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1. Introduction

Henkin and Skolem introduced Hilbert algebras in the fifties for investigations in intuitionistic and
other non-classical logics. Diego [4] proved that Hilbert algebras form a variety which is locally
finite. Bandaru et al. introduced the notion of GE-algebras which is a generalization of Hilbert
algebras, and investigated several properties (see [1, 2, 7–9]). The notion of interior operator is
introduced by Vorster [12] in an arbitrary category, and it is used in [3] to study the notions of
connectedness and disconnectedness in topology. Interior algebras are a certain type of algebraic
structure that encodes the idea of the topological interior of a set, and are a generalization of
topological spaces defined by means of topological interior operators. Rachůnek and Svoboda [6]
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studied interior operators on bounded residuated lattices, and Svrcek [11] studied multiplicative
interior operators on GMV-algebras. Lee et al. [5] applied the interior operator theory to GE-algebras,
and they introduced the concepts of (commutative, transitive, left exchangeable, belligerent,
antisymmetric) interior GE-algebras and bordered interior GE-algebras, and investigated their
relations and properties. Later, Song et al. [10] introduced the notions of an interior GE-filter, a weak
interior GE-filter and a belligerent interior GE-filter, and investigate their relations and properties.
They provided relations between a belligerent interior GE-filter and an interior GE-filter and
conditions for an interior GE-filter to be a belligerent interior GE-filter is considered. Given a subset
and an element, they established an interior GE-filter, and they considered conditions for a subset to
be a belligerent interior GE-filter. They studied the extensibility of the belligerent interior GE-filter
and established relationships between weak interior GE-filter and belligerent interior GE-filter of
type 1, type 2 and type 3. Rezaei et al. [7] studied prominent GE-filters in GE-algebras. The purpose
of this paper is to study by applying interior operator theory to prominent GE-filters in GE-algebras.
We introduce the concept of a prominent interior GE-filter, and investigate their properties. We
discuss the relationship between a prominent GE-filter and a prominent interior GE-filter and the
relationship between an interior GE-filter and a prominent interior GE-filter. We find and provide
examples where any interior GE-filter is not a prominent interior GE-filter and any prominent
GE-filter is not a prominent interior GE-filter. We provide conditions for an interior GE-filter to be a
prominent interior GE-filter. We provide conditions under which an internal GE-filter larger than a
given internal GE filter can become a prominent internal GE-filter, and give an example describing it.
We also introduce the concept of a prominent interior GE-filter of type 1 and type 2, and investigate
their properties. We discuss the relationship between a prominent interior GE-filter and a prominent
interior GE-filter of type 1. We give examples to show that A and B are independent of each other,
where A and B are:

(1)
{

A: prominent interior GE-filter of type 1.
B: prominent interior GE-filter of type 2.

(2)
{

A: prominent interior GE-filter.
B: prominent interior GE-filter of type 2.

(3)
{

A: interior GE-filter.
B: prominent interior GE-filter of type 1.

(4)
{

A: interior GE-filter.
B: prominent interior GE-filter of type 2.

2. Preliminaries

Definition 2.1. [1] By a GE-algebra we mean a non-empty set X with a constant 1 and a binary
operation ∗ satisfying the following axioms:

(GE1) u ∗ u = 1,

(GE2) 1 ∗ u = u,

(GE3) u ∗ (v ∗ w) = u ∗ (v ∗ (u ∗ w))
for all u, v,w ∈ X.
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In a GE-algebra X, a binary relation “≤” is defined by

(∀x, y ∈ X) (x ≤ y ⇔ x ∗ y = 1) . (2.1)

Definition 2.2. [1, 2, 8] A GE-algebra X is said to be transitive if it satisfies:

(∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)) . (2.2)

Proposition 2.3. [1] Every GE-algebra X satisfies the following items:

(∀u ∈ X) (u ∗ 1 = 1) . (2.3)
(∀u, v ∈ X) (u ∗ (u ∗ v) = u ∗ v) . (2.4)
(∀u, v ∈ X) (u ≤ v ∗ u) . (2.5)
(∀u, v,w ∈ X) (u ∗ (v ∗ w) ≤ v ∗ (u ∗ w)) . (2.6)
(∀u ∈ X) (1 ≤ u ⇒ u = 1) . (2.7)
(∀u, v ∈ X) (u ≤ (v ∗ u) ∗ u) . (2.8)
(∀u, v ∈ X) (u ≤ (u ∗ v) ∗ v) . (2.9)
(∀u, v,w ∈ X) (u ≤ v ∗ w ⇔ v ≤ u ∗ w) . (2.10)

If X is transitive, then

(∀u, v,w ∈ X) (u ≤ v ⇒ w ∗ u ≤ w ∗ v, v ∗ w ≤ u ∗ w) . (2.11)
(∀u, v,w ∈ X) (u ∗ v ≤ (v ∗ w) ∗ (u ∗ w)) . (2.12)

Lemma 2.4. [1] In a GE-algebra X, the following facts are equivalent each other.

(∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)) . (2.13)
(∀x, y, z ∈ X) (x ∗ y ≤ (y ∗ z) ∗ (x ∗ z)) . (2.14)

Definition 2.5. [1] A subset F of a GE-algebra X is called a GE-filter of X if it satisfies:

1 ∈ F, (2.15)
(∀x, y ∈ X)(x ∗ y ∈ F, x ∈ F ⇒ y ∈ F). (2.16)

Lemma 2.6. [1] In a GE-algebra X, every filter F of X satisfies:

(∀x, y ∈ X) (x ≤ y, x ∈ F ⇒ y ∈ F) . (2.17)

Definition 2.7. [7] A subset F of a GE-algebra X is called a prominent GE-filter of X if it
satisfies (2.15) and

(∀x, y, z ∈ X)(x ∗ (y ∗ z) ∈ F, x ∈ F ⇒ ((z ∗ y) ∗ y) ∗ z ∈ F). (2.18)

Note that every prominent GE-filter is a GE-filter in a GE-algebra (see [7]).

AIMS Mathematics Volume 6, Issue 12, 13432–13447.



13435

Definition 2.8. [5] By an interior GE-algebra we mean a pair (X, f ) in which X is a GE-algebra and
f : X → X is a mapping such that

(∀x ∈ X)(x ≤ f (x)), (2.19)
(∀x ∈ X)(( f ◦ f )(x) = f (x)), (2.20)
(∀x, y ∈ X)(x ≤ y ⇒ f (x) ≤ f (y)). (2.21)

Definition 2.9. [10] Let (X, f ) be an interior GE-algebra. A GE-filter F of X is said to be interior if it
satisfies:

(∀x ∈ X)( f (x) ∈ F ⇒ x ∈ F). (2.22)

3. Prominent interior GE-filters

Definition 3.1. Let (X, f ) be an interior GE-algebra. Then a subset F of X is called a prominent interior
GE-filter in (X, f ) if F is a prominent GE-filter of X which satisfies the condition (2.22).

Example 3.2. Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in Table 1.

Table 1. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 4 4
3 1 1 1 5 5
4 1 2 3 1 1
5 1 2 2 1 1

Then X is a GE-algebra. If we define a mapping f on X as follows:

f : X → X, x 7→
{

1 if x ∈ {1, 4, 5},
2 if x ∈ {2, 3},

then (X, f ) is an interior GE-algebra and F = {1, 4, 5} is a prominent interior GE-filter in (X, f ).

It is clear that every prominent interior GE-filter is a prominent GE-filter. But any prominent GE-
filter may not be a prominent interior GE-filter in an interior GE-algebra as seen in the following
example.

Example 3.3. Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in Table 2,

Table 2. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 3 4 1
3 1 2 1 4 5
4 1 2 3 1 5
5 1 1 3 4 1
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and define a mapping f on X as follows:

f : X → X, x 7→
{

1 if x ∈ {1, 2, 3, 5},
4 if x = 4.

Then (X, f ) is an interior GE-algebra and F := {1} is a prominent GE-filter of X. But it is not a
prominent interior GE-filter in (X, f ) since f (2) = 1 ∈ F but 2 < F.

We discuss relationship between interior GE-filter and prominent interior GE-filter.

Theorem 3.4. In an interior GE-algebra, every prominent interior GE-filter is an interior GE-filter.

Proof. It is straightforward because every prominent GE-filter is a GE-filter in a GE-algebra. □

In the next example, we can see that any interior GE-filter is not a prominent interior GE-filter in
general.

Example 3.5. Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in Table 3.

Table 3. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 4 4
3 1 2 1 4 4
4 1 1 3 1 1
5 1 1 1 1 1

Then X is a GE-algebra. If we define a mapping f on X as follows:

f : X → X, x 7→


1 if x = 1,
2 if x ∈ {2, 4, 5},
3 if x = 3,

then (X, f ) is an interior GE-algebra and F = {1} is an interior GE-filter in (X, f ). But it is not a
prominent interior GE-filter in (X, f ) since 1 ∗ (2 ∗ 3) = 1 ∈ F but ((3 ∗ 2) ∗ 2) ∗ 3 = 3 < F.

Proposition 3.6. Every prominent interior GE-filter F in an interior GE-algebra (X, f ) satisfies:

(∀x, y ∈ X) ( f (x ∗ y) ∈ F ⇒ ((y ∗ x) ∗ x) ∗ y ∈ F) . (3.1)

Proof. Let F be a prominent interior GE-filter in (X, f ). Let x, y ∈ X be such that f (x ∗ y) ∈ F. Then
x ∗ y ∈ F by (2.22), and so 1 ∗ (x ∗ y) = x ∗ y ∈ F by (GE2). Since 1 ∈ F, it follows from (2.18) that
((y ∗ x) ∗ x) ∗ y ∈ F. □

Corollary 3.7. Every prominent interior GE-filter F in an interior GE-algebra (X, f ) satisfies:

(∀x, y ∈ X) (x ∗ y ∈ F ⇒ ((y ∗ x) ∗ x) ∗ y ∈ F) . (3.2)
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Proof. Let F be a prominent interior GE-filter in (X, f ). Then F is an interior GE-filter in (X, f ) by
Theorem 3.4. Let x, y ∈ X be such that x ∗ y ∈ F. Since x ∗ y ≤ f (x ∗ y) by (2.19), it follows from
Lemma 2.6 that f (x ∗ y) ∈ F. Hence ((y ∗ x) ∗ x) ∗ y ∈ F by Proposition 3.6. □

Corollary 3.8. Every prominent interior GE-filter F in an interior GE-algebra (X, f ) satisfies:

(∀x, y ∈ X) (x ∗ y ∈ F ⇒ f (((y ∗ x) ∗ x) ∗ y) ∈ F) .

Proof. Straightforward. □

Corollary 3.9. Every prominent interior GE-filter F in an interior GE-algebra (X, f ) satisfies:

(∀x, y ∈ X) ( f (x ∗ y) ∈ F ⇒ f (((y ∗ x) ∗ x) ∗ y) ∈ F) .

Proof. Straightforward. □

In the following example, we can see that any interior GE-filter F in an interior GE-algebra (X, f )
does not satisfy the conditions (3.1) and (3.2).

Example 3.10. Consider the interior GE-algebra (X, f ) in Example 3.5. The interior GE-filter F := {1}
does not satisfy conditions (3.1) and (3.2) since f (2 ∗ 3) = f (1) = 1 ∈ F and 2 ∗ 3 = 1 ∈ F but
((3 ∗ 2) ∗ 2) ∗ 3 = 3 < F.

We provide conditions for an interior GE-filter to be a prominent interior GE-filter.

Theorem 3.11. If an interior GE-filter F in an interior GE-algebra (X, f ) satisfies the condition (3.1),
then F is a prominent interior GE-filter in (X, f ).

Proof. Let F be an interior GE-filter in (X, f ) that satisfies the condition (3.1). Let x, y, z ∈ X be such
that x∗ (y∗ z) ∈ F and x ∈ F. Then y∗ z ∈ F. Since y∗ z ≤ f (y∗ z) by (2.19), it follows from Lemma 2.6
that f (y ∗ z) ∈ F. Hence ((z ∗ y) ∗ y) ∗ z ∈ F by (3.1), and therefore F is a prominent interior GE-filter
in (X, f ). □

Lemma 3.12. [10] In an interior GE-algebra, the intersection of interior GE-filters is also an interior
GE-filter.

Theorem 3.13. In an interior GE-algebra, the intersection of prominent interior GE-filters is also a
prominent interior GE-filter.

Proof. Let {Fi | i ∈ Λ} be a set of prominent interior GE-filters in an interior GE-algebra (X, f ) where
Λ is an index set. Then {Fi | i ∈ Λ} is a set of interior GE-filters in (X, f ), and so ∩{Fi | i ∈ Λ} is an
interior GE-filter in (X, f ) by Lemma 3.12. Let x, y ∈ X be such that f (x ∗ y) ∈ ∩{Fi | i ∈ Λ}. Then
f (x ∗ y) ∈ Fi for all i ∈ Λ. It follows from Proposition 3.6 that ((y ∗ x) ∗ x) ∗ y ∈ Fi for all i ∈ Λ. Hence
((y ∗ x) ∗ x) ∗ y ∈ ∩{Fi | i ∈ Λ} and therefore ∩{Fi | i ∈ Λ} is a prominent interior GE-filter in (X, f ) by
Theorem 3.11. □

Theorem 3.14. If an interior GE-filter F in an interior GE-algebra (X, f ) satisfies the condition (3.2),
then F is a prominent interior GE-filter in (X, f ).
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Proof. Let F be an interior GE-filter in (X, f ) that satisfies the condition (3.2). Let x, y, z ∈ X be such
that x ∗ (y ∗ z) ∈ F and x ∈ F. Then y ∗ z ∈ F and thus ((z ∗ y) ∗ y) ∗ z ∈ F. Therefore F is a prominent
interior GE-filter in (X, f ). □

Given an interior GE-filter F in an interior GE-algebra (X, f ), we consider an interior GE-filter G
which is greater than F in (X, f ), that is, we take two interior GE-filters F and G such that F ⊆ G in an
interior GE-algebra (X, f ). We are now trying to find the condition that G can be a prominent interior
GE-filter in (X, f ).

Theorem 3.15. Let (X, f ) be an interior GE-algebra in which X is transitive. Let F and G be interior
GE-filters in (X, f ). If F ⊆ G and F is a prominent interior GE-filter in (X, f ), then G is also a
prominent interior GE-filter in (X, f ).

Proof. Assume that F is a prominent interior GE-filter in (X, f ). Then it is an interior GE-filter in
(X, f ) by Theorem 3.4. Let x, y ∈ X be such that f (x ∗ y) ∈ G. Then x ∗ y ∈ G by (2.22), and so
1 = (x ∗ y) ∗ (x ∗ y) ≤ x ∗ ((x ∗ y) ∗ y) by (GE1) and (2.6). Since 1 ∈ F, it follows from Lemma 2.6 that
x ∗ ((x ∗ y) ∗ y) ∈ F. Hence ((((x ∗ y) ∗ y) ∗ x) ∗ x) ∗ ((x ∗ y) ∗ y) ∈ F ⊆ G by Corollary 3.7. Since

((((x ∗ y) ∗ y) ∗ x) ∗ x) ∗ ((x ∗ y) ∗ y) ≤ (x ∗ y) ∗ (((((x ∗ y) ∗ y) ∗ x) ∗ x) ∗ y)

by (2.6), we have (x ∗ y) ∗ (((((x ∗ y) ∗ y) ∗ x) ∗ x) ∗ y) ∈ G by Lemma 2.6. Hence

((((x ∗ y) ∗ y) ∗ x) ∗ x) ∗ y ∈ G.

Since y ≤ (x ∗ y) ∗ y, it follows from (2.11) that

((((x ∗ y) ∗ y) ∗ x) ∗ x) ∗ y ≤ ((y ∗ x) ∗ x) ∗ y.

Thus ((y ∗ x) ∗ x) ∗ y ∈ G by Lemma 2.6. Therefore G is a prominent interior GE-filter in (X, f ). by
Theorem 3.11. □

The following example describes Theorem 3.15.

Example 3.16. Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in Table 4,

Table 4. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 5 5
3 1 1 1 5 5
4 1 3 3 1 1
5 1 3 3 1 1

and define a mapping f on X as follows:

f : X → X, x 7→


1 if x = 1,
3 if x ∈ {2, 3},
5 if x ∈ {4, 5}.
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Then (X, f ) is an interior GE-algebra in which X is transitive, and F := {1} and G := {1, 4, 5} are
interior GE-filters in (X, f ) with F ⊆ G. Also we can observe that F and G are prominent interior
GE-filters in (X, f ).

In Theorem 3.15, if F is an interior GE-filter which is not prominent, then G is also not a prominent
interior GE-filter in (X, f ) as shown in the next example.

Example 3.17. Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in Table 5,

Table 5. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 4 1
3 1 5 1 4 5
4 1 1 1 1 1
5 1 1 1 4 1

and define a mapping f on X as follows:

f : X → X, x 7→


1 if x = 1,
3 if x = 3,
4 if x = 4,
2 if x ∈ {2, 5}.

Then (X, f ) is an interior GE-algebra in which X is transitive, and F := {1} and G := {1, 3} are interior
GE-filters in (X, f ) with F ⊆ G. We can observe that F and G are not prominent interior GE-filters in
(X, f ) since 2 ∗ 3 = 1 ∈ F but ((3 ∗ 2) ∗ 2) ∗ 3 = (5 ∗ 2) ∗ 3 = 1 ∗ 3 = 3 < F, and 4 ∗ 2 = 1 ∈ G but
((2 ∗ 4) ∗ 4) ∗ 2 = (4 ∗ 4) ∗ 2 = 1 ∗ 2 = 2 < G.

In Theorem 3.15, if X is not transitive, then Theorem 3.15 is false as seen in the following example.

Example 3.18. Let X = {1, 2, 3, 4, 5, 6} be a set with the Cayley table which is given in Table 6.

Table 6. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 1 1 1 6 6 6
3 1 1 1 5 5 5
4 1 1 3 1 1 1
5 1 2 3 2 1 1
6 1 2 3 2 1 1
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If we define a mapping f on X as follows:

f : X → X, x 7→



1 if x = 1,
4 if x = 4,
5 if x = 5,
6 if x = 6,
2 if x ∈ {2, 3},

then (X, f ) is an interior GE-algebra in which X is not transitive. Let F := {1} and G := {1, 5, 6}. Then
F is a prominent interior GE-filter in (X, f ) and G is an interior GE-filter in (X, f ) with F ⊆ G. But G
is not prominent interior GE-filter since 5 ∗ (3 ∗ 4) = 5 ∗ 5 = 1 ∈ G and 5 ∈ G but ((4 ∗ 3) ∗ 3) ∗ 4 =
(3 ∗ 3) ∗ 4 = 1 ∗ 4 = 4 < G.

Definition 3.19. Let (X, f ) be an interior GE-algebra and let F be a subset of X which satisfies (2.15).
Then F is called:

• A prominent interior GE-filter of type 1 in (X, f ) if it satisfies:

(∀x, y, z ∈ X) (x ∗ (y ∗ f (z)) ∈ F, f (x) ∈ F ⇒ (( f (z) ∗ y) ∗ y) ∗ f (z) ∈ F) . (3.3)

• A prominent interior GE-filter of type 2 in (X, f ) if it satisfies:

(∀x, y, z ∈ X) (x ∗ (y ∗ f (z)) ∈ F, f (x) ∈ F ⇒ ((z ∗ f (y)) ∗ f (y)) ∗ z ∈ F) . (3.4)

Example 3.20. (1). Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in Table 7,

Table 7. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 1 1
3 1 2 1 2 2
4 1 1 1 1 1
5 1 1 1 1 1

and define a mapping f on X as follows:

f : X → X, x 7→


1 if x ∈ {1, 3}
2 if x = 2,
4 if x = 4,
5 if x = 5.

Then (X, f ) is an interior GE-algebra and F := {1, 3} is a prominent interior GE-filter of type 1 in (X, f ).
(2). Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in Table 8,
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Table 8. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 1 1
3 1 1 1 4 1
4 1 1 1 1 5
5 1 1 3 4 1

and define a mapping f on X as follows:

f : X → X, x 7→
{

1 if x = 1,
2 if x ∈ {2, 3, 4, 5}.

Then (X, f ) is an interior GE-algebra and F := {1, 3} is a prominent interior GE-filter of type 2 in (X, f ).

Theorem 3.21. In an interior GE-algebra, every prominent interior GE-filter is of type 1.

Proof. Let F be a prominent interior GE-filter in an interior GE-algebra (X, f ). Let x, y, z ∈ X be
such that x ∗ (y ∗ f (z)) ∈ F and f (x) ∈ F. Then x ∈ F by (2.22). It follows from (2.18) that
(( f (z) ∗ y) ∗ y) ∗ f (z) ∈ F. Hence F is a prominent interior GE-filter of type 1 in (X, f ). □

The following example shows that the converse of Theorem 3.21 may not be true.

Example 3.22. Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in Table 9,

Table 9. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 1 1
3 1 1 1 1 5
4 1 1 3 1 1
5 1 1 1 1 1

and define a mapping f on X as follows:

f : X → X, x 7→


1 if x = 1,
2 if x ∈ {2, 3},
5 if x ∈ {4, 5}.

Then (X, f ) is an interior GE-algebra and F := {1} is a prominent interior GE-filter of type 1 in (X, f ).
But it is not a prominent interior GE-filter in (X, f ) since 1 ∗ (3 ∗ 4) = 1 ∈ F but (4 ∗ 3) ∗ 3) ∗ 4 = 4 < F.

The following example shows that prominent interior GE-filter and prominent interior GE-filter of
type 2 are independent of each other, i.e., prominent interior GE-filter is not prominent interior GE-
filter of type 2 and neither is the inverse.
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Example 3.23. (1). Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in the following
Table 10,

Table 10. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 1 1
3 1 5 1 1 5
4 1 1 1 1 1
5 1 3 3 1 1

and define a mapping f on X as follows:

f : X → X, x 7→


1 if x = 1,
4 if x ∈ {3, 4}
5 if x ∈ {2, 5}.

Then (X, f ) is an interior GE-algebra and F := {1} F is a prominent interior GE-filter in (X, f ). But it
is not a prominent interior GE-filter of type 2 since 1 ∗ (5 ∗ f (2)) = 5 ∗ 5 = 1 ∈ F and f (1) = 1 ∈ F but
((2 ∗ f (5)) ∗ f (5)) ∗ 2 = ((2 ∗ 5) ∗ 5) ∗ 2 = (1 ∗ 5) ∗ 2 = 5 ∗ 2 = 3 < F.

(2). Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in the following Table 11,

Table 11. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 1 1
3 1 2 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1

and define a mapping f on X as follows:

f : X → X, x 7→
{

1 if x = 1,
5 if x ∈ {2, 3, 4, 5}.

Then (X, f ) is an interior GE-algebra and F := {1} is a prominent interior GE-filter of type2 in (X, f ).
But it is not a prominent interior GE-filter in (X, f ) since 1 ∗ (2 ∗ 3) = 1 ∗ 1 = 1 ∈ F and 1 ∈ F but
((3 ∗ 2) ∗ 2) ∗ 3 = (2 ∗ 2) ∗ 3 = 1 ∗ 3 = 3 < F.

The following example shows that prominent interior GE-filter of type 1 and prominent interior
GE-filter of type 2 are independent of each other.

Example 3.24. (1). Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in the following
Table 12,
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Table 12. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 5 5
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1

and define a mapping f on X as follows:

f : X → X, x 7→


1 if x = 1,
3 if x ∈ {2, 3},
5 if x ∈ {4, 5}.

Then (X, f ) is an interior GE-algebra and F := {1, 2, 4} is a prominent interior GE-filter of type 1 in
(X, f ). But it is not a prominent interior GE-filter of type 2 since 1∗(5∗ f (2)) = 1∗(5∗3) = 1∗1 = 1 ∈ F
and f (1) = 1 ∈ F but ((2 ∗ f (5)) ∗ f (5)) ∗ 2 = ((2 ∗ 5) ∗ 5) ∗ 2 = (5 ∗ 5) ∗ 2 = 1 ∗ 2 = 2 < F.

(2). Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in the following Table 13,

Table 13. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 4 4 5
3 1 1 1 1 1
4 1 2 2 1 5
5 1 1 1 1 1

and define a mapping f on X as follows:

f : X → X, x 7→


1 if x = 1,
2 if x = 2,
4 if x = 4,
3 if x ∈ {3, 5}.

Then (X, f ) is an interior GE-algebra and F := {1} is a prominent interior GE-filter of type 2 in (X, f ).
But it is not a prominent interior GE-filter of type 1 in (X, f ) since 1∗(5∗ f (2)) = 1∗(5∗2) = 1∗1 = 1 ∈ F
and f (1) ∈ F but (( f (2) ∗ 5) ∗ 5) ∗ f (2) = ((2 ∗ 5) ∗ 5) ∗ 2 = (5 ∗ 5) ∗ 2 = 1 ∗ 2 = 2 < F.

The following example shows that interior GE-filter and prominent interior GE-filter of type 1 are
independent of each other.

Example 3.25. (1). Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in the following
Table 14,
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Table 14. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 5 5 5
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1

and define a mapping f on X as follows:

f : X → X, x 7→


1 if x = 1,
2 if x = 2,
5 if x ∈ {3, 4, 5}.

Then (X, f ) is an interior GE-algebra and F := {1} is an interior GE-filter in (X, f ). But F is not
prominent interior GE-filter of type 1 since 1 ∗ (5 ∗ f (2)) = 1 ∗ (5 ∗ 2) = 1 ∗ 1 = 1 ∈ F and f (1) = 1 ∈ F
but (( f (2) ∗ 5) ∗ 5) ∗ 2 = ((2 ∗ 5) ∗ 5) ∗ 2 = (5 ∗ 5) ∗ 2 = 1 ∗ 2 = 2 < F.

(2). Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in the following Table 15,

Table 15. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 5 1 5
3 1 2 1 1 1
4 1 1 3 1 5
5 1 1 1 1 1

and define a mapping f on X as follows:

f : X → X, x 7→
{

1 if x ∈ {1, 2, 4},
5 if x ∈ {3, 5}.

Then (X, f ) is an interior GE-algebra and F := {1, 2} is a prominent interior GE-filter of type 1 in
(X, f ). But it is not an interior GE-filter in (X, f ) since 2 ∗ 4 = 1 and 2 ∈ F but 4 < F.

The following example shows that interior GE-filter and prominent interior GE-filter of type 2 are
independent of each other.

Example 3.26. (1). Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in the following
Table 16,
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Table 16. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 1 1
3 1 2 1 1 2
4 1 2 3 1 5
5 1 1 1 1 1

and define a mapping f on X as follows:

f : X → X, x 7→


1 if x ∈ {1, 4}
2 if x = 2,
3 if x = 3,
5 if x = 5.

Then (X, f ) is an interior GE-algebra and F := {1, 4} is an interior GE-filter in (X, f ). But F is not
prominent interior GE-filter of type 2 since 4 ∗ (2 ∗ f (3)) = 4 ∗ (2 ∗ 3) = 4 ∗ 1 = 1 ∈ F and f (4) = 1 ∈ F
but ((3 ∗ f (2)) ∗ f (2)) ∗ 3 = ((3 ∗ 2) ∗ 2) ∗ 3 = (2 ∗ 2) ∗ 3 = 1 ∗ 3 = 3 < F.

(2). Let X = {1, 2, 3, 4, 5} be a set with the Cayley table which is given in the following Table 17,

Table 17. Cayley table for the binary operation “∗”.

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 1 5
3 1 1 1 1 1
4 1 1 1 1 5
5 1 1 1 1 1

and define a mapping f on X as follows:

f : X → X, x 7→
{

1 if x = 1,
3 if x ∈ {2, 3, 4, 5}.

Then (X, f ) is an interior GE-algebra and F := {1, 2, 5} is a prominent interior GE-filter of type 2 in
(X, f ). But it is not an interior GE-filter in (X, f ) since 5 ∗ 4 = 1 and 5 ∈ F but 4 < F.

Before we conclude this paper, we raise the following question.

Question. Let (X, f ) be an interior GE-algebra. Let F and G be interior GE-filters in (X, f ). If F ⊆ G
and F is a prominent interior GE-filter of type 1 (resp., type 2) in (X, f ), then is G also a prominent
interior GE-filter of type 1 (resp., type 2) in (X, f )?

4. Conclusions

We have introduced the concept of a prominent interior GE-filter (of type 1 and type 2), and have
investigated their properties. We have discussed the relationship between a prominent GE-filter and a
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prominent interior GE-filter and the relationship between an interior GE-filter and a prominent
interior GE-filter. We have found and provide examples where any interior GE-filter is not a
prominent interior GE-filter and any prominent GE-filter is not a prominent interior GE-filter. We
have provided conditions for an interior GE-filter to be a prominent interior GE-filter. We have given
conditions under which an internal GE-filter larger than a given internal GE filter can become a
prominent internal GE-filter, and have provided an example describing it. We have considered the
relationship between a prominent interior GE-filter and a prominent interior GE-filter of type 1. We
have found and provide examples to verify that a prominent interior GE-filter of type 1 and a
prominent interior GE-filter of type 2, a prominent interior GE-filter and a prominent interior
GE-filter of type 2, an interior GE-filter and a prominent interior GE-filter of type 1, and an interior
GE-filter and a prominent interior GE-filter of type 2 are independent each other. In future, we will
study the prime and maximal prominent interior GE-filters and their topological properties. Moreover,
based on the ideas and results obtained in this paper, we will study the interior operator theory in
related algebraic systems such as MV-algebra, BL-algebra, EQ-algebra, etc. It will also be used for
pseudo algebra systems and further to conduct research related to the very true operator theory.
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