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Abstract: For any positive integer n, let Zn := Z/nZ = {0, . . . , n − 1} be the ring of residue classes
module n, and let Z×n := {x ∈ Zn| gcd(x, n) = 1}. In 1926, for any fixed c ∈ Zn, A. Brauer studied the
linear congruence x1 + · · · + xm ≡ c (mod n) with x1, . . . , xm ∈ Z

×
n and gave a formula of its number of

incongruent solutions. Recently, Taki Eldin extended A. Brauer’s result to the quadratic case. In this
paper, for any positive integer n, we give an explicit formula for the number of incongruent solutions
of the following cubic congruence

x3
1 + · · · + x3

m ≡ 0 (mod n) with x1, . . . , xm ∈ Z
×
n .
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1. Introduction

For any positive integer n, let Zn := Z/nZ = {0, . . . , n − 1} be the ring of residue classes modulo n,
and let Z×n := {x ∈ Zn| gcd(x, n) = 1}, Z∗n := {x ∈ Zn|x , 0} respectively. In 1926, for any fixed c ∈ Zn,
A. Brauer [2] studied the linear congruence

x1 + · · · + xm ≡ c (mod n), with x1, . . . , xm ∈ Z
×
n ,

and gave a formula for the number of incongruent solutions. This answered a problem of H.
Rademacher [7]. In 2014, Sun and Yang [9] generalized A. Brauer’s result by giving an explicit formula
for the number of incongruent solutions of general linear congruence

k1x1 + · · · + kmxm ≡ c (mod n) with x1, . . . , xm ∈ Z
×
n ,

where k1, . . . , km, c ∈ Zn.
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Recently, Taki Eldin [8] studied the quadratic case and provided an explicit formula for the number
of incongruent solutions of

k1x2
1 + · · · + kmx2

m ≡ c (mod n) with x1, . . . , xm ∈ Z
×
n ,

where k1, . . . , km, c ∈ Zn with gcd(k1 · · · km, n) = 1, which extended the result of Yang and Tang [10].
Therefore, it is natural to consider the following cubic congruence:

k1x3
1 + · · · + kmx3

m ≡ c (mod n).

with k1, . . . , km, c ∈ Zn such that gcd(k1 · · · km, n) = 1.
When n = p is a prime number, k1 = · · · = km = 1, S. Chowla, J. Cowles and M. Cowles [3], Hong

and Zhu [4] gave a formula of the number of incongruent solutions of the above congruence with c = 0
and c , 0 respectively. In this note, we investigate the following cubic congruence

x3
1 + · · · + x3

m ≡ 0 (mod n) with x1, . . . , xm ∈ Z
×
n . (1.1)

Denote by Nm(n) the number of incongruent solutions of (1.1). Li and Ouyang [6], in 2018, presented
a relation between Nm(pa) and Nm(pb) for some certain integers a and b with a ≥ b. In this paper, we
will give an explicit formula of Nm(n), which couldn’t be obtained by the results in [6]. Particularly,
we have the first main theorem as follows.

Theorem 1.1. Let p be a prime number and m be a positive integer. Then each of the following holds.

(1). If p ≡ 1 (mod 3), then

N1(p) = 0, N2(p) = 3(p − 1), N3(p) = p2 + (c − 9)p + (8 − c),

and

Nm(p) + 3Nm−1(p) − 3(p − 1)Nm−2(p) − (pc + 3p − 1)Nm−3(p) = (p − 1)m−3(p2 − 3p − c),

for all m ≥ 4, where c is uniquely determined by

4p = c2 + 27d2, c ≡ 1 (mod 3).

(2). If p . 1 (mod 3), then

Nm(p) =
(p − 1)m + (−1)m+1

p
+ (−1)m.

For every nonzero integer n, let rad(n) be the radical of n, i.e., the product of distinct prime divisors
of n. As usual, for any prime number p, let vp(n) be the p-adic valuation of n, i.e., pvp(n) | n and
pvp(n)+1 ∤ n. For any a ∈ Z, let ⟨a⟩n be the unique element in Zn such that a ≡ ⟨a⟩n (mod n). Now, we
can state our second main Theorem.

Theorem 1.2. Let n and m be positive integers and let ξ := exp( 2πi
9 ). Then

Nm(n) = δm(n)
nm−1

(rad(n))m−1

∏
p|n

Nm(p),
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where

δm(n) =

1, if v3(n) ≤ 1,
9N′m(9)

2m+2(−1)m , if v3(n) ≥ 2,

N′m(9) =


1
9

9∑
j=1

(ξ
⟨m⟩9

2 )9− j(1 + ξ j)m, if ⟨m⟩9 is even,

1
9

9∑
j=1

(ξ
⟨m⟩9+9

2 )9− j(1 + ξ j)m, if ⟨m⟩9 is odd and m ≥ 10,

0, otherwise,

Nm(p) was obtained in Theorem 1.1.

The paper is organized as follows: Section 2 provides some notations and lemmas which will be
used in the sequel. In Section 3, we give the proofs of Theorem 1.1 and Theorem 1.2.

2. Preliminaries

Throughout, p denotes a prime number. For any finite set A, denote by |A| the cardinality of A. For
any a ∈ Z, let

Ta :=
∑
x∈Z∗p

exp
(2πiax3

p

)
.

Next, we give some lemmas which are needed in the proofs of Theorem 1.1 and Theorem 1.2. We
begin with the following famous result.

Lemma 2.1. ([1]) (Chinese Remainder Theorem) Let f (x1, . . . , xm) ∈ Z[x]. If n1, . . . , nr are pairwise
relatively prime positive integers, let Ni be the number of zeros of

f (x1, . . . , xm) ≡ 0 (mod ni),

and N be the number of zeros of

f (x1, . . . , xm) ≡ 0 (mod n1 · · · nr),

then N = N1 · · ·Nr.

The following classical result was obtained by Gauss.

Lemma 2.2. ([3]) Let g be a primitive root modulo p. Then T1 + 1, Tg + 1, Tg2 + 1 are the roots of
equation

x3 − 3px − pc = 0,

where c is uniquely determined by

4p = c2 + 27d2, c ≡ 1 (mod 3).

Lemma 2.3. Let g be a primitive root modulo p, and let S = {1, g, g2}. Then for any a ∈ Z∗p, there
exists a unique b ∈ S such that

Ta = Tb.
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Proof. Since g is a primitive root modulo p, for any a ∈ Z∗p, one has a ≡ gc (mod p) for some integer
c with 1 ≤ c ≤ p − 1. Let c = 3q + r with q, r ∈ Z and 0 ≤ r ≤ 2. It then follows that

Ta =
∑
x∈Z∗p

exp
(2πiax3

p

)
=

∑
x∈Z∗p

exp
(2πigcx3

p

)
=

∑
x∈Z∗p

exp
(2πiagr(gqx)3

p

)
=

∑
x∈Z∗p

exp
(2πiagr x3

p

)
=Tgr

as desired. So Lemma 2.3 is proved. □

Lemma 2.4. ([1]) For any a ∈ Zp, we have

∑
b∈Zp

exp
(2πiab

p

)
=

{
p, if p | a,
0, if p ∤ a.

Lemma 2.5. ([5]) Let a ∈ Z∗p. Then x3 ≡ a (mod p) is solvable if and only if a
p−1

d ≡ 1 (mod p), where
d = gcd(3, p − 1).

For any positive integer m, let

Am(p) := {(x1, . . . , xm) ∈ (Zp)m|x3
1 + · · · + x3

m ≡ 0 (mod p)}.

We have the following lemma.

Lemma 2.6. Suppose p . 1 (mod 3). Then for any positive integer m, we have

|Am(p)| = pm−1.

Proof. Let f : Zp 7→ Zp be a map satisfying that f (a) = ⟨a3⟩p for any a ∈ Zp. We claim that f is
bijective. In fact, by Lemma 2.5, it is easy to see that f is subjective. Moreover, since |Zp| is finite, one
has that f is also injective. So the claim is true.

Therefore, we deduce that

|Am(p)| =
∣∣∣{(x1, . . . , xm) ∈ (Zp)m|x3

1 + · · · + x3
m ≡ 0 (mod p)}

∣∣∣
=
∣∣∣{(x1, . . . , xm) ∈ (Zp)m|x1 + · · · + xm ≡ 0 (mod p)}

∣∣∣
=pm−1

as expected. □
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Lemma 2.7. Let ξ := exp( 2πi
9 ) and let N′m(9) be the number of solutions of congruence

x1 + · · · + xm ≡ 0 (mod 9) with x1, . . . , xm ∈ {−1, 1}. (2.1)

Then

N′m(9) =


1
9

9∑
j=1

(ξ
⟨m⟩9

2 )9− j(1 + ξ j)m, if ⟨m⟩9 is even,

1
9

9∑
j=1

(ξ
⟨m⟩9+9

2 )9− j(1 + ξ j)m, if ⟨m⟩9 is odd and m ≥ 10,

0, otherwise.

Proof. Let S 1 and S −1 be the number of terms of Eq (2.1) for which xi = 1 and xi = −1 (1 ≤ i ≤ m)
respectively. Then the Eq (2.1) has a solution if and only if S 1 ≡ S −1 (mod 9). We distinguish two
cases as follows.

Case 1. Let ⟨m⟩9 be even.
The congruence (2.1) has a solution if and only if

S 1 ∈ {
⟨m⟩9

2
,
⟨m⟩9

2
+ 9,

⟨m⟩9
2
+ 18, . . . ,m −

⟨m⟩9
2
}.

Therefore, one gets

N′m(9) =
(

m
⟨m⟩9

2

)
+

(
m

⟨m⟩9
2 + 9

)
+

(
m

⟨m⟩9
2 + 18

)
+ · · · +

(
m

m − ⟨m⟩92

)
. (2.2)

Since ξ = exp( 2πi
9 ), we easily obtain the well-known fact:

ξ9 = 1, 1 + ξ j + (ξ j)2 + · · · + (ξ j)8 = 0 with ( j = 1 . . . , 8). (2.3)

By (2.3) and computing directly, one gets the following identity:

1
9

9∑
j=1

(ξ
⟨m⟩9

2 )9− j(1 + ξ j)m =

(
m
⟨m⟩9

2

)
+

(
m

⟨m⟩9
2 + 9

)
+

(
m

⟨m⟩9
2 + 18

)
+ · · · +

(
m

m − ⟨m⟩92

)
. (2.4)

By (2.2) and (2.4), we have

N′m(9) =
1
9

9∑
j=1

(ξ
⟨m⟩9

2 )9− j(1 + ξ j)m. (2.5)

Case 2. Let ⟨m⟩9 be odd.
Obviously, the congruence (2.1) has no solution if m = 1, 3, 5, 7. So we suppose that m ≥ 10.
The Eq (2.1) has a solution if and only if

S 1 ∈ {
⟨m⟩9 + 9

2
,
⟨m⟩9 + 9

2
+ 9,

⟨m⟩9 + 9
2

+ 18, . . . ,m −
⟨m⟩9 + 9

2
}.

From an argument which is similar to that in Case 1, we get

N′m(9) =
1
9

9∑
j=1

(ξ
⟨m⟩9+9

2 )9− j(1 + ξ j)m. (2.6)
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From the above discussion, we can conclude that

N′m(9) =


1
9

9∑
j=1

(ξ
⟨m⟩9

2 )9− j(1 + ξ j)m, if ⟨m⟩9 is even,

1
9

9∑
j=1

(ξ
⟨m⟩9+9

2 )9− j(1 + ξ j)m, if ⟨m⟩9 is odd and m ≥ 10,

0, otherwise.

This finishes the proof of Lemma 2.7. □

3. Proof of Theorem 1.1 and Theorem 1.2

In this section, we give the proofs of Theorem 1.1 and Theorem 1.2.
Proof of Theorem 1.1. We divide the proof into two cases.
Case 1. Let p ≡ 1 (mod 3). By Lemma 2.3 and Lemma 2.4, we deduce that

Nm(p) =
1
p

∑
(x1,...,xm)∈(Z∗p)m

p−1∑
a=0

exp
(2πia(x3

1 + · · · + x3
m)

p

)
=

(p − 1)m

p
+

1
p

p−1∑
a=1

∑
(x1,...,xm)∈(Z∗p)m

exp
(2πia(x3

1 + · · · + x3
m)

p

)
=

(p − 1)m

p
+

1
p

p−1∑
a=1

( ∑
x∈Z∗p

exp
(2πiax3

p

))m

=
(p − 1)m

p
+

1
p

( p − 1
3

T m
1 +

p − 1
3

T m
g +

p − 1
3

T m
g2

)
. (3.1)

By Lemma 2.2, T1, Tg, Tg2 are roots of equation

x3 + 3x2 − 3(p − 1)x − (pc + 3p − 1) = 0, (3.2)

where c is uniquely determined by

4p = c2 + 27d2, c ≡ 1 (mod 3).

It then follows from (3.2) that

T1 + Tg + Tg2 = −3,
T1Tg + T1Tg2 + TgTg2 = 3 − 3p,

T1TgTg2 = pc + 3p − 1. (3.3)

Clearly, N1(p) = 0. Moreover, using (3.1) and (3.3), we get that
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N2(p) =
(p − 1)2

p
+

p − 1
3p

(T 2
1 + T 2

g + T 2
g2)

=
(p − 1)2

p
+

p − 1
3p

(
(T1 + Tg + Tg2)2 − 2(T1Tg + T1Tg2 + TgTg2)

)
= 3(p − 1),

and

N3(p) =
(p − 1)3

p
+

p − 1
3p

(T 3
1 + T 3

g + T 3
g2)

=
(p − 1)3

p
+

p − 1
6p

(
3(T1 + Tg + Tg2)(T 2

1 + T 2
g + T 2

g2) + 6T1TgTg2 − (T1 + Tg + Tg2)3)
=p2 + (c − 9)p + (8 − c).

Now, let m be any integer with m ≥ 4. Then for any a ∈ {1, g, g2}, we have

T m
a + 3T m−1

a − 3(p − 1)T m−2
a − (pc + 3p − 1)T m−3

a = 0 (3.4)

by (3.2). It then follows from (3.1) and (3.4) that

Nm(p) −
(p − 1)m

p
+ 3

(
Nm−1(p) −

(p − 1)m−1

p
)

− 3(p − 1)
(
Nm−2(p) −

(p − 1)m−2

p
)
− (pc + 3p − 1)

(
Nm−3(p) −

(p − 1)m−3

p
)
= 0,

which is equivalent to

Nm(p) + 3Nm−1(p) − 3(p − 1)Nm−2(p) − (pc + 3p − 1)Nm−3(p) = (p − 1)m−3(p2 − 3p − c).

So Theorem 1.1 is proved in this case.
Case 2. Let p . 1 (mod 3). For any integer i with 1 ≤ i ≤ m, define

Am,i(p) := {(x1, . . . , xi−1, 0, xi+1, . . . , xm) ∈ (Zp)m|x3
1 + · · · + x3

m ≡ 0 (mod p)}.

Then using principle of cross-classification, we derive that

Nm(p) =
∣∣∣Am(p) \

m⋃
i=1

Am,i(p)
∣∣∣

=|Am(p)| +
m∑

t=1

(−1)t
∑

1≤i1<···<it≤m

∣∣∣ t⋂
j=1

Am,i j(p)
∣∣∣. (3.5)

Let t be an integer with 1 ≤ t ≤ m−1. Then for any integer t-tuple (i1, . . . , it) with 1 ≤ i1 < · · · < it ≤ m,
it is obvious that ∣∣∣ t⋂

j=1

Am,i j(p)
∣∣∣ = |Am−t(p)|. (3.6)
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Thus by Lemma 2.5, (3.5) and (3.6), one gets that

Nm(p) =pm−1 +

m−1∑
t=1

(−1)t

(
m
t

)
pm−t−1 + (−1)m

=
1
p

m−1∑
t=0

(−1)t

(
m
t

)
pm−t + (−1)m

=
(p − 1)m + (−1)m+1

p
+ (−1)m.

This finishes the proof of Theorem 1.1. □
Now, we begin the proof of Theorem 1.2.
Proof of Theorem 1.2. Let n have the prime decomposition

n =
∏
p|n

pvp(n).

By Lemma 2.1, one has the product formla

Nm(n) =
∏
p|n

Nm(pvp(n)). (3.7)

So to compute Nm(n), it is enough to study the prime power case Nm(pvp(n)) with p|n.
Now, we consider the following two cases with p|n.
Case 1. For any p|n it holds either p , 3 or p = 3, v3(n) = 1.
If p , 3, by Theorem B(1) of [6], we have

Nm(pvp(n)) = p(m−1)(vp(n)−1)Nm(p),

where Nm(p) has been studied in Theorem 1.1.
If p = 3 and v3(n) = 1, one has

Nm(3v3(n)) = Nm(3) = 3(m−1)(v3(n)−1)Nm(3).

Hence, for p , 3 or p = 3, v3(n) = 1, we get

Nm(pvp(n)) = p(m−1)(vp(n)−1)Nm(p). (3.8)

It then follows from (3.7) and (3.8) that

Nm(n) =
∏
p|n

Nm(pvp(n))

=
∏
p|n

p(m−1)(vp(n)−1)Nm(p)

=
∏
p|n

p(m−1)vp(n)

pm−1 Nm(p)
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=
nm−1

(rad(n))m−1

∏
p|n

Nm(p)

as expected.
Case 2. p = 3 and v3(n) ≥ 2.
By Theorem B(1) in [6], one has

Nm(3v3(n)) = 3(m−1)(v3(n)−2)Nm(9). (3.9)

Since x3 ≡ 1 (mod 9) for x ∈ {1, 4, 7} and x3 ≡ −1 (mod 9) for x ∈ {2, 5, 8}, one gets that

Nm(9) = 3mN′m(9). (3.10)

Therefore, by (3.7)–(3.10), we have

Nm(n) =
∏
p|n

Nm(pvp(n))

= 3(m−1)(v3(n)−2)Nm(9)
∏
p|n
p,3

Nm(pvp(n))

= 3(m−1)(v3(n)−2)+mN′m(9)
∏
p|n
p,3

p(m−1)(vp(n)−1)Nm(p)

=
(3v3(n))m−1

3m−2 N′m(9)
∏
p|n
p,3

(pvp(n))m−1

pm−1 Nm(p)

=
3N′m(9)
Nm(3)

nm−1

(rad(n))m−1

∏
p|n

Nm(p).

By Theorem 1.1, we have

Nm(3) =
2m + 2(−1)m

3
.

Hence, we get

Nm(n) =
9N′m(9)

2m + 2(−1)m

nm−1

(rad(n))m−1

∏
p|n

Nm(p).

From the above discussion of Case 1 and Case 2, we can conclude that

Nm(n) = δm(n)
nm−1

(rad(n))m−1

∏
p|n

Nm(p),

where

δm(n) =

1, if v3(n) ≤ 1,
9N′m(9)

2m+2(−1)m , if v3(n) ≥ 2,

N′m(9) and Nm(p) were obtained in Lemma 2.7 and Theorem 1.1, respectively.
This finishes the proof of Theorem 1.2. □
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4. Conclusions

In this paper, we present an explicit formula of the number of unit solutions of diagonal cubic form
over Zn, by using the method of exponential sums. As future directions, one can find the formula of
the number of unit solutions of x3

1 + · · · + x3
n ≡ c (mod n) over Zn with c . 0 (mod n).
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