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1. Introduction

In insurance companies, the premium income is collected through insurance policies at discrete
times, and each claim comes from the received policies, where the size of a claim for each policy is
random. Therefore, we consider a thinning risk model in which the premium income of an insurance
company is not a deterministic function of time (i.e. linear drift, see, e.g., [1, 2]) but a stochastic
process.

In resent years, Boikov [3] studied the Cramér-Lundberg model where the premium process is
stochastic. References [4, 5] considered a risk model where both the premium process and claim
process are compound Poisson processes. Further, Albrecher and Boxma [6] considered a dependent
setting between claim sizes and claim intervals in a generalization of the classical risk model. Wang
and Yuen [7] studied a thinning dependence structure with n(n ≥ 2) dependent classes of insurance
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business. Moreover, numerous dependence structures have been studied, see e.g. [8–11], and so on.
Inspired by the dependence of the premiums and claim amounts in the actual environment, we consider
that the premium process is a thinning process of the claim process.

With increases in the standard of living, insurance awareness has improved rapidly, leading to
fierce competition among insurance companies. To attract more investors, insurance companies have
proposed a dividend plan. Dividend strategy was first introduced into a risk model by reference [12].
The most common dividend payment strategies are the barrier strategy and the threshold strategy [13].
Under the barrier strategy, any excess over a fixed barrier level is paid out immediately. Under the
threshold strategy, the dividend is paid out at a constant rate whenever the surplus is above a
pre-specified threshold level. Under these strategies, dividend decisions are assumed to be continuous.
However, references [10, 14] proposed randomized observations, where dividend decisions are not
continuous but are discrete only at “observation time points”, which is more realistic. At these points,
any excess over a fixed barrier level is paid as a dividend. Some recent papers on periodic dividend
strategy can be found in references [15–22].

Motivated by those works above, we consider the model with to combine the thinning process and
the periodic dividend strategy into a risk model. Given a probability space (Ω,F,P) satisfying the usual
conditions and complete filtration {Ft, t ≥ 0}. Let u ≥ 0 be the initial capital of an insurance company.
Without any dividend strategies, the surplus of the insurance company at time t has the form

R(t) = u + P(t) − S (t), u ≥ 0, t ≥ 0, (1.1)

where P(t) =
∑N(t)

i=1 Yi represents the total premium amount up to time t, and S (t) =
∑Np(t)

i=1 Xi represents
the aggregate claim amount up to time t. {N(t), t ≥ 0} is a homogeneous Poisson process with parameter
λ > 0, which is a counting process that represents the number of premiums up to time t;

{
Np(t), t ≥ 0

}
is the thinning process of N with parameter λp(0 < p < 1), which is a counting process that represents
the number of claims up to time t; X1, X2, . . . are positive i.i.d. random variables with common
distribution function F(x), where Xi denotes the ith claim size; Y1, Y2, . . . are positive i.i.d. random
variables with common distribution function G(y), where Yi denotes the ith premium size. We assume
that {N(t), t ≥ 0}, {Xi}

∞
i=1, and {Yi}

∞
i=1 are independent of each other. Without loss of generality, we

assume the safety loading condition EP(t) > ES (t). Denote the total amount of dividends up to time t
by D(t). Then the final risk model is given by

U(t) = u + P(t) − S (t) − D(t), t ≥ 0, u ≥ 0. (1.2)

Let Tu,b = inf{t > 0 : U(t) < 0} be the time of ruin of risk model (1.2).
For dividends, specifically, we consider such a randomized dividend strategy with a fixed barrier

level b > 0 and exponential inter-dividend-decision times τ1, τ2, . . .(τ1 < τ2 < . . .) with the parameter
r > 0. Without loss of generality, let τ0 = 0 and note that τ0 = 0 is not a dividend decision time. Then
the total amount of dividends up to time t is

D(t) =

∫ t

0
(U(s−) − b)+dNr(s), t ≥ 0,

where {Nr(t), t ≥ 0} is a homogeneous Poisson process with parameter r and it is independent of
(X,Y,N,Np); (x)+ = x if x ≥ 0 and otherwise when x < 0, (x)+ = 0; f (x0±) means the right (left) hand
limit at the point x = x0.

AIMS Mathematics Volume 6, Issue 12, 13448–13463.



13450

The first question to consider is the expected discounted penalty function, which was first introduced
by reference [23]. Because the Gerber-Shiu function provides a comprehensive mathematical tool for
studying some related quantities of ruin, such as the ultimate ruin probability, the Laplace transform
of the ruin time, the deficit at ruin, the surplus immediately prior to ruin, and so on. Therefore, since
it was proposed, it has been studied in various risk models [24–30]. It continues to be a popular topic.
Now we define the Gerber-Shiu function as follows:

mb(u) = E
[
e−δTu,bω

(
U(Tu,b−),

∣∣∣U(Tu,b)
∣∣∣) I{Tu,b < +∞}|U(0) = u

]
, (1.3)

where δ ≥ 0 is a constant discount factor; ω(x, y) is a non-negative function with x, y ≥ 0, which can
be interpreted as the penalty function of the surplus immediately prior to ruin U(Tu,b−) and the deficit
at ruin

∣∣∣U(Tu,b)
∣∣∣; and I{A} is the indicator function. For convenience, we use the notation mb(u) ,

Eu

[
e−δTu,bω

(
U(Tu,b−),

∣∣∣U(Tu,b)
∣∣∣) I{Tu,b < +∞}

]
to denote the above conditional expectation. When

ω(x, y) = 1, we denote mb(u) , φb(u); When ω(x, y) = y, we denote mb(u) , ξb(u).
The second question we consider is the expected discounted cumulative dividend function, which

is given by

Vb(u) = Eu

 ∞∑
k=1

e−δTk(U(Tk) − b)+I{Tk < Tu,b}

 , u ≥ 0, (1.4)

where Tk =
∑k

i=0 τi, k ≥ 1, represents the kth dividend decision time.
The rest of the paper is organized as follows: We obtain the integral equations satisfied by mb(u) and

Vb(u), and prove the continuity of mb(u) and Vb(u) in Section 2. When the claim and premium sizes
are exponentially distributed, the explicit expressions for mb(u) and Vb(u) are derived in Section 3.
Furthermore, we conclude that in Section 3 both m

′

b(u) and V
′

b(u) are discontinuous at u = b. In
Section 4 we present the graphs of the Laplace transform of the deficit at ruin ξb(u), the Laplace
transform of the time of ruin φb(u), and Vb(u). Finally, Section 5 provides the conclusions.

2. Main results

Theorem 1. We denote mb(u) = mb1(u) for 0 ≤ u < b, and mb(u) = mb2(u) for u ≥ b. Then the
Gerber-Shiu function mb(u), u > 0, satisfies the following integral equations:

(λ + δ)mb1(u)

− λp
∫ b−u

0

∫ u+y

0
mb1(u + y − x)dF(x)dG(y)

− λp
∫ ∞

b−u

(∫ u+y

u+y−b
mb1(u + y − x)dF(x) +

∫ u+y−b

0
mb2(u + y − x)dF(x)

)
dG(y)

− λ(1 − p)
(∫ b−u

0
mb1(u + y)dG(y) +

∫ ∞

b−u
mb2(u + y)dG(y)

)
− λp

∫ ∞

0

∫ ∞

u+y
ω(u + y, x − u − y)dF(x)dG(y)

= 0, 0 ≤ u < b, (2.1)
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(λ + δ + r)mb2(u)

− λ(1 − p)
∫ ∞

0
mb2(u + y)dG(y) − rmb2(b)

− λp
∫ ∞

0

(∫ u+y

u+y−b
mb1(u + y − x)dF(x) +

∫ u+y−b

0
mb2(u + y − x)dF(x)

)
dG(y)

− λp
∫ ∞

0

∫ ∞

u+y
ω(u + y, x − u − y)dF(x)G(y)

= 0, u ≥ b, (2.2)

with the continuity condition

mb1(b−) = mb2(b). (2.3)

Proof of Theorem 1. Note that it is intuitive that the surplus process U well defined in (1.2) has the
strong Markov property, though the formal verification of this fact may prove tedious. The prove is
omitted here. For convenience, we denote Hu,b = e−δTu,bω

(
U(Tu,b−),

∣∣∣U(Tu,b)
∣∣∣) I{Tu,b < +∞}, then

mb(u) = Eu
[
Hu,b

]
.

Let li denote the ith premium arrival time and let mi denote the ith claim arrival time, i ≥ 1, i ∈ N.
In an infinitesimal time interval [0, t], the event {l1 > t} denotes that there is no income in the time
interval [0, t], the event {m1 > t} denotes that there is no claim, the event {τ1 > t} denotes that there is
no observation, that means there is no paid, similarly. According to the assumption of independence
of {N(t), t ≥ 0}, {Nr(t), t ≥ 0}, {Yi}

∞
i=1, and {Xi}

∞
i=1 and dependence of {N(t), t ≥ 0} and {Np(t), t ≥ 0}, we

consider four possible events in time interval [0, t]:

1. No income, no claim, and no observation;
2. No income, no claim, but an observation time occurs;
3. One-time income, no claim, and no observation;
4. One-time income, one-time claim, and no observation.

The probability of other events is o(t), which is equal to 0 as t tends to 0.
Using the total probability formula, we have

mb(u) =Eu[Hu,b, l1 > t,m1 > t, τ1 > t] + Eu[Hu,b, l1 > t,m1 > t, τ1 < t < τ2]
+ Eu[Hu,b, l1 < t < l2,m1 > t, τ1 > t]
+ Eu[Hu,b, l1 < t < l2,m1 < t < m2, τ1 > t] + o(t)
,I1 + I2 + I3 + I4 + o(t). (2.4)

From the double conditional expectation theorem, the above assumptions, and the strong Markov
property, we obtain

I1 = E[Eu[Hu,b, l1 > t,m1 > t, τ1 > t|zt]]
= E[l1 > t,m1 > t, τ1 > t, e−δtmb(U(t))]
= P(l1 > t,m1 > t)P(τ1 > t)e−δtmb1(u)
= e−(λ+r+δ)tmb1(u),
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I2 = E[Eu[Hu,b, l1 > t,m1 > t, τ1 < t < τ2|zt]]
= E[l1 > t,m1 > t, τ1 < t < τ2, e−δtmb(u)]
= P(l1 > t,m1 > t)P(τ1 < t < τ2)mb1(u)
= e−(λ+δ)t(1 − e−rt)mb1(u),

I3 = E[Eu[Hu,b, l1 < t < l2,m1 > t, τ1 > t|zt]]
= E[l1 < t < l2,m1 > t, τ1 > t, e−δtmb(u + Y)]
= P(τ1 > t)P(l1 < t < l2,m1 > t)e−δtE[mb(u + Y)]

= e−(r+δ)t
∫ t

0
P(m1 > l|l1 = l)λe−λldlE[mb(u + Y)]

= e−(r+δ)t(1 − p)(1 − e−λt)
[∫ b−u

0
mb1(u + y)dG(y) +

∫ ∞

b−u
mb2(u + y)dG(y)

]
,

I4 = E[Eu[Hu,b, l1 < t < l2,m1 < t < m2, τ1 > t|zt]]
= E[l1 < t < l2,m1 < t < m2, τ1 > t, e−δtmb(u + Y − X)]
= e−δtP(τ1 > t)P(l1 < t < l2,m1 < t < m2)E[mb(u + Y − X)]

= e−(r+δ)t
∫ t

0
P(m1 = l|l1 = l)λe−λldl E[mb(u + Y − X)]

= e−(r+δ)t p(1 − e−λt)
[∫ b−u

0

∫ u+y

0
mb1(u + y − x)dF(x)dG(y)

+

∫ ∞

b−u

(∫ u+y

u+y−b
mb1(u + y − x)dF(x) +

∫ u+y−b

0
mb2(u + y − x)dF(x)

)
dG(y)

+

∫ ∞

0

∫ ∞

u+y
ω(u + y, x − u − y)dF(x)dG(y)

]
.

Using Taylor’s theorem, we derive

I1 = [1 − (λ + r + δ)t]mb1(u) + o(t), (2.5)
I2 = rtmb1(u) + o(t), (2.6)

I3 = λ(1 − p)t
[∫ b−u

0
mb1(u + y)dG(y) +

∫ ∞

b−u
mb2(u + y)dG(y)

]
+ o(t), (2.7)

I4 = λpt
[∫ b−u

0

∫ u+y

0
mb1(u + y − x)dF(x)dG(y) +

∫ ∞

0

∫ ∞

u+y
ω(u + y, x − u − y)dF(x)dG(y)

+

∫ ∞

b−u

(∫ u+y

u+y−b
mb1(u + y − x)dF(x) +

∫ u+y−b

0
mb2(u + y − x)dF(x)

)
dG(y)

]
+ o(t). (2.8)

Thus,

lim
t→0

I1 − mb1(u)
t

= −(λ + r + δ)mb1(u),

lim
t→0

I2

t
= rmb1(u),
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lim
t→0

I3

t
= λ(1 − p)

[∫ b−u

0
mb1(u + y)dG(y) +

∫ ∞

b−u
mb2(u + y)dG(y)

]
,

lim
t→0

I4

t
= λp

[∫ b−u

0

∫ u+y

0
mb1(u + y − x)dF(x)dG(y) +

∫ ∞

0

∫ ∞

u+y
ω(u + y, x − u − y)dF(x)dG(y)

+

∫ ∞

b−u

(∫ u+y

u+y−b
mb1(u + y − x)dF(x) +

∫ u+y−b

0
mb2(u + y − x)dF(x)

)
dG(y)

]
.

Substituting Eqs (2.5)–(2.8) into Eq (2.4), and rewriting it in a more visible way. Thus Eq (2.1) can be
obtained by dividing t both sides as well as considering that t tends to 0.

When u ≥ b, we can obtain Eq (2.2) by using similar methods.
The continuity condition (2.11) can be obtained easily by letting u tend to b in Eqs (2.1) and (2.2).

�

Theorem 2. We denote Vb(u) = Vb1(u) for 0 ≤ u < b, and Vb(u) = Vb2(u) for u ≥ b. Then the expected
discounted cumulative dividend function Vb(u), u > 0, satisfies the following integral equations:

(λ + δ)Vb1(u)

− λp
∫ b−u

0

∫ u+y

0
Vb1(u + y − x)dF(x)dG(y)

− λp
∫ ∞

b−u

(∫ u+y

u+y−b
Vb1(u + y − x)dF(x) +

∫ u+y−b

0
Vb2(u + y − x)dF(x)

)
dG(y)

− λ(1 − p)
(∫ b−u

0
Vb1(u + y)dG(y) +

∫ ∞

b−u
Vb2(u + y)dG(y)

)
= 0, 0 ≤ u < b, (2.9)

(λ + δ + r)Vb2(u)

− λ(1 − p)
∫ ∞

0
Vb2(u + y)dG(y) − r(u − b + Vb2(b))

− λp
∫ ∞

0

(∫ u+y

u+y−b
Vb1(u + y − x)dF(x) +

∫ u+y−b

0
Vb2(u + y − x)dF(x)

)
dG(y)

= 0, u ≥ b, (2.10)

with the continuity condition

Vb1(b−) = Vb2(b). (2.11)

Proof of Theorem 2. The method of this proof is similar to Theorem 1, which is omitted here. �

Remark 3. When r → ∞ (i.e. periodic dividend strategy evolved into continuous dividend strategy),
our results are consistent with [8].

Remark 4. When r → 0, which means the expectation of the first dividend decision time tends to
infinity, then in this case Vb(u)→ 0 (i.e. no dividends).
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3. Closed-form expressions

Since it is difficult to solve Eqs (2.1), (2.2), (2.9) and (2.10), in this section, both claim sizes and
premium sizes are assumed to be independent, exponentially distributed random variables. Specifically,
let F(x) = 1 − e−ax, G(y) = 1 − e−my, a > 0, m > 0, and the net profit condition a > mp. We give the
closed-form expressions of Gerber-Shiu function mb(u), u > 0 and the expected discounted cumulative
dividend function Vb(u), u > 0.

3.1. Laplace transform of the deficit at ruin

In this subsection, we assume that ω(x, y) = y. Then in this case mb(u) , ξb(u) denotes the Laplace
transform of the deficit at ruin. Its explicit expressions under these assumptions are given as follows.

Let z = u + y in Eqs (2.1) and (2.2), so that they can be simplified as

(λ + δ)ξb1(u)

= λ(1 − p)memu

(∫ b

u
ξb1(z)e−mzdz +

∫ ∞

b
ξb2(z)e−mzdz

)
+ λpamemu

∫ ∞

b

(∫ z

z−b
ξb1(z − x)e−(ax+mz)dx +

∫ z−b

0
ξb2(z − x)e−(ax+mz)dx

)
dz

+ λpamemu
∫ b

u

∫ z

0
ξb1(z − x)e−(ax+mz)dxdz +

λmpe−au

a(a + m)
, 0 ≤ u < b, (3.1)

(λ + δ + r)ξb2(u)

= λ(1 − p)memu
∫ ∞

u
ξb2(z)e−mzdz +

λmpe−au

a(a + m)
+ rξb2(b+)

+ λpamemu
∫ ∞

b

(∫ z

z−b
ξb1(z − x)e−(ax+mz)dx +

∫ z−b

0
ξb2(z − x)e−(ax+mz)dx

)
dz, u ≥ b. (3.2)

By differentiating both sides of (3.1) and (3.2) with respect to u, we obtain

(λ + δ)ξ
′

b1(u)

= λ(1 − p)m2emu

(∫ b

u
ξb1(z)e−mzdz +

∫ ∞

b
ξb2(z)e−mzdz

)
+ λpam2emu

∫ ∞

b

(∫ z

z−b
ξb1(z − x)e−(ax+mz)dx +

∫ z−b

0
ξb2(z − x)e−(ax+mz)dx

)
dz

+ λpam2emu
∫ b

u

∫ z

0
ξb1(z − x)e−(ax+mz)dxdz −

λmpe−au

a + m

− λ(1 − p)mξb1(u) − λpma
∫ u

0
ξb1(u − x)e−axdx, 0 ≤ u < b, (3.3)

(λ + δ + r)ξ
′

b2(u)

= λ(1 − p)m2emu
∫ ∞

u
ξb2(z)e−mzdz −

λmpe−au

a + m
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+ λpam2emu
∫ ∞

u

(∫ z

z−b
ξb1(z − x)e−(ax+mz)dx +

∫ z−b

0
ξb2(z − x)e−(ax+mz)dx

)
dz

− λ(1 − p)mξb2(u), u ≥ b. (3.4)

By differentiating both sides of (3.3) and (3.4) with respect to u, we have

(λ + δ)ξ
′′

b1(u)

= λ(1 − p)m3emu

(∫ b

u
ξb1(z)e−mzdz +

∫ ∞

b
ξb2(z)e−mzdz

)
+ λpam3emu

∫ b

u

∫ z

0
ξb1(z − x)e−(ax+mz)dxdz +

λpame−au

a + m

+ λpam3emu
∫ ∞

b

(∫ z

z−b
ξb1(z − x)e−(ax+mz)dx +

∫ z−b

0
ξb2(z − x)e−(ax+mz)dx

)
dz

+ (a − m)λpma
∫ u

0
ξb1(u − x)e−axdx − λ(1 − p)mξ

′

b1(u)

− λ(1 − p)m2ξb1(u) − λpamξb1(u), 0 ≤ u < b, (3.5)

(λ + δ + r)ξ
′′

b2(u)

= λ(1 − p)m3emu
∫ ∞

u
ξb2(z)e−mzdz +

aλmpe−au

a + m

+ λpam3emu
∫ ∞

b

(∫ z

z−b
ξb1(z − x)e−(ax+mz)dx +

∫ z−b

0
ξb2(z − x)e−(ax+mz)dx

)
dz

+ (a − m)λpma
(∫ u

u−b
ξb1(u − x)e−axdx +

∫ u−b

0
ξb2(u − x)e−axdx

)
− λ(1 − p)m2ξb2(u) − λ(1 − p)mξ

′

b2(u) − λpamξb2(u), u ≥ b. (3.6)

Calculating (3.3) − m × (3.1) and (3.5) − m × (3.3), we obtain

(λ + δ)ξ
′

b1(u) − m(λp + δ)ξb1(u) + λpm
(
e−au + a

∫ u

0
ξb1(u − x)e−axdx

)
= 0. (3.7)

(λ + δ)ξ
′′

b1(u) − m(λp + δ)ξ
′

b1(u) + λpamξb1(u) − λpma
(
e−au + a

∫ u

0
ξb1(u − x)e−axdx

)
= 0. (3.8)

Calculating (3.8) + a × (3.7) and rearranging, the following second-order homogeneous ordinary
differential equation (ODE) is derived:

(λ + δ)ξ
′′

b1(u) + [a(λ + δ) − m(λp + δ)]ξ
′

b1(u) − amδξb1(u) = 0. (3.9)

Calculating (3.4) − m × (3.2) and (3.6) − m × (3.4) yields

(λ + δ + r)ξ
′

b2(u) − m(λp + δ + r)ξb2(u) + λpme−au + mrξb2(b+)

+ λpma
(∫ u

u−b
ξb1(u − x)e−axdx +

∫ u−b

0
ξb2(u − x)e−axdx

)
= 0. (3.10)
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(λ + δ + r)ξ
′′

b2(u) − m(λp + δ + r)ξ
′

b2(u) − λpmae−au + λpamξb2(u)

− λpma2
(∫ u

u−b
ξb1(u − x)e−axdx +

∫ u−b

0
ξb2(u − x)e−axdx

)
= 0. (3.11)

Calculating (3.11)+a×(3.10) and rearranging, we obtain the following second-order nonhomogeneous
ODE:

(λ + δ + r)ξ
′′

b2(u) + [a(λ + δ + r) − m(λp + δ + r)]ξ
′

b2(u) − am(δ + r)ξb2(u) + amrξb2(b+) = 0. (3.12)

The general solution to Eq (3.9) is obtained as follows:

ξb1(u) = A1es1u + A2es2u, 0 ≤ u < b, (3.13)

where s1 < 0, s2 ≥ 0 are the roots of the characteristic equation (λ+δ)s2+[a(λ+δ)−m(λp+δ)]s−amδ =

0; and A1, A2 are the undetermined coefficients.
The general solution of Eq (3.12) has the form

ξb2(u) = A3es3u + A4es4u +
r

r + δ
ξb2(b+), u ≥ b, (3.14)

where s3 < 0, s4 ≥ 0 are the roots of the characteristic equation (λ + δ + r)s2 + [a(λ + δ + r) − m(λp +

δ + r)]s − am(δ + r) = 0; A3, A4 are the undetermined coefficients; and r
r+δ
ξb2(b+) is a special solution

of Eq (3.12).
By substituting (3.13) into (3.7), we see that (3.13) satisfies (3.7) only if

a2(s2 + a)A1 + a2(s1 + a)A2 = (s1 + a)(s2 + a). (3.15)

From the continuity condition (2.11), we have ξb1(b−) = ξb2(b+). From the formulae (3.3) and (3.4),
we have (λ + δ)ξ

′

b1(b−) = (λ + δ + r)ξ
′

b2(b+). Then

δes1bA1 + δes2bA2 − (δ + r)es3bA3 − (δ + r)es4bA4 = 0, (3.16)
(λ + δ)(es1bs1A1 + es2bs2A2) − (λ + δ + r)(es3bs3A3 + es4bs4A4) = 0. (3.17)

By substituting (3.13) and (3.14) into (3.1), we see that (3.13) and (3.14) satisfy (3.1) only if

l1es1bA1 + l2es2bA2 − l3es3bA3 − l4es4bA4 = 0, (3.18)

where

l1 = [
r(1 − p)

r + δ
+

pa
a + m

(
m

a + s1
+

r
r + δ

)
−

m
m − s1

(
1 − p +

pa
a + s1

)
,

l2 =
r(1 − p)

r + δ
+

pa
a + m

(
m

a + s2
+

r
r + δ

)
−

m
m − s2

(
1 − p +

pa
a + s2

)
,

l3 =
m

m − s3

(
1 − p +

pa
a + m

)
,

l4 =
m

m − s4

(
1 − p +

pa
a + m

)
.
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Let

w1 = δ(λ + δ + r)(l4s3 − l3s4) + (δ + r)[(λ + δ + r)(s4 − s3)l2 − (λ + δ)(l4 − l3)s2],
w2 = δ(λ + δ + r)(l3s4 − l4s3) + (δ + r)[(λ + δ)(l4 − l1)s1 − (λ + δ + r)(s4 − s3)l1],
w3 = δ[(λ + δ)(s1 − s2)l4 + (λ + δ + r)(l2 − l1)s4] − (δ + r)(λ + δ)(l2s1 − l1s2),
w4 = δ[(λ + δ)(s1 − s2)l3 + (λ + δ + r)(l2 − l1)s3] − (δ + r)(λ + δ)(l2s1 − l1s2),
w5 = (λ + δ + r)(s4 − s3)(l2 − l1) + (λ + δ)[(l4 − l1)s1 − (l4 − l3)s2].

Solving the system of Eqs (3.15)−(3.18), we can obtain A1–A4. Then we have

ξb(u) =

 (s1+a)(s2+a)[w1e(s2b+s1u)+w2e(s1b+s2u)]
a2[(s2+a)w1es2b+(s1+a)w2es1b] , 0 ≤ u < b,

(s1+a)(s2+a)e(s1+s2)b[rw5+w3e(s4b+s3u)−w4e(s3b+s4u)]
a2e(s3+s4)b[(s2+a)w1es2b+(s1+a)w2es1b]

, u ≥ b.

3.2. Laplace transform of the ruin time

In this subsection, we assume ω(x, y) = 1. Then in this case mb(u) , φb(u) denotes the Laplace
transform of the ruin time. The explicit expressions of φb(u) under the above assumptions are given as
follows:

Using the same method as in the previous section, we obtain

(λ + δ)φ
′′

b1(u) + [a(λ + δ) − m(λp + δ)]φ
′

b1(u) − amδφb1(u) = 0, (3.19)

and

(λ + δ + r)φ
′′

b2(u) + [a(λ + δ + r) − m(λp + δ + r)]φ
′

b2(u)
− am(δ + r)φb2(u) + amrφb2(b+) = 0. (3.20)

The explicit expressions for the Laplace transform of the ruin time can be obtained from the following
equations:

a(s2 + a)B1 + a(s1 + a)B2 = (s1 + a)(s2 + a), (3.21)
δes1bB1 + δes2bB2 − (δ + r)es3bB3 − (δ + r)es4bB4 = 0, (3.22)
(λ + δ)(es1bs1B1 + es2bs2B2) − (λ + δ + r)(es3bs3B3 + es4bs4B4) = 0, (3.23)

and

l1es1bB1 + l2es2bB2 − l3es3bB3 − l4es4bB4 = 0, (3.24)

where li, si, i = 1, 2, 3, 4 are the same as in Section 3.1; and the undetermined coefficients B1–B4 can
be easily obtained from (3.21)−(3.24). Then we have

φb(u) =

 (s1+a)(s2+a)[w1e(s2b+s1u)+w2e(s1b+s2u)]
a[(s2+a)w1es2b+(s1+a)w2es1b] , 0 ≤ u < b,

(s1+a)(s2+a)e(s1+s2)b[rw5+w3e(s4b+s3u)−w4e(s3b+s4u)]
ae(s3+s4)b[(s2+a)w1es2b+(s1+a)w2es1b]

, u ≥ b.
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3.3. Expected discounted cumulative dividend function

In this subsection, we provide the explicit expression of Vb(u), u > 0, by using the same method as
in Section 3.1. Similar to (3.19)–(3.24), we have

(λ + δ)V
′′

b1(u) + [a(λ + δ) − m(δ + λ + mp)]V
′

b1(u) − amδVb1(u) = 0, (3.25)

and

(λ + δ + r)V
′′

b2(u) + [a(r + λ + δ) − m(r + δ + λp)]V
′

b2(u)
−am(δ + r)Vb2(u) + amr(u − b + Vb2(b+)) = 0, (3.26)

The explicit expressions can be obtained from the following equations:

1
s1 + a

C1 +
1

s2 + a
C2 = 0, (3.27)

δes1bC1 + δes2bC2 − (δ + r)es3bC3 =
r[a(r + λ + δ) − m(r + δ + λp)]

am(r + δ)
, (3.28)

(λ + δ)(es1bs1C1 + es2bs2C2) − (λ + δ + r)es3bs3 =
rλ

r + δ
, (3.29)

where s1–s3 are the same as in Section 3.1; and the undetermined coefficients C1–C3 can be easily
obtained from (3.27)−(3.29).

Let

w6 = [a(r + λ + δ) − m(r + δ + λp)](r + λ + δ)s3 − λam(r + δ),
w7 = (s2 + a)[(λ + δ)(r + δ)s2 − δ(r + λ + δ)s3]es2b − (s1 + a)[(λ + δ)(r + δ)s1 − δ(r + λ + δ)s3]es1b,

w8 = λamrδ(r + δ)[(s2 + a)es2b + (s1 + a)es1b]
− r(λ + δ)[a(r + λ + δ) − m(r + δ + λp)][(s2 + a)s2es2b + (s1 + a)s1es1b].

Then we have

Vb(u) =

 rw6[(s1+a)es1u+(s2+a)es2u]
am(r+δ)w7

, 0 ≤ u < b,
r2w6[(s1+a)es1b+(s2+a)es2b]+(r+δ)w8es3(u−b)

am(r+δ)2w7
+

r[am(r+δ)(u−b)+a(r+λ+δ)−m(r+δ+λp)]
am(r+δ)2 , u ≥ b.

4. Numerical analysis

In this section, we respectively reveal the impact of various parameters on the Laplace transform
of the deficit at ruin, the Laplace transform of the ruin time, and the expected discounted cumulative
dividend function. In order to investigate that, in the following analysis, unless otherwise specified, the
basic parameter settings are as follows: λ = 1, p = 0.2, b = 2, u = 1, r = 0.05, a = 1, m = 1, δ = 0.05.

4.1. Laplace transform of the deficit at ruin

In this subsection, we examine the impact of each parameter on the Laplace transform of the deficit
at ruin ξb(u) to study its sensitivity. According to the sensitivity, we can control the deficit at ruin by
adjusting the parameters of different insurance products.

In Figure 1, we respectively present the graphs of the Laplace transform of the deficit at ruin ξb(u)
for three different values of λ, p, a, m, r, and δ.
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Figure 1. The curves of Laplace transform of the deficit at ruin ξb(u) as a function of u when:
(a) λ = 1, 2, 4; (b) p = 0.2, 0.4, 0.6; (c) a = 2, 3, 4; (d) m = 0.5, 1, 1.5; (e) r = 0.05, 0.25, 0.45;
(f) δ = 0.01, 0.03, 0.05.
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From Figure 1, we can see the following conclusions:
(1) Figure 1(a) shows that the Laplace transform of the deficit at ruin ξb(u) increases with respect

to the Poisson parameter λ of the premium counting process {N(t), t > 0}. Note that parameter λ
denotes the average incidence of random events per unit time. An increase of λ means that the number
of premium policies and claims occurred increases in the unit area. Figure 1(a) shows that the more
premiums collected per unit of time, the greater the liabilities arising from bankruptcy, which is
consistent with our intuitive understanding.

(2) From Figure 1(b) we see that as p increases, ξb(u) increases. This phenomenon is because that
the number of claims generated increases when p increases. For insurance companies, different values
of p can represent different insurance products.

(3) ξb(u) is decreasing with respect to a and δ, respectively, see Figure 1(c),(f). The parameter δ
is the discount rate, which is easy to understand. An increase in a leads to a decrease in cost for the
insurance company, which makes bankruptcy happen earlier.

(4) As is seen from Figure 1(d), ξb(u) is a monotonic increasing function of m. Increased m causes
an increase in the insurance company’s revenue, which makes bankruptcy occur later.

(5) Figure 1(e) shows that ξb(u) is increasing with respect to r. Dividends are equivalent to the
expenses of the insurance company. The larger r is, the more dividends paid out per unit of time,
which means the higher costs for insurance companies. We can control the deficit by appropriately
reducing the value of r.

4.2. Laplace transform of the ruin time

In this subsection, we depict the effects of various parameters on the Laplace transform of ruin time
φb(u). In applications, it is reasonable that the shareholders of the company are interested in φb(u) for
that they can avoid ruin by adjusting the values of parameters.

In Figure 2, we present the graphs of the Laplace transform of the ruin time φb(u) as the functions
of (λ, p) ∈ [1, 4] × (0, 1); (m, a) ∈ (0, 1] × [2, 3]; (u, b) ∈ [0, 1] × [0, 1], respectively.

(a) (b) (c)

Figure 2. Laplace transform of the time of ruin φb(u) as functions of (a) λ and p; (b) m and
a; (c) u and b.

From these graphs, we obtain some results as follows:
(1) φb(u) is decreasing in u, and b, respectively. The initial capital u has a significant impact on

the ruin time: A high initial capital can curb bankruptcy. An increase of b means a reduction in the
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payment of dividends per time, that is, a lower cost of insurance companies, which leads to that ruin
occurs later.

(2) φb(u) decreases with respect to a and increases with respect to λ, p, and m, respectively. The
interpretation is similar to that of the previous one. We omitted here.

4.3. Expected discounted cumulative dividend function

In this subsection, we depict the effects of the parameters u and b on the expected discounted
cumulative dividend function Vb(u).

From Figure 3(a), we can see that Vb(u) is increasing in the initial capital u, which is obvious and
easy to understand. However, from Figure 3(b), it can be seen that Vb(u) is decreasing in the dividend
barrier b. For fixed initial capital u, the maximum value is V0(u), then we have that the optimal barrier
b∗ = 0. We also conclude that the optimal barrier b∗ is independent of the initial capital u. From
Figure 3(c), we have Vb(u) = 0 when r → 0. This verifies the result of Remark 4.
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Figure 3. The value of Vb(u) as functions of (a) u when b = 2, 3, 4 and (b) b when u = 3, 4, 5
and (c) r when u = 1, b = 2 and u = 3, b = 2, respectively.

5. Conclusions

In this paper, we consider an improved thinning risk model with a periodic barrier strategy. This
improved risk model is of great practical significance since it is much closer to the actual operate model
of insurance companies. We examined the expected discounted penalty function mb(u) and the expected
discounted cumulative dividend function Vb(u) under the assumption that inter-dividend-decision times
is subject to exponential distribution. Not only the integral equation satisfied by them are obtained, but
the explicit expressions for them are derived by means of the integral and differential method when the
claim amount and premium sizes are exponentially distributed. Finally, by some numerical analysis,
we conclude some results that can be used to risk management of insurance companies. In the end, we
find Vb(u) is decreasing in b and that the optimal barrier b∗ = 0.

For the further research, diffusion could be considered in this thinning model. In addition, we can
also consider the inter-dividend-decision times following Erlang(n) distribution.
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