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1. Introduction

In this paper, we study the non-Newtonian fluids associated with Maxwell equations:
ut − ∇ · S (Du) + (u · ∇)u + ∇π − (b · ∇)b = 0,

bt − △b + (u · ∇)b − (b · ∇)u = 0.

div u = 0 and div b = 0,

in QT := R3
+ × (0, T ), (1.1)

Here u : QT × (0, T ) → R3 is the flow velocity vector, b : QT × (0, T ) → R3 is the magnetic vector,
π : QT × (0, T )→ R is the total pressure and Du is the symmetric part of the velocity gradient, i.e.

Du = Di ju :=
1
2

(∂ui

∂x j
+
∂u j

∂xi

)
, i, j = 1, 2, 3.

To motivate the conditions on the stress tensor S , we recall the following examples of constitutive laws

S (Du) = (µ0 + µ1|Du|p−2)Du, (1.2)

where µ0 ≥ 0 and µ1 > 0 are constants (see e.g. [1, 16]). We consider the initial-boundary value
problem of (1.1), which requires initial conditions

u(x, 0) = u0(x) and b(x, 0) = b0(x) x ∈ R3
+, (1.3)
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together with the boundary conditions defined as follows:

u = 0 and b · n = 0, (∇ × b) × n = 0, (1.4)

where n is the outward unit normal vector along boundary ∂R3
+.

The fluids such as coal-water, faint, soaps, etc., is not followed linear relationship between rate of
strain and shear stress. In languages of mathematics, commonly, the standard Navier-Stokes equations
refers to the equations of motion of an incompressible fluid type of S = µ0Du, where µ0 > 0 is
constant. On the other hand, one class of non-Newtonian fluids is defined by S = µ(|Du|)Du (µ(·) a
positive nonlinear function). For example, we note that

S (Du) = (µ0 + µ1|Du|q−2)Du, 1 < q < ∞, µ0 > 0, µ1 > 0. (1.5)

For the existence of solutions to the model with the stress tensor (1.5), we make a brief comment. After
the pioneering study done by Ladyzhenskaya [10], the global-in-time existence of strong solutions is
proved for q > 11

5 in [11]. On the other hand, they also established the small data global-in-time
existence of strong solution for 5

3 < q < ∞ in three dimensional space (see also [3] for weak solutions)
The Eqs (1.1), which are the generalized incompressible magnetohydrodynamics equations is

regarded as one of the simplest model describing the dynamics of electrically conducting liquid with
involved rheological structure in a magnetic field. For the model (1.1), Gunzburger et al. in [6]
considered (1.1)–(1.4) for the case of bounded or periodic domains, and they established unique
solvability of the initial-boundary value problem. More specifically, assuming that u0 ∈ H2(Ω) and
b0 ∈ H1(Ω) with the following boundary conditions (1.4) for a bounded domain, it was shown in [6]
that if 5

2 < q ≤ 6, a generalized solution exists, and moreover, it satisfies

u ∈ L∞(0,T ; L2(Ω) ∩ H1(Ω)), ∇u ∈ L∞(0,T ; Lq(Ω)),

b ∈ L∞(0,T ; L2(Ω) ∩ H1(Ω)), ∇b ∈ L∞(0,T ; L2(Ω)), b ∈ L2(0,T ; H2(Ω)).

ut ∈ L2(Ω × (0,T )), bt ∈ L2(Ω × (0,T )). (1.6)

Furthermore, they shown the uniqueness of solutions. Here strong solutions means that solutions
satisfy (1.1) pointwise a.e. and the energy equality holds. Recently, the authors in [8] establish global
unique solvability to (1.1)–(1.4) for u0 ∈ (W1,2 ∩W1,p) and b0 ∈ W1,2, 5

2 ≤ p in the same class above
(see [12] for weak solutions). For a half space, the proof in [6] is also held. And thus, we will not
comment further on the existence and uniqueness of strong solutions to (1.1) and (1.2).

For the asymptotic behavior of strong solutions to (1.1) and (1.2), the author in [9] recently
examined the L2-algebraic decay in the whole space R3 with respect to the monopolar shear
thickening fluids using Fourier splitting method in [13]. Precisely, he shown that

∥(u, b)(t)∥L2 ≤ C(1 + t)−
3
4 , ∀t > 0.

We also refer to [5, 7] for Navier-Stokes equations of non-Newtonian type.
On the other hand, in the case of a half space Rn

+, Dong and Chen [4] obtain that the weak solution
u(t) of the Naiver-Stokes equations of non-Newtonian type, that is b ≡ 0 in (1.1) enjoys the optimal
algebraic decay estimates

∥u(t)∥2L2 ≤ c(1 + t)−
3
2 ( 1

r −
1
2 ), if 1 ≤ r < ∞,

∥(u, b)(t)∥2L2 ≤ c(1 + t)−
3
2 ( 1

r −
1
2 )− 1

2 ,

∫
R3
+

|x3u0(x)|r dx < ∞, if 1 ≤ r < 2.
(1.7)
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by using the Lp − Lq estimates based on the explicit solution formula to the Stokes equation given by
Ukai [15] and the spectral decomposition method and fractional powers of the Stokes operator derived
by Borchers and Miyakawa [2].

For a domain, we briefly some comments. For a whole space, we obtain the same result like as
Theorem 1.1 by the fourier splitting method (see [8]). However, in R3

+ case with boundary conditions,
we needs to be handled the solution form due to the boundary effects. To effectively deal with boundary
effect, we use the well-known spectral method, we would like to obtain temporal rate of the strong
solutions. So far, there are few known results on the time decay problem to (1.1) in R3

+. In this
direction, our main results are as follows:

Theorem 1.1. Suppose that (u, b) is a strong solution of (1.1)–(1.4) with p ≥ 5/2. Then

(A) limt→∞∥(u, b)(t)∥L2 = 0, whenever u0, b0 ∈ L2
σ(R3

+),
(B) ∥(u, b)(t)∥L2 ≤ c(1 + t)−

3
2 ( 1

r −
1
2 ), whenever u0, b0 ∈ (L2

σ ∩ Lr)(R3
+) (1 ≤ r < 2).

Theorem 1.2. Suppose that (u, b) is a strong solution of (1.1)–(1.4) with p ≥ 5/2. under u0, b0 ∈

(L2
σ ∩ Lr)(R3

+) for 1 < r ≤ 2 ∫
R3
+

|x3u0(x)|r + |x3b0(x)|r dx < ∞. (1.8)

Then we have
∥(u, b)(t)∥L2 ≤ c(1 + t)−

3
2 ( 1

r −
1
2 )− 1

2 .

Corollary 1.3. Suppose that u is a strong solution of Naiver-Stokes equations of non-Newtonian type
with p ≥ 11/5, namely b = 0 in (1.1)–(1.4). Then

(A) limt→∞∥u(t)∥L2 = 0, whenever u0 ∈ L2
σ,

(B) ∥u(t)∥L2 ≤ c(1 + t)−
3
2 ( 1

r −
1
2 ), whenever u0 ∈ L2

σ ∩ Lr (1 ≤ r < 2).

Remark 1.4. Comparing to [4], since the result of Corollary 1.3 is about the time decay rate for
strong solution to Naiver-Stokes equations of non-Newtonian type, the restriction to the range of p can
be slightly relaxed.

Let us rewrite the abstract formulation of (1.1), ut + Asu + B1(u, b) = 0, u(0) = u0,

bt + Au + B2(u, b) = 0, b(0) = b0,
(1.9)

where the Stokes operators As and Laplacian operator A to be specially considered the boundary
conditions (1.4) are defined as follows:

Asu = −P∆u, u ∈ D(A) := W2,q(R3
+) ∩W1,q

0,σ(R3
+),

and

Ab = ∇ × (∇ × b), b ∈ D(Bq) = {b ∈ W2,q(R3
+) ∩W1,2

0,σ(R3
+) | (∇ × b) × n = 0 on ∂R3

+}.

(see [14, page 262]). And also the bilinear operator B1 and B2 is defined as follows:

B1(u, b) := (u · ∇)u − (b · ∇)b − ∇ · (|Du|q−2Du),
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and
B2(u, b) := (u · ∇)b − (b · ∇)u.

Here P is the orthogonal projection mapping Lq(R3
+) onto Lq

σ(R3
+) (see, e.g. Ukai [15]).

Lemma 1.5. ([2, Theorem 3.6]). Let either 1 < r ≤ q < ∞ or 1 ≤ r < q ≤ ∞ and v ∈ L2
σ ∩ Lr. Then

we have the Lr–Lq estimate
∥∇ke−Atv∥Lq ≤ ct−

k
2 ( 1

r −
1
q )
∥v∥Lr , k ≥ 0,

and
∥e−Atv∥Lq ≤ ct−

3
2 ( 1

r −
1
q )− 1

2
( ∫

R3
+

|xnu(x)|r
)1/r
,

where e−At denotes the analytic semigroup generated by the Stokes operator A. Here P is the orthogonal
projection mapping Lq(R3

+) onto Lq
σ(R3

+) (see, for example, Ukai [12]).

2. Proof of Theorems

Lemma 2.1. Suppose that (u, b) is a strong solution of (1.1)–(1.4). Then

∥E(λ)B1(u, b)∥ ≤ c(∥u∥2L2 + ∥b∥2L2 + ∥∇u∥p−1
Lp−1)λ

5
4 ,

and
∥E(λ)B2(u, b)∥ ≤ c(∥u∥2L2 + ∥b∥2L2)λ

5
4 , ∀ λ > 0.

Proof. Following [2, Theorem 3.6], we note that for 1 < r < ∞, α > 0 and 0 < 1
q := 1

r − 2α3 ≤ 1

3∑
i, j=1

∥∂xi∂x jv∥Lr ≤ C∥Asv∥Lr , ∥∇v∥Lr ≤ C∥A1/2
s v∥Lr , ∥v∥Lq ≤ C∥A1/2

s v∥Lr . (2.1)

The proof is almost same to that in [4, Lemma 2.3]. For the convenience of readers, we give a proof.
Indeed, a proof is based on (2.1) and Gagliardo-Nirenberg inequality as follows:

|⟨E(λ)B1(u, b), v⟩| = |⟨E(λ)
(
P(u · ∇)u − P(b · ∇)b − P∇ · |e(u)|p−2e(u)

)
, v⟩|

= |⟨
(
P(u · ∇)u − P(b · ∇)b − P∇ · |e(u)|p−2e(u)

)
, E(λ)v⟩|

≤ |⟨u, (u · ∇)E(λ)v⟩| + |⟨b, (b · ∇)E(λ)v⟩| + |⟨|e(u)|p−2e(u),∇E(λ)v⟩|

≤ c∥u∥2L2∥∇E(λ)v∥L∞ + c∥b∥2L2∥∇E(λ)v∥L∞ + c∥∇u∥p−1
Lp−1∥∇E(λ)v∥L∞

≤ c(∥u∥2L2 + ∥b∥2L2 + ∥∇u∥p−1
Lp−1)∥∇E(λ)v∥1/2

L6 ∥∇
2E(λ)v∥1/2

L6

≤ c(∥u∥2L2 + ∥b∥2L2 + ∥∇u∥p−1
Lp−1)∥A

1/2
s E(λ)v∥1/2

L6 ∥AsE(λ)v∥1/2
L6

≤ c(∥u∥2L2 + ∥b∥2L2 + ∥∇u∥p−1
Lp−1)∥A

1
2+

2
4

s E(λ)v∥1/2
L2 ∥A

1+ 2
4

s E(λ)v∥1/2
L2

= c(∥u∥2L2 + ∥b∥2L2 + ∥∇u∥p−1
Lp−1)λ

5
4 ∥v∥L2

(2.2)

Similarly, we have

|⟨E(λ)B2(u, b), v⟩| = |⟨E(λ)
(
(u · ∇)b − (b · ∇)u

)
, v⟩| ≤ c(∥u∥2L2 + ∥b∥2L2)λ

5
4 ∥v∥L2 ,

which is complete of the proof. □
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Proof of Theorem 1. Following the argument in [4], we will prove Theorem. From the energy
inequality, we know

d
dt
∥(u, b)(t)∥2L2(R3

+) + 2∥A1/2
s u∥2L2(R3

+) + ∥B
1/2b∥2L2(R3

+) ≤ 0. (2.3)

To obtain a lower bound of the second term in (2.3), we get for ρ > 0,

∥A1/2
s z∥2 =

∫ ∞

0
λd∥E(λ)z(t)∥2 ≥

∫ ∞

ρ

λd∥E(λ)z(t)∥2 ≥ ρ
∫ ∞

ρ

λd∥E(λ)z(t)∥2 ≥
ρ

2
(∥z(t)∥2 − ∥E(ρ)z(t)∥2),

and
∥B1/2z∥2 ≥

ρ

2
(∥z(t)∥2 − ∥E(ρ)z(t)∥2).

And thus, we have

d
dt
∥(u, b)(t)∥2L2 + ρ∥(u, b)(t)∥2 ≤ ρ∥E(ρ)u(t)∥2L2 + ρ∥E(ρ)b(t)∥2L2 (2.4)

To estimate the right-hand side of (2.4), we consider the integral form of (1.9),

u(t) = e−tAsu0 +

∫ t

0
e−(t−s)As B1(u, b) ds,

and

b(t) = e−tAsu0 +

∫ t

0
e−(t−s)BB2(u, b) ds.

Applying the operator E(ρ) to the both sides of this integral equation and integrating by parts, we
obtain

E(ρ)u(t) = E(ρ)e−tAsu0 +

∫ t

0

∫ ρ

0
e−λ(t−s)d(E(λ)B1(u, b))ds

= E(ρ)e−tAsu0 +

∫ t

0
e−ρ(t−s)(E(ρ)B(u))ds +

∫ t

0
(t − s)

(
e−λ(t−s)(E(λ)B1(u, b))dλ

)
ds.

This together with Lemma 2.1 implies

∥E(ρ)u(t)−E(ρ)e−tAsu0∥ ≤ cρ
5
4

∫ t

0
e−ρ(t−s)

(
∥u∥2+∥∇u∥p−1

p−1

)
+cρ

5
4

∫ t

0
(t−s)

(
e−λ(t−s)(

(
∥u∥2+∥∇u∥p−1

p−1

)
)dλ
)
ds

≤ cρ
5
4

∫ t

0
e−ρ(t−s)

(
∥u∥2 + ∥∇u∥p−1

p−1

)
.

where we use Korn’s inequality and the following inequality in the last inequality: For 11
5 ≤ p < 3,∫ t

0
∥∇z(s)∥p−1

Lp−1ds ≤
∫ t

0
∥z(s)∥

7−p
4

L2 ∥∇
2z(s)∥

5p−11
4

L2 ds

≤ C
( ∫ t

0
∥z(s)∥

14−2p
19−5p ds

) 19−5p
8
( ∫ ∞

0
∥∇2z(t)∥2L2dt

) 5q−11
8

≤ C
( ∫ t

0
∥z(s)∥

14−2p
19−5p

L2 ds
) 19−5p

8
,

(2.5)
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and for p ≥ 3∫ t

0
∥∇z(s)∥p−1

Lq−1ds ≤ C
∫ t

0
∥∇z(s)∥

2
q−2

L2 ∥∇z∥
p(p−3)

p−2

Lp ds ≤ C||∇z||
2

q−2

L2((0,t);L2)||∇z||
q(q−3)

q−2

Lq((0,t);Lq) < ∞. (2.6)

Hence, we have

∥E(ρ)u(t)∥L2 ≤ ∥e−tAsu0∥L2 + cρ
5
4

∫ t

0
∥u(t)∥2L2 ds +Cρ

5
4
( ∫ t

0
∥z(s)∥

14−2p
19−5p

L2 ds
) 19−5p

8
+ cρ

5
4 . (2.7)

In the same way, we get

∥E(ρ)b(t)∥L2 ≤ ∥e−tBb0∥L2 + cρ
5
4

∫ t

0
∥(u, b)(t)∥2L2 ds + cρ

5
4 . (2.8)

Using (2.7), (2.8) and the energy inequality, it implies

d
dt
∥(u, b)(t)∥2L2 + ρ∥(u, b)(t)∥2L2 ≤ ∥e−tAsu0∥

2
L2 + ∥e−tBb0∥

2
L2

+ cρ
5
2
( ∫ t

0
∥u(t)∥2L2 ds

)2
+ cρ

5
4
[( ∫ t

0
∥(u, b)(s)∥

14−2p
19−5p

L2 ds
) 19−5p

8
]2
+ cρ

5
2

≤ ∥e−tAsu0∥
2
L2 + ∥e−tBb0∥

2
L2 + cρ

5
2 t2 + cρ

5
2 , ∀ρ > 0.

Here, we use the following estimate[( ∫ t

0
∥z(s)∥

14−2p
19−5p

L2 ds
) 19−5p

8
]2
≤
( ∫ t

0
∥z(s)∥

2(14−2p)
19−5p

L2 dst
) 19−5p

8

≤

∫ t

0
∥z(s)∥

2(14−2p)
19−5p

L2 dst +C ≤
∫ t

0
∥z(s)∥2L2dst +C ≤ t2 +C.

Now let ρ = 3(1 + t)−1 and multiply both sides above by (1 + t)3 to obtain

d
dt

(
(1 + t)3∥(u, b)(t)∥2L2

)
≤ c(1 + t)2

(
α∥e−tAsu0∥

2
L2 + α∥e−tBb0∥

2
L2 + (1 + t)1− 3

2 + (1 + t)−
5
2
)

≤ c(1 + t)2∥e−tAsu0∥
2
L2 + c(1 + t)2∥e−tBb0∥

2
L2 + (1 + t)

3
2 + (1 + t)−

1
2 .

And thus, we get
∥(u, b)(t)∥2L2 ≤ c + c(1 + t)−

3
2 + c(1 + t)−

7
2 . (2.9)

Since ∥e−tAsu0∥
2
L2 → 0 and ∥e−tBb0∥

2
L2 → 0 as t → ∞, we conclude that u(t)→ 0 and b(t)→ 0 as t → ∞

and thus it complete the proof of first part in Theorem 1.1.
For second part, it follows from (2.9) and Lemma 2.2 that

∥(u, b)(t)∥2L2 ≤ c
(
t−( 3

r −
3
2 )∥(u0, b0)∥2Lr + (1 + t)−

3
2 + (1 + t)−

7
2
)
. (2.10)

Since 3
r −

3
2 <

5
2 , the desired assertion is obtained if 3

r −
3
2 ≤

3
2 . It remains to consider the case 3

r −
3
2 >

3
2

Hence (2.10) implies that
∥|(u, b)(t)∥2L2 ≤ (1 + t)−3/2. (2.11)
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Using (2.11), through the same method as before, we have

d
dt
∥(u, b)(t)∥2L2 + ρ∥(u, b)(t)∥2L2 ≤ ρt−( 3

r −
3
2 )∥(u0, b0)∥2Lr + cρ

7
2 t + cρ

7
2 .

Let ρ = 3t−1 and then multiply the both sides of this equation by t3 to get

d
dt

(t3∥(u, b)(t)∥|2L2) ≤ ρt2− 3
r −

3
2 + cρ

1
2 + cρ

−1
2 .

Since 1 ≤ r < 2 implies 3
r −

3
2 ≤

3
2 , we have

∥(u, b)(t)∥2L2 ≤ c(1 + t)−( 3
r −

3
2 ) for t ≥ 1,

and complete the proof of Theorem 3.1.

Proof of Theorem 2.

d
dt
∥(u, b)(t)∥2L2 + ρ∥(u, b)(t)∥2L2 ≤ ∥e−tAsb0∥

2
L2 + ∥e−tBu0∥

2
L2

+cρ
7
2
[( ∫ t

0
∥(u, b)(t)∥2 ds

)2
+ 1
]
+ cρ

7
2
[( ∫ t

0
∥u(s)∥

14−2p
19−5p

L2 ds
) 19−5p

8
]2
.

Let ρ = 3t−1 and multiply both sides above by t3 to obtain

d
dt

(t3∥(u, b)(t)∥2L2) ≤ ct3
(
t−( 3

r −
3
2 )−2 + t−

7
2
( ∫ t

0
∥(u, b)(t)∥2L2 ds

)2
+ t−

7
2
[( ∫ t

0
∥u(s)∥

14−2p
19−5p

L2 ds
) 19−5p

8
]2
+ t−

7
2
)

≤ c
(
t−( 3

r −
3
2 )+1 + t−

1
2
( ∫ t

0
∥(u, b)(t)∥2L2 ds

)2
+ t−

1
2
[( ∫ t

0
∥z(s)∥

14−2p
19−5p

L2 ds
) 19−5p

8
]2
+ t−

1
2
)
,

where we have used Lemma 1.5 and the assumption (1.8). Integrating with respect to t, we get

∥(u, b)(t)∥2L2 ≤ ct−( 3
r −

3
2 )−1 + t−

5
2
( ∫ t

0
∥u(t)∥2 ds

)2
+ t−

5
2
[( ∫ t

0
∥z(s)∥

14−2p
19−5p

L2 ds
) 19−5p

8
]2
+ t−

5
2

≤ ct−( 3
r −

3
2 )−1 + t−

5
2
( ∫ t

0
∥u(t)∥2L2 ds

)2
+ t−

3
2
( ∫ t

0
∥u(s)∥2L2ds

)
+ t−

5
2 .

From Theorem 3.1(ii), we know

∥(u, b)(t)∥2L2 ≤ c(1 + t)−
3
2 ( 1

r −
1
2 ). (2.12)

A. If 3
2 (1

r −
1
2 ) > 1

2 , we have ∫ t

0
∥(u, b)(s)∥2L2 < ∞. (2.13)

Substituting this equation into (2.13) yields

∥(u, b)(t)∥2L2 ≤ ct−( 3
r −

3
2 )−1 + t−

5
2 + t−

3
2 ≤ ct−( 3

r −
3
2 )−1.
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B. if 3
2 ( 1

r −
1
2 ) = 1

2 , then

∥(u, b)(t)∥2L2 ≤ c(1 + t)−( 3
r −

3
2 )−1 + (1 + t)−

5
2 (ln(1 + t)2)

+(1 + t)−
3
2 ln(1 + t) + t−

5
2 ≤ c(1 + t)−( 3

r −
3
2 )−1.

C. if 3
2 ( 1

r −
1
2 ) < 1

2 , we have

∥(u, b)(t)∥2L2 ≤ c(1 + t)−( 3
r −

3
2 )−1 + c(1 + t)(− 6

r +
3
2 ) + c(1 + t)−

3
r + c(1 + t)−

5
2 ≤ c(1 + t)−( 3

r −
3
2 )−1.

The proof is complete.
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