4] extended this problem further and obtained numerical solutions for the development and the
stability of gyrotactic plumes in a chamber with stress free sidewalls. Pedley and Kessler [5]
investigated the hydrodynamic phenomena of the in suspensions of swimming micro-organisms. The
bioconvection in a fluid layer containing suspension of gyrotactic microorganisms and small particles
was studied by Kuznetsov and Avramenko [6] and Geng and Kuznetsov [7]. Kuznetsov [8]
introduced the theory of bio-thermal convection and studied it in a fluid layer with suspension of
gyrotactic microorganisms and proved that they have a destabilizing effect on the system. Nield and
Kuznetsov [9] extended this problem by studying the case of oscillatory convection.

The combined effect of bioconvection and thermal instability in a layer of fluid with temperature
gradient being inclined to the vertical is studied by Avramenko and Kuznetsov [10]. The thermal
instability of a layer of nanofluid containing both nanoparticles and gyrotactic microorganisms was first
studied by Kuznetsov [11, 12] for oscillatory and non-oscillatory cases. He showed that the existence
of gyrotactic microorganisms has a destabilizing effect on the system. Kuznetsov [13] investigated the
instability of bio-thermal convection when two different species of microorganisms are presented. The
bio-thermal instability of a layer of fluid containing gyrotactic and oxytactic microorganisms is studied
by Kuznetsov [14]. Saini and Sharma [15] used the energy method to investigate the bio-thermal
instability of a fluid layer containing gravitactic microorganisms. The onset of Darcy-Brinkman bio-
thermal convection in a porous layer heated from below and containing the suspension of gyrotactic
microorganisms is investigated by Zhao et al. [16]. They showed that as the Darcy number increases,
the critical bioconvection Rayleigh number increases. This indicates that porosity has a stabilizing
effect on the system.

The onset of Marangoni convection in a base fluid is induced by the dependence of surface tension
on the temperature. Pearson [17] studied the stability of Marangoni convection of when a layer of base
fluid is heated from below and showed that the instability is caused by surface tension and not by the
buoyancy forces. Nield [18] demonstrated that the effect of buoyancy forces can be neglected if the
fluid layer depth is less than 1 mm. The results of Pearson [17] and Nield [18] have been expanded
and refined by many researchers (e.g., Takashima [19], Benguria and Depassier [20], Wilson [21],
Shivakumara et al. [22], Hashim and Arifin [23], Shivakumara et al. [24], Abdullah et al. [25], Abdullah
et al. [26]).

The literature revealed that the problem of the onset of Marangoni bio-thermal convection in a
fluid layer containing gyrotactic microorganisms has not been studied before, so the object of the
present study is to investigate how the Marangoni bio-thermal convection is affected by the existence
of gyrotactic microorganisms.

The work is set out as follows. Section 2 formulates the problem, introduces the field equations,
describes the boundary conditions of the model and constructs the steady state solution. Section 3
constructs the linearized and non-dimensional equations. Section 4 formulates the normal modes
analysis. Section 5 describes the numerical procedure used to treat the eigenvalue problem. Section 6
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presents results and section 7 concludes.

2. Problem Formulation

Consider an infinite horizontal layer of an incompressible viscous fluid with gyrotactic
microorganisms confined between the planes x∗3 = 0 and x∗3 = d of a rectangular Cartesian system of
coordinates with position vector x∗ = x∗1 e1 + x∗2 e2 + x∗3 e3. In this, e3 is directed vertically upwards.
Let T ∗(t∗, x∗) and n∗(t∗, x∗) denote the Kelvin temperature and concentration of microorganisms in the
fluid at time t∗ and position x∗ respectively. On x∗3 = 0, the fluid is assumed to rest on a rigid boundary
which is maintained at a constant Kelvin temperature T0, whereas on x∗3 = d, the motion of the fluid is
driven by the thermocapillary effect of the surface tension, say γ(T ∗, n∗). Otherwise, the surface is
non-deformable and loses heat by convection to an environment at constant temperature Tatmos. The
present problem is relevant to certain species of thermophilic microorganisms that live in hot springs.

2.1. Field equations

The field equations for a layer of fluid with gyrotactic microorganisms has the form

∂V∗j
∂x∗j

= 0 , (2.1)

ρ0

(∂V∗j
∂t∗

+ V∗k
∂V∗j
∂x∗k

)
= −

∂P∗

∂x∗j
+ µ

∂2V∗j
∂xk

∗2
, (2.2)

ρ c
(∂T ∗

∂t∗
+ V∗k

∂T ∗

∂x∗k

)
= κ∇2T ∗ , (2.3)

∂n∗

∂t∗
= −

∂

∂x∗k

(
n∗ V∗k + n∗Wc P̃∗ δk3 − Dm

∂n∗

∂x∗k

)
, (2.4)

where V∗ is the fluid velocity, P∗ is the hydrostatic pressure, Wc P̃∗ is the microorganisms average
swimming velocity vector relative to the fluid, Dm is the diffusivity of microorganisms, ρ0 is the fluid
density at reference temperature and µ, ρ, c and κ are respectively the viscosity, density, specific heat
and thermal conductivity of the fluid.

2.2. Boundary conditions

The thermodynamic, mechanical and microorganisms conditions must be imposed on the
boundaries x∗3 = 0 and x∗3 = d. The thermodynamic boundary conditions are embodied in the
equations given below

T ∗(t ∗; x ∗λ , 0) = T0 , (2.5)

−κ
∂T ∗(t ∗; x ∗λ , 0)

∂x j
∗

= R(T ∗(t ∗; x ∗λ , 0) − Tatmos). (2.6)

Here, λ takes the values 1 and 2 and R is the Robin parameter. The mechanical conditions require
the fluid velocity to be zero on the boundary x ∗3 = 0 whereas the boundary x ∗3 = d is assumed to be flat
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and free of shear stress after taking account of the influence of surface tension. These conditions are
embodied in the equations:

V ∗k (t ∗; x ∗λ , 0) = 0 , k = (1, 2, 3) (2.7)

V ∗3 (t ∗; x ∗λ , d) = 0 , (2.8)

σ3λ(t ∗; x ∗λ , d) =
∂γ

∂x ∗λ
. (2.9)

Here, σ31 and σ32 denote the shear components of fluid stress in the plane x ∗3 = d. The condition
V ∗3 = 0 on x ∗3 = d simplifies the surface tension boundary condition (2.9) to give the following:

µ
∂V ∗λ (t ∗; x ∗λ , d)

∂x ∗3
=

∂γ

∂T ∗
∂T ∗(t ∗; x ∗λ , d)

∂x ∗λ
+
∂γ

∂n ∗
∂n ∗(t ∗; x ∗λ , d)

∂x ∗λ
, (2.10)

in which n ∗ and T ∗ are evaluated on x ∗3 = d. Finally, the normal fluxes of microorganisms are zero in
both boundaris, i.e.,

J ∗3 = 0 , on x3 = 0, d, (2.11)

where J ∗k = n∗ V∗k + n∗Wc P̃∗ δk3 − Dm
∂n∗
∂x∗k

.

2.3. Steady state solution

Equations (2.1–2.4) together with the boundary conditions (2.5–2.11) have a steady state solution
in which the fluid is at rest and all other variables are functions of x ∗3 alone. Let T ∗ = Tb(x ∗3 ) and
n ∗ = nb(x ∗3 ) denote the solution of the steady state problem, then it follows that Tb(x ∗3 ) and nb(x ∗3 )
satisfy:

Tb(x ∗3 ) = T0 + (Tatmos − T0)
x ∗3
d
, nb(x ∗3 ) = Ω exp

(Wc x ∗3
Dm

)
, (2.12)

where
Ω =

n̄ Q
exp (Q) − 1

, (2.13)

is the integration constant which represents the value of the basic number density of microorganisms
at the bottom of the layer and

n̄ =
1
d

∫ d

0
nb(x ∗3 ) dx ∗3 , (2.14)

is the average concentration of microorganisms and Q = Wc d
Dm

is the biconvection Péclet number.

3. The linearized and non-dimensional equations

Following standard procedures Eqs (2.1–2.4) and their associated boundary conditions are
linearized about the steady state solution by introducing the following perturbations

V∗k = 0 + εv̂k , P ∗ = Pb + ε p̂ , T ∗ = Tb + εT̂ , n ∗ = nb + εn̂ , P̃∗ = k + εP̂, (3.1)
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where k is the vertically upward unit vector. Thus, the linearized field equations have the following
form

∂v̂ j

∂x∗j
= 0 , (3.2)

ρ0
∂v̂ j

∂t∗
= −

∂p̂
∂x∗j

+ µ
∂2v̂ j

∂x∗k∂x∗k
, (3.3)

(ρc)
(∂T̂
∂t∗

+ v̂k
dTb

dx∗3
δk3

)
= κ∇2T̂ , (3.4)

∂n̂
∂t∗

= −
∂

∂x∗k

[
nb(v̂k + Wc P̂ δk3) + k̂ Wc n̂ − Dm

∂n̂
∂x∗k

]
. (3.5)

The perturbation of the swimming direction of a gyrotactic microorganism is related to a
perturbation in convection fluid velocity by the following (see Pedley and Kessler [27])

P̂ = B(η, −ξ, 0), (3.6)

where

ξ = (1 − α0)
∂v̂3

∂x∗2
− (1 + α0)

∂v̂2

∂x∗3
, (3.7)

η = −(1 − α0)
∂v̂3

∂x∗1
+ (1 + α0)

∂v̂1

∂x∗3
, (3.8)

here α0 is a measure of the cell eccentricity and B is the gyrotactic orientation parameter. Thus Eq 3.5
becomes:

∂n̂
∂t∗

= −v̂3
∂nb

∂x∗3
−Wc

∂n̂
∂x∗3

+ Dm
∂2n̂
∂x∗k

2 + Wc B nb

[
(1 − α0)

(∂2v̂3

∂x∗1
2 +

∂2v̂3

∂x∗2
2

)
+ (1 + α0)

∂2v̂3

∂x∗3
2

]
. (3.9)

The associated linearized boundary conditions on x∗3 = 0 are:

v̂3 =
∂v̂3

∂x∗3
= T̂ = n̂ Wc − Dm

∂n̂
∂x∗3

= 0. (3.10)

The associated linearized boundary conditions on x∗3 = d are:

v̂3 = κ
∂T̂
∂x∗3

+ R T̂ = n̂ Wc − Dm
∂n̂
∂x∗3

= 0,
∂v̂λ
∂x3

=
1
µ

(
∂γ

∂T
∂T̂
∂x∗λ

+
∂γ

∂nb

∂n̂
∂x∗λ

)
. (3.11)

Equations (3.2–3.4) and (3.9) and their corresponding boundary conditions are non-dimensionalized
by introducing the following non-dimensional variables

vk =
d
α

v̂k , p =
d2

ρ0να
p̂ , θ =

T̂
βd
, t =

α

d2 t∗, n =
n̂
n̄
, xk =

x∗k
d
, (3.12)
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where α is the diffusivity and β is the adverse temperature gradient. Thus the non-dimensional
equations have the final form as following:

∂v j

∂x j
= 0 , (3.13)

1
Pr

∂v j

∂t
= −

∂p
∂x j

+ ∇2v j , (3.14)

∂θ

∂t
− v3 = ∇2θ , (3.15)

∂n
∂t

= −
v3

n̄
∂nb

∂x3
−

Q
Lb

∂n
∂x3

+
1

Lb
∂2n
∂xk

2 +
Q G nb

n̄

[
(1 − α0)

(∂2v3

∂x1
2 +

∂2v3

∂x2
2

)
+ (1 + α0)

∂2v3

∂x3
2

]
. (3.16)

The non-dimensional boundary conditions on the lower boundary become

v3 =
∂v3

∂x3
= θ = Q n −

∂n
∂x3

= 0, (3.17)

and on the upper boundary x3 = 1 the conditions to be satisfied are

v3 =
∂θ

∂x3
+ Nu θ = Q n −

∂n
∂x3

= 0 ,
∂2v3

∂x2
3

− MT 42θ − Mn 42n = 0. (3.18)

In Eqs (3.13–3.18), the Prandtl number Pr, the biconvection Péclet number Q, the biconvection
Lewis number Lb, the gyrotaxis number G, the Nusselt number Nu, and the temperature and
bioconvection Marangoni numbers MT and Mn have definitions

Pr =
µ c
κ
, Q =

Wc d
Dm

, Lb =
α

Dm
, G =

B Dm

d2 , Nu =
Rd
κ
, MT = −

βd2

αµ

∂γ

∂T
, Mn = −

n̄ d
αµ

∂γ

∂nb
. (3.19)

Following standard procedures of applying the curl operator twice to Eq (3.14) and taking the third
component of the resulting equation and of Eqs (3.15) and (3.16), the final equations become

1
Pr

∂

∂t
(∇2v3) = ∇4v3 , (3.20)

∂θ

∂t
− v3 = ∇2θ , (3.21)

∂n
∂t

= −
Q
Lb

∂n
∂x3

+
1

Lb
∂2n
∂x3

2 −
Q2 eQx3

eQ − 1

[
v3 −G(1 − α0)

(∂2v3

∂x1
2 +

∂2v3

∂x2
2

)
−G(1 + α0)

∂2v3

∂x3
2

]
. (3.22)

4. Normal modes analysis

The stability of perturbations to the steady state solution is investigated using a normal mode
analysis. Solutions of Eqs (3.20–3.22) satisfying the boundary conditions (3.17) and (3.18) are sought
in the form

(w, θ, n) =
(
w(x3), θ(x3), n(x3)

)
eσ t+im1 x1+im2 x2 , (4.1)
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where w is the third component of velocity, m1, m2 are the wave numbers along the e1 and e2 directions
respectively and σ is a growth rate. The eigenvalue problem for σ is constructed following standard
procedures and becomes

σ

Pr
L(w) = L2(w) , (4.2)

σθ = L(θ) + w , (4.3)

σ n = −
Q
Lb

dn
dx3

+
1

Lb
L(n) −

Q2 eQx3

eQ − 1
[w −G L(w) −G α0(D2 + a2)w], (4.4)

where L(Φ) = (D2 − a2)(Φ) and a2 = m1
2 + m2

2. These equations are solved with the conditions

v3 =
∂v3

∂x3
= θ = Q n −

∂n
∂x3

= 0, (4.5)

on the lower boundary and the conditions

v3 = Dθ + Nu θ = Q n −
∂n
∂x3

= 0 ,
∂2v3

∂x2
3

+ a2 MT θ + a2 Mn n = 0, (4.6)

on the upper boundary.

5. Numerical procedure

The governing Eqs (4.2–4.4), together with the boundary conditions (4.5) and (4.6), are solved
numerically using the Chebyshev spectral Tau method when the fluid layer is heated from below. This
method has high accuracy and allows stationary and overstable modes to be treated simultaneously,
which is important whenever the critical eigenvalue flits between stationary and overstable modes in
response to changing parameter values. We first map the interval x3 ∈ [0, 1] into the interval [−1, 1]
by transformation z = 2x3 − 1. Then the variables of the problem are assigned the Chebyshev spectral
expansions

yr(z) =

N∑
k=0

akrTk(z) , 1 ≤ r ≤ 8 , (5.1)

where N is a user-specified even integer (40 in this problem), Tk(z) are the Chebyshev polynomials of
the first kind, akr are its coefficients and y1, · · · , y8 have definitions

y1 = w(z) , y2 =
dw
dz

, y3 =
d2w
dz2 − a2w , y4 =

d
dz

(d2w
dz2 − a2w

)
,

y5 = θ(z) , y6 =
dθ
dz
, y7 = n(z) , y8 =

dn
dz

.

(5.2)

Applying the definitions (5.2) to the governing Eqs (4.2–4.4) and boundary conditions (4.5) and (4.6),
we obtain a system of equations which leads to the generalized eigenvalue problem AY = σ BY . The
eigenvalues, σ, and corresponding eigenvectors are calculated using a specialized routine.

The critical stability boundaries are obtained for which the finite eigenvalue with largest real part has
real part with the value zero. The stationary instability arises whenever this eigenvalue is real-valued,
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otherwise instability occurs via an oscillatory state or over-stable mode. The numerical results obtained
showed that all critical eigenvalues were real-valued indicating that the mechanism of instability in this
problem is by a stationary mode, however an oscillatory mode can be obtained for some ranges of the
parameters values.

6. Results

To study the stability of this problem, the critical temperature Marangoni numbers MTcrit were
obtained numerically for different values of the bioconvection parameters. Figure 1 plots the
bioconvection Péclet number Q, against the critical temperature Marangoni number MTcrit, for
different values of the bioconvection Lewis number Lb, when the gyrotaxis number G = 0.03 and
α0 = 0.2. The figure shows that an increase in Q (slowly, intermediate and faster swimmers) led to an
increase of the critical temperature Marangoni number which indicates that the bioconvection Péclet
number had a stabilizing effect on the system and do not improve the bioconvection process. In fact,
we also concluded from the figure that the suspension of faster cells is more stable than the
suspension of slower and intermediate cells. Moreover, it is clear from the figure that the effect of the
bioconvection Lewis number is to increase the values of the critical temperature Marangoni number.
This indicates that Lb has a stabilizing effect on the system.
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Figure 1. The variation of the critical temperature Marangoni number with the bioconvection
Péclet number for different values of the bioconvection Lewis number.

Figures 2 and 3 illustrates similar plots of Figure 1. Figure 2 plots the bioconvection Péclet
number Q, against the critical temperature Marangoni number MTcrit, for different values of the
gyrotaxis number G, when the bioconvection Lewis number Lb = 4 and α0 = 0.2. The figure shows
that an increase in G leads to an increase of the critical temperature Marangoni number which indicate
that the gyrotaxis number has a stabilizing effect on the system. This means that the suspension
containing more gyrotactic cells is more stable than that containing less gyrotactic cells. Figure 3
plots the bioconvection Péclet number Q, against the critical temperature Marangoni number MTcrit,
for different values of the bioconvection Marangoni number Mn, when the bioconvection Lewis

AIMS Mathematics Volume 6, Issue 12, 13552–13565.



13560

number Lb = 4, the gyrotaxis number G =0.03 and α0 = 0.2. The figure shows that the bioconvection
Marangoni number has an insignificant stabilizing effect for slow and intermediate swimmers,
however for faster swimmers significant stability exists.
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Figure 2. The variation of the critical temperature Marangoni number with the bioconvection
Péclet number for different values of the gyrotaxis number.
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Figure 3. The variation of the critical temperature Marangoni number with the bioconvection
Péclet number for different values of the bioconvection Marangoni number.

The effect of bioconvection Péclet number Q, on the critical wave number for different values of the
bioconvection Lewis number Lb, when the gyrotaxis number G = 0.03 and α0 = 0.2 is displayed in
Figure 4. The figure shows that an increase in Q (slowly, intermediate and faster swimmers) leads to
an increase of the critical wave number which indicates that the bioconvection Péclet number reduces
the size of the cells. In fact, for slow and intermediate swimmers, the effect is less as compared to
the effect for faster swimmers. This means that for slow and intermediate swimmers, the size of the
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convection cell is elongated. However, as the swimming speed of microorganism’s increases, the cell
size becomes narrower. Moreover, the figure shows that the effect of the bioconvection Lewis number
is to increase the values of the critical wave number. Similar effects are obtained for the gyrotaxis
number and the bioconvection Marangoni number.
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Figure 4. The variation of the critical wave number with the bioconvection Péclet number
for different values of the bioconvection Lewis number.

The numerical results investigated in this problem indicate that the mariginal state is of stationary
type. Interestingly, oscillatory convection is possible for higher values of the bioconvection Marangoni
number Mn, provided that the bioconvection Péclet number Q, is greater than a certian value, i.e., for
faster swimmers only. When this happened, convection occurs as an oscillatory motion. Figure 5
illustrates the variations of the critical temperature Marangoni number MTcrit, with the bioconvection
Marangoni number Mn, for different values of the bioconvection Péclet number. The figure shows
that for intermediate swimmers, Q = 4, convection occurs as stationary motion, however for faster
swimmers, Q = 7 and Q = 10 convection occurs as oscillatory motion. When Q = 7, oscillatory
convection occurs if Mn > 400 and when Q = 10, oscillatory convection occurs if Mn > 150.
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Figure 5. Variation of the critical temperature Marangoni number with the bioconvection
Marangoni number for different values of the bioconvection Péclet number.

7. Conclusions

This study had investigated the linear stability of Marangoni bio-thermal convection in a layer of
fluid containing gyrotactic microorganisms. All previous studies used the buoyancy effect (Rayleigh
effect) to study the stability of a fluid layer containing microorganisms. However, this study uses the
effect of surface tension (Marangoni effect) to study the stability of this problem. Findings of this study
indicate the followings:

• The most interesting outcome of this analysis is that the marginal stability boundary in this
problem depends on two Marangoni numbers: the thermal Marangoni number which
characterizes the effect of surface tension and the bioconvection Marangoni number which
characterize the effect of upswimming of microorganisms.
• The critical thermal Marangoni number is evaluated for a range of bioconvection Pećlet number

corresponding to slower, intermediate, and faster swimmers.
• The presence of gravitactic microorganisms increases the values of the critical Marangoni number

which indicates that gravitactic microorganisms have a stabilizing effect in this case.
• The bioconvection Pećlet number, the bioconvection Lewis number, the gyrotaxis number and the

bioconvection Marangoni number have a stabilizing effect in this problem.
• The critical wave number increases with an increase in bioconvection Pećlet number and

bioconvection Lewis number.
• All critical eigenvalues were real valued indicating that the mechanism of instability is by a

stationary mode. However, oscillatory mode is possible only for faster swimmers when the value
of the bioconvection Marangoni number exceeds a certain value.

Using surface tension effect, this work opens a wide range of research. For example, this work
can be extended by adding the effect of magnetic field, rotation, porosity or solute. Moreover, further
research should address the combined effect of gyrotactic and oxytactic microorganisms on the onset
of Marangoni bio-thermal convection in a fluid layer.
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