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1. Introduction

The problem of describing the final (at large times) dynamics of dissipative semilinear parabolic
equations (SPE)

∂tu = G(u) (∗)

(see [1]) with a Hilbert phase space X by an ordinary differential equation (ODE) in RN has been
attracting researcher’s attraction for a long time. In fact, it is required to separate finitely many
“determining” degrees of freedom of an infinite-dimensional dynamical system. In this case, the key
geometric object is the so-called (global) attractor [2–4], i.e., the connected compact invariant set
A ⊂ X that uniformly attracts bounded subsets X as t → +∞.

The required ODE can sometimes be implemented as an inertial form [3–5] obtained by restricting
the initial equation to an inertial manifold, i.e, a finite-dimensional invariant C1-surface M ⊂ X

containing the attractor and exponentially attracting (with asymptotic phase) all trajectories of (∗) as
t → +∞. The theory of inertial manifolds originally encountered systematic difficulties, and several
alternative concepts of finite-dimensional reduction of SPE have therefore been developed starting
from [6–9]. Following [8], we will say that the dynamics of (∗) on the attractor (final dynamics) is
finite-dimensional if there exists an ODE in RN with Lipschitz vector field, resolving flow {Θt}t∈R,
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and invariant compact set K ⊂ RN such that the phase semiflows {Φt}t≥0 of equation (∗) on A
and {Θt}t≥0 are Lipschitz conjugate on K . The latter means that there is a Lipschitz embedding
g : A → RN , gA = K , such that gΦtu = Θtgu for u ∈ A and t ≥ 0. The existence of the inertial
manifold implies that the dynamics is finite-dimensional on the attractor and, in general, looks like a
more attractive property. Indeed, in the first case, the inertial form provides an exponential asymptotics
of any solution of the equation at large times, and in the second case, we have an ODE reproducing
the original dynamics only on the attractor itself. Nevertheless, the fact that the dynamics is finite-
dimensional on A means that the structure of limit regimes of SPE with infinitely many degrees of
freedom is no more complicated than the structure of similar regimes of an ODE with Lipschitz vector
field in RN .

An alternative approach to the problem of finite-dimensional reduction of SPEs with a parameter
was developed by J. Hale, A. N. Carvalho and many others (see, for example, [10] and references
therein). For diffusion equations, this approach is based on the concept of “large diffusion”.

In this paper, we consider the problem of whether the final dynamics is finite-dimensional for one-
dimensional systems of reaction-diffusion-convection equations

∂tu = D∂xxu − u + f (x, u)∂xu + g(x, u), (1.1)

where u = (u1, . . . , um) and f and g are sufficiently smooth matrix and vector functions. We assume
that x ∈ J, where J is a circle of length 1. The matrix of diffusion coefficients D is assumed to be
diagonal, D = diag{d j}, d j > 0. As the phase space we choose an appropriate space X ⊂ C1(J,Rm)
in the Hilbert semiscale {Xα}α≥0 generated by a linear positive definite operator u → u − Duxx in
X = L2(J,Rm). We postulate that evolution Eq (1.1) is dissipative in X and there exists the attractor
A ⊂ X consisting of functions u = u(x), u ∈ C1(J,Rm). The algebraic structure of the “convection
matrix” f = f (x, u), f = { fi j}, i, j ∈ 1,m, on the convex hull coA ⊂ X plays an important role. We
will highlight the case of the scalar diffusion matrix D = dE, where d = const and E is the identity
matrix.

For scalar equations of the form (1.1), the fact that the dynamics is finite-dimensional on the
attractor was established in [9]. The problem of finite-dimensional reduction (1.1) becomes much
more complicated when passing to the systems. In the vector case, the final dynamics of systems (1.1)
with scalar diffusion matrix D and spatially homogeneous nonlinearity f (u)∂xu + g(u) was studied
in [11], and the second restriction seems to be technical. The existence of an inertial manifold was
proved in [11] for the scalar equation (m = 1), and for m > 1, it was proved under the assumption
that the function matrix f (u) is diagonal with a unique nonzero element in a convex neighborhood
of the attractor. The results obtained in [11] are based on a non-local change of the phase variable u
which “decreases” the dependence of the nonlinear part (1.1) on ∂xu and allows using the well-known
“spectral gap condition”. Note that in the absence of convection ( f ≡ 0), the existence of inertial
manifold is a classical fact [4].

Generalizing and developing the approach in [9], we study whether the dynamics is finite-
dimensional on the attractor, but we do not consider the problem of existence of an inertial manifold
for systems of periodic Eq (1.1). At the same time, we here consider the case of nonscalar diffusion
matrix D and spatially nonhomogeneous nonlinearity with f = f (x, u), g = g(x, u). We prove that
the limit dynamics is finite-dimensional for wide classes of systems (1.1). Now, omitting the details
related to the choice of phase space and dissipativity conditions, we formulate the main results of the
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paper are as follows:
The phase dynamics on the attractor of system (1.1) is finite-dimensional if any of the following

three conditions are satisfied.
(A) The convection matrix f = diag on coA (Theorem 4.3).
(B) The diffusion matrix D is scalar. For all (x, u) ∈ J × coA, the numerical matrices f (x, u(x))

have m distinct real eigenvalues and commute with each other (Theorem 4.5).
(C) The diffusion matrix D is scalar. For all (x, u) ∈ J × coA, the matrices f (x, u) are symmetric

and commute with each other (Theorem 4.6).
In the case (A), we have D f = f D on coA. The assumptions that the matrices are commutative can

conditionally be formulated as the consistency of convection with diffusion and the self-consistency
of convection on the convex hull of the attractor. Usually, the attractor A of system (1.1) can be
localized in a ball B ⊂ X centered at zero. Since the embedding X → C(J,Rm) is continuous, it is
actually sufficient to verify the conditions on f = f (x, u) in assertions (A), (B), and (C) for x ∈ J,
u ∈ Rm : |u| < r with an appropriate r > 0.

In the class of one-dimensional systems (1.1), was constructed [11, Theorem 1.2] the first example
of semilinear parabolic equation of mathematical physics (actually, a system of eight equations with
scalar diffusion) that does not demonstrate any finite-dimensional dynamics on the attractor. This class
seems to be a good testing ground for understanding where the finite-dimensional final dynamics of
semilinear parabolic equations terminates and the infinite-dimensional final dynamics begins.

Our results can be generalized to systems on the circle of the form

∂tu = D∂xxu + f (x, u, ∂xu) (1.2)

with a smooth vector function f = ( f1, . . . , fm). Such systems with various boundary conditions can
be reduced (see [11, 12]) to the form (1.1) by the termwise differentiation and an appropriate change
of the variable. The fact that the final dynamics is finite-dimensional for scalar Eq (1.2) was already
proved in [9].

We here do not consider the Dirichlet and Neumann boundary conditions for systems of the
form (1.1) on (0, 1), this can be studied in a subsequent publication. The existence of an inertial
manifold is proved in a similar situation in [12] for systems of general form (1.2) with f = f (u, ux) and
a scalar diffusion matrix. Surprisingly, the dynamics in the Dirichlet–Neumann cases looks simpler
than in the periodic case. The original methods of recent works [13, 14] allowed to establish the
finite-dimensionality of the final dynamics and the existence of an inertial manifold for 3D periodic
Ginzburg–Landau equations.

So, in this paper, the possibility of finite-dimensional reduction systems of 1D periodic reaction-
diffusion-convection Eq (1.1) is established in terms of the algebraic properties of the diffusion matrix
D, the convection matrix f , and the relations between them.

The paper is organized as follows. Section 2 contains necessary information about abstract SPEs
and the conditions for their final dynamics to be finite-dimensional. In Section 3, it is shown how these
conditions can be applied to parabolic systems (1.1). The main results are obtained in Section 4. In
the short Section 5, we present several examples of system (1.1) which admit a finite-dimensional final
dynamics. Finally, in Section 6, we discuss alternative approaches to the problem of finite-dimensional
reduction of systems (1.1).
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2. General information

First, we consider the abstract dissipative SPE

∂tu = −Au + F(u) (2.1)

in a real separable Hilbert space X with scalar product (·, ·) and the norm ‖ · ‖. We assume that the
unbounded self-adjoint positive definite linear operator A with domain of definition D(A) ⊂ X has
a compact resolvent. We assume that Xα = D(Aα) with α ≥ 0. Then ‖u‖α = ‖Aαu‖, X0 = X, and
X1 = D(A). For arbitrary Banach spaces Y1 and Y2, we let BCν(Y1,Y2), ν ∈ N0, denote the class of
Cν-smooth mappings Y1 → Y2 that are bounded on balls. We assume that the nonlinear function F
belongs to BC2(Xα, X) for some α ∈ [0, 1) and equation (2.1) is dissipative, i.e., generates a resolving
semiflow {Φt}t≥0 in the phase space Xα and there exists a absorbing ball Ba = {u ∈ Xα : ‖u‖α < a} such
that ΦtBr ⊂ Ba for any ball Br : ‖u‖α < r for t > t∗(r). In this case, the semiflow {Φt} inherits [1]
the C2-smoothness, and there exists the compact attractor A ⊂ Ba consisting of all bounded complete
trajectories {u(t)}t∈R ⊂ Xα and uniformly attracting balls Xα as t → +∞. In fact, A ⊂ X1 due to the
smoothing action of the parabolic equation [1, Section 3.5].

The embeddings Xσ ⊂ Xα with α < σ < 1 are dense and compact, and ‖u‖α ≤ c‖u‖σ , c = c(α, σ),
for u ∈ Xσ. Moreover, the proof of Theorem 3.3.6 in [1] can be used to derive the estimate ‖Φ1u‖σ ≤
L(r)‖u‖α on the balls Br ⊂ Xα. This implies that F ∈ BCν(Xσ, X) if F ∈ BCν(Xα, X) and the Xα-
dissipativity implies the Xσ-dissipativity. Thus, in all constructions related to SPE (2.1), one can
replace the nonlinearity index α with any value σ ∈ (α, 1). The linear operator A : Xϑ+1 → Xϑ is
positive definite in Xϑ with ϑ > 0. If F ∈ BC2(Xϑ+α, Xϑ), then one can consider (2.1) in the pair of
spaces (Xϑ, Xϑ+α) instead of (X, Xα). In this case, the phase dynamics preserves all its properties listed
above.

We say that the phase dynamics of (2.1) is asymptotically finite-dimensional if there exists an
inertial manifold, i.e., a smooth finite-dimensional invariant surfaceM ⊂ Xα containing the attractor
and exponentially attracting (with asymptotic phase) all solutions u(t) at large times. Such a manifold
is usually [3–5] a Lipschitz graph over the lowest modes of the operator A. The restriction of SPE (2.1)
to M is an ODE in RN , N = dimM which completely describes the final dynamics of the original
evolution system.

A less rigorous approach to the problem of finite-dimensional limit dynamic of SPE was proposed
in [8, 9]. So the dynamics of (2.1) on the attractor is finite-dimensional if, for some ODE ∂tx = h(x) in
RN with h ∈ Lip(RN ,RN) and resolving flow {Θt}t∈R, there exists an invariant compact setK ⊂ RN such
that the dynamical systems {Φt} onA and {Θt} on K are Lipschitz conjugate for t ≥ 0. The properties
of the dynamics to be asymptotically finite-dimensional and to be finite-dimensional on the attractor
have not yet been separated; there is a hypothesis [5] that they are equivalent.

Here are two criteria [8] for the dynamics to be finite-dimensional on the attractor under the
assumption that F ∈ BC2(Xα, X).

(Fl) The phase semiflow onA can be extended to the Lipschitz flow:

‖Φtu − Φtv‖α ≤ M ‖u − v‖α eκ|t|, t ∈ R,

where M > 0 and κ ≥ 0 depend only onA.
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(GrF) The attractor is a Lipschitz graph over the lowest Fourier modes:

‖Pu − Pv‖α ≥ M ‖u − v‖α , M = M(A),

for some finite-dimensional spectral projection P ∈ L(Xα) of the operator A and all u, v ∈ A.
Property (GrF) was established for scalar Eq (1.2) in [15] independently of the results obtained in [8,

9]. We shall further use other sufficient conditions for the dynamics to be finite-dimensional on the
attractor, which were obtained in [9] (by misunderstanding, an important assumption that X is real was
not mentioned in [9]). Assume that G(u) = F(u)−Au is the vector field of (2.1),N = A×A ⊂ Xα×Xα

is a compact set, and Y is a Banach space.

Definition 2.1 ([9]). A continuous field Π : N → Y is said to be regular if, for any u, v ∈ A, the
function Π(Φtu,Φtv) : [0,+∞) → Y belongs to the class C1 and its derivative ∂tΠ(u, v) at zero is
bounded uniformly with respect to (u, v) ∈ N .

The smoothness of the semiflow {Φt} and the invariancy of the compact set A ⊂ Xα imply the
regularity of the identical embedding N → Xα × Xα and hence the regularity of any field Π : N → Y
that can be continued to a C1-mapping into the (Xα × Xα)-neighborhood of the setN . In this situation,
∂tΠ(u, v) = DΠ(u, v)(G(u),G(v)), where D is Fréchet differentiation. The regular fields Π : N → Y
form a linear structure which is also multiplicative if Y is a Banach algebra. In the last case, if the
elements of Π(u, v) ∈ Y are invertible, then the field Π−1 is also regular, and ∂tΠ

−1 = −Π−1(∂tΠ)Π−1 for
(u, v) ∈ N . We start from the decomposition

G(u) −G(v) = (T0(u, v) − T (u, v))(u − v), (u, v) ∈ N , (2.2)

of the vector field G(u) on A, where T0 ∈ L(Xα) and T ∈ L(X1, X) are unbounded linear sectorial
operators in X similar to normal ones. We write

Γa = {z ∈ C : Re z = a}, Γ(a, ξ) = {z ∈ C : a − ξ ≤ Re z ≤ a + ξ}

for a > ξ > 0 and assume that, for some c > 0, θ ∈ [0, 1], the total spectrum

ΣT =
⋃

u,v∈A

spec T (u, v)

is localized in the domain

Ω(c, θ) = {x + iy ∈ C : |y| < cxθ}, x > 0 . (2.3)

Let β = α/2 for 0 ≤ θ ≤ α/2, and let β = (α+ θ)/3 for α/2 < θ ≤ 1. Assume that the set C\ΣT contains
strips Γ(ak, ξk), k ∈ N, with ak, ξk → +∞ as k → ∞.

Theorem 2.2 (see [9, Theorem 2.8]). Assume that

T (u, v) = S −1(u, v)H(u, v)S (u, v) (2.4)

on N , where the unbounded linear sectorial operators H(u, v) are normal in X, the fields S , S −1 :
N → L(X) and T0 : N → L(Xα, X) are regular, and the field T0 : N → L(Xα) is bounded. In this
case, if

aβk = o(ξk), k → ∞, (2.5)

then the dynamics of Eq (2.1) is finite-dimensional on the attractor.

AIMS Mathematics Volume 6, Issue 12, 13407–13422.
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3. Parabolic systems

Now we consider the system of Eq (1.1) on J = R |modZ with u = (u1, ..., um). We assume that
the matrix function f = f (x, u) and the vector function g = g(x, u) belong to the smoothness class
C∞ on J × Rm and write system (1.1) in the abstract form (2.1) with X = L2(J,Rm), positive definite
operator Au = u − Duxx, and nonlinearity F : u → f (x, u)∂xu + g(x, u). Assume that {Xα}α≥0 is the
Hilbert semiscale generated by A andH s = H s(J) are generalized Sobolev L2-spaces (spaces of Bessel
potentials [1, 16]) of scalar functions on J with arbitrary s ≥ 0. If s > 1/2, thenH s ⊂ C(J) andH s is
a Banach algebra [16, Section 2.8.3]. The differentiation operator ∂x belongs to L(H s+1,H s). As the
phase space we choose Xα = H2α(J,Rm) with arbitrary α ∈ (3/4, 1) which is fixed below.

We will generalize the conclusions of [9, pages 991 and 992] about the smoothness of the nonlinear
function F and the phase dynamics of (1.1) to the case m > 1. We let the symbol ↪→ denote linear
continuous embeddings of function spaces and shall use necessary results obtained in [1, 16]. For
an arbitrary C∞-function z : J × Rm → R, the mapping ψ : u → z(x, u) is a function of class
BCν from C s(J) in C s(J) for all ν, s ∈ N. Since H2α ↪→ C1(J), we have ψ ∈ BCν(H2α,C1(J)).
Embedding theorems imply that ψ ∈ BCν(H s(J,Rm),H s(J)). As we see, F ∈ BC2(X1, X1/2) and
F ∈ BC1(X3/2, X1). Moreover, Xα ↪→ C1(J,Rm) ↪→ C(J,Rm) ↪→ X, and hence F ∈ BC3(Xα, X). We
also note that X3/2 ↪→ C2(J,Rm) and X2 ↪→ C3(J,Rm).

In the case of finite functions f = f (u), g = g(u), the dissipativity of system (1.1) with phase space
X1/2, and hence also with Xα, 3/4 < α < 1, was proved in [11, Theorem 3.1]. This result can easily
be transferred to the case of functions f (x, u) and g(x, u) that are finite in u and can also be generalized
in other directions. Anyway, we further assume that system (1.1) is dissipative in Xα and there exists
the global attractor A ⊂ Xα. Using the above-listed properties of nonlinearity F and following the
reasoning in [9, page 992], we formulate the following remark.

Remark 3.1 (see [9, Remark 5.2]). The following assertions hold: (a) The attractor A is bounded
in X2; (b) If Y is a Banach space, then each vector field Π : N → Y continuous in the (Xα × Xα)-metric
can be continued to C1-mapping X1 × X1 → Y regularly in the sense of Definition 2.1.

Our goal is to apply Theorem 2.2 to system (1.1) and to prove that the final dynamics is finite-
dimensional. Let

G(u) = −Au + F(u) = D∂xxu − u + f (x, u)∂xu + g(x, u) (3.1)

be the vector field of system (1.1), and let N = A × A ⊂ Xα × Xα. The main idea, as in [9], is
related to the change of variable in the linear differential expression with respect to x ∈ J for the
difference G(u) − G(v) for a fixed (u, v) ∈ N , which allows one to eliminate the dependence on ∂xh,
h(x) = u(x)− v(x). Along with the convection matrix f = { fi j} we consider the m×m function matrices

gu = {
∂gi

∂u j
}, fu∂xu = {

m∑
l=1

∂ fil

∂u j
∂xul}, i, j ∈ 1,m.

We put

B0(x; u, v) = −E +

∫ 1

0
( fu(x,w(x))wx(x) + gu(x,w(x))dτ, (3.2.1)

where E is the unit m × m matrix, and

B(x; u, v) =

∫ 1

0
f (x,w(x))dτ (3.2.2)
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for u, v ∈ Xα, w(x) = τu(x) + (1 − τ)v(x), x ∈ J. The elements of the matrices B0 and B are continuous
functions, and for u, v ∈ A, function of class C2 on J. If necessary, it is convenient to treat expressions
(3.2) as Bochner integrals ranging in some function spaces. ByMm we denote the algebra of numerical
m × m matrices with Euclidean norm, and by Y(J,Mm) we denote the linear spaces of such matrices
with elements from some Banach space Y of scalar functions on J. Using the C1-smoothness of
the mappings (u, v) → fu(x,w)wx + gu(x,w) and (u, v) → f (x,w), Xα × Xα → C(J,Mm) for a fixed
τ ∈ [0, 1] and differentiating the expression under the integral sign in (3.2) with respect to the parameter
(u, v), we conclude that the mappings (u, v) → B0(· ; u, v) and (u, v) → B(· ; u, v) are of class C1(Xα ×

Xα,C(J,Mm)). By the integral mean-value theorem for nonlinear operators, we have

G(u) −G(v) = −Ah + (
∫ 1

0
DF(τu + (1 − τ)v)dτ)h

= Dhxx + B0(x; u, v)h + B(x; u, v)hx � Rh,

where h = u−v, u, v ∈ A, and τu+(1−τ)v ∈ coA. Here D is the Fréchet differentiation. Proceeding as
in [17], we apply the transformation h = Uη to the differential expression Rh, where the m × m matrix
function U(x) = U(x; u, v), x ∈ [0, 1], is a solution of the linear Cauchy problem

Ux = −
1
2

D−1B(x)U, U(0) = E. (3.3)

Similar problems are considered in [18, Chapters 3 and 5]. We often write B0, B, and U omitting the
dependence on u and v and sometimes on x. Taking into account the fact that

Uxx = −
1
2

D−1(Bx(x)U + B(x)Ux) = −
1
2

D−1Bx(x)U +
1
4

D−1B(x)D−1B(x)U,

we have
Rh = RUη = D(Uηxx + 2Uxηx + Uxxη) + B0(x)Uη + B(x)(Uxη + Uηx)

= DUηxx − B(x)Uηx −
1
2

Bx(x)Uη +
1
4

B(x)D−1B(x)Uη + B0(x)Uη + B(x)Uηx

+B(x)(−
1
2

D−1B(x)Uη) = DUηxx + (B0(x) −
1
2

Bx(x) −
1
4

B(x)D−1B(x))Uη.

Now we write a decomposition of the form (2.2) for the vector field (3.1) of evolution Eq (1.1) on the
attractorA with linear components

T0(u, v)h = ωh + (B0(x) −
1
2

Bx(x) −
1
4

B(x)D−1B(x))h, (3.4.1)

T (u, v)h = ωh − DU∂xxU−1h, (3.4.2)

where the numerical parameter ω > 0 will be chosen later.
We slightly generalize the fact that linear problem (3.3) can be solved explicitly under the condition

that the operators D−1B(x) are commutative in x ∈ J.
Lemma 3.2. Let D−1B(x) = CW(x)C−1 with constant nondegenerate matrix C and matrix function
W ∈ C(J,Mm), and let W(x1)W(x2) = W(x2)W(x1) for x1, x2 ∈ J. Then U(x) = CU(x)C−1 with

U(x) = exp(−
1
2

x∫
0

W(ξ)dξ ) (3.5)
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is the solution of the Cauchy problem (3.3) on [0, 1] .

Proof. Under the conditions of the lemma, we have U(x)W(x) = W(x)U(x), and hence U x =

−1
2W(x)U. Further, U(0) = U(0) = E and

Ux = CU xC−1 = C(−
1
2

WU)C−1

= C(−
1
2

C−1D−1BC ·C−1UC)C−1 = −
1
2

D−1BU. �

Now we prove regularity in the sense of Definition 2.1 of some vector fields on the compact set
N ⊂ Xα × Xα. If Y ↪→ Y1 for the function spaces Y and Y1, then the regularity of the field Π : N → Y
implies the regularity of Π : N → Y1.

Lemma 3.3. The field of operators T0 on N is bounded ranging in L(Xα) and regularly ranging in
L(Xα, X).

Proof. Let ‖ · ‖α,α and ‖ · ‖α,0 be norms of operators in L(Xα) and L(Xα, X). We assume that T0h =

Q(x; u, v)h in (3.4.1) with h ∈ coA ⊂ Xα. By Remark 3.1.(a), the convex hull of the attractor is
bounded in the norm of X2 which is equivalent to the normH4(J,Rm), and hence the matrix functions
B, B0, and BD−1B are uniformly bounded with respect to (u, v) ∈ N in H3(J,Mm). Thus, the matrix
functions Bx and Q are bounded onN in the normH2(J,Mm) and T0 is the operator of multiplication of
vector functions in Xα = H2α(J,Rm) by the matrix Q ∈ H2α(J,Mm) with 2α ∈ (3/2, 2). Since H2α(J)
is a Banach algebra, we see that T0(u, v) ∈ L(Xα) and ‖T0(u, v)‖α,α ≤ const on N .

Since H2α(J) ↪→ C(J) ↪→ L2(J), we have H2α(J,Mm) ↪→ C(J,Mm) ↪→ L2(J,Mm) and ‖T0‖α,0 ≤

c‖Q‖0,0, where ‖Q‖0,0 is the norm of Q as an operator in L(X) and c = c(A). Therefore, the field of
operators T0 : N → L(Xα, X) is regular if the field of matrix functions Q : N → L2(J,Mm) is regular.
The function u → f (x, u), Xα → C(J,Mm), is of class C1. Since the mappings (u, v) → B0(· ; u, v)
and (u, v) → B(· ; u, v) are of class C1(Xα × Xα,C(J,Mm)), it follows that their restrictions to N are
regular. The regularity of the field BD−1B : N → C(J,Mm) follows from the regularity of the fields B
and D−1 = const with the multiplicative structure of C(J,Mm) taken into account. Moreover, the fields
of matrix functions B, B0, BD−1B on N are regular with values in L2(J,Mm).

Now we prove the regularity of the field Π � Bx : N → L2(J,Mm). Let Πτ(u, v) = ( f (x,w))x

with w = τu(x) + (1 − τ)v(x) for a fixed τ ∈ [0, 1] and arbitrary u = u(x), v = v(x) ∈ X1. Then
Π(u, v) = (B(x; u(x), v(x)))x is the result of integration of Πτ(u, v) over τ. The mapping u → f (x, u)
belongs at least to the class BC1(X1, X1/2), and hence Πτ ∈ C1(X1 × X1, L2(J,Mm)). Differentiating
the integral expression for Π(u, v) with respect to the parameter (u, v) ∈ X1 × X1, we obtain Π ∈

C1(X1 × X1, L2(J,Mm)). It remains to verify that the fields Π : N → L2(J,Mm) are continuous and
to use Remark 3.1.(b). By [9, Lemma 1.1], the function u → Au, A → X, with Au = u − Duxx

is continuous in the Xα-metric; the same holds for the mappings u → uxx and u → ux of the set
coA ⊂ Xα into X for u ∈ coA ⊂ X1. In the relation ( f (x, u))x = fx + fuux, the operators u → fx(x, u),
u → fu(x, u)ux continuously act from Xα to C(J,Mm), and hence Πτ, Π ∈ C(N , L2(J,Mm)). The proof
of the lemma is complete. �

Everywhere below, I � Id in a Banach space. The matrix functions B(x) and U(x) in the Cauchy
problem (3.3) can be treated as bounded linear operators in X. The following assertion is related to the
smooth dependence of solutions of differential equations on a parameter.
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Lemma 3.4. The field of operators U : N → L(X) is regular.

Proof. We consider (3.3) for arbitrary u, v ∈ Xα as the non-autonomous evolution problem

∂xU = −
1
2

D−1B(x; (u, v))U, U(0) = I

in the Banach algebraL(X) with identically zero sectorial linear part and the parameter (u, v) ∈ Xα×Xα.
The function

(x,U, (u, v))→ −
1
2

D−1B(x; (u, v))U

ranging inL(X) is Lipschitz in x, linear in U ∈ L(X) and of class C1 with respect to the parameter (u, v).
Under these conditions, by [1, Theorem 3.4.4], the mapping (u, v)→ U(x; (u, v)), Xα × Xα → L(X) is
continuously differentiable, and hence the operator field U : N → L(X) is regular. �

Now we formulate an important condition on the diffusion matrix D and the convection matrix f of
system (1.1).

Assumption 3.5. D f (x, u) = f (x, u)D for x ∈ J, u ∈ coA.
For the scalar diffusion matrix D = dE, this assumption is satisfied automatically. In the case

of m distinct diffusion coefficients d j, Assumption 3.5 holds under the condition that the matrix f is
diagonal on coA, and in the case of s distinct diffusion coefficients, 1 < s < m, it holds under the
condition that the matrix f on coA inherits the block structure (with respect to the same d j) of the
matrix D = diag{d j}.

Lemma 3.6. If Assumption 3.5 holds, then

T (u, v) = U(u, v)(ωI − D∂xx)U−1(u, v)

for u, v ∈ A.

Proof. Assumption 3.5 implies (for any x ∈ J and u, v ∈ A) that DB(x) = B(x)D for the matrices
B(x) = B(x; u, v) in (3.2.2). Thus, the matrices B(x) and D−1B(x) inherit the block structure (with
respect to the same d j) of the diffusion matrix D = diag {d1, . . . , dm}. Therefore, the same also holds
for the solutions U(x) of problem (3.3), and hence DU(x) = U(x)D, x ∈ [0, 1], and the assertion of the
lemma follows from (3.4.2). �

4. Main results

The conditions for the dynamics to be finite-dimensional on the attractor will depend on the structure
of the diffusion matrix D and the nonlinear function f in (1.1). By Theorem 2.2, we need to prove that
the operators T (u, v) in (3.4.2) are “uniformly and regularly” similar, like (2.4), to the normal operators
in X and to establish the required sparseness (2.5) of the total spectrum ΣT .

We note that B(0) = B(1), Bx(0) = Bx(1) for the matrix function B(x) = B(x; u, v) in (3.2.2) defined
on J × N . The matrix function V(x) = U−1(x), x ∈ [0, 1], is a solution (see [18, Section 3.1.3]) of the
Cauchy problem adjoint to (3.3):

Vx =
1
2

VD−1B(x), V(0) = E, (4.1)
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and we have

η = Vh, ηx = Vxh + Vhx, Vx =
1
2

VD−1B,

Vx(0) =
1
2

V(0)D−1B(0), Vx(1) =
1
2

V(1)D−1B(1),

η(0) = h(0), η(1) = V(1)h(1),

ηx(0) =
1
2

D−1B(0)h(0) + hx(0), ηx(1) =
1
2

V(1)D−1B(1)h(1) + V(1)hx(1).

So the periodic boundary conditions h(1) = h(0), hx(1) = hx(0) become

η(1) = V(1)η(0), ηx(1) = V(1)ηx(0), (4.2)

where V(1) , E in general. Further, we use the notation U1 = U1(u, v), V1 = V1(u, v) with (u, v) ∈
N for the operators U(1), V(1) ∈ L(Rm) = Mm. Operators U1 and V1 are monodromy operators
[18, Section 5.1] Cauchy problems (3.3) and (4.1) respectively.

The following assertion plays the key role.

Lemma 4.1. If system (1.1) is dissipative in Xα with α ∈ (3/4, 1), then the phase dynamics on the
attractor is finite-dimensional in each of the following two cases.

(i) The diffusion matrix D is scalar and, for all u, v ∈ A, the monodromy operators V1(u, v) are
similar to self-adjoint positive definite ones with a fixed similarity matrix C = C(A).

(ii) Assumption 3.5 holds and, for all u, v ∈ A, the monodromy operators V1(u, v) are similar to
diagonal positive definite ones with a fixed similarity matrix C = C(A).

Proof. By the conditions of the lemma, we have V1 = C−1VC for self-adjoint positive definite
operators V = V(u, v) in Rm. For fixed u, v ∈ A, we let ϕ j ∈ R

m and µ j > 0 denote orthonormal
eigenvectors and eigenvalues of the operator V with j ∈ 1,m. We assume that H0 = H0(u, v) =

ωI − D∂xx, D = diag{d j}, with boundary conditions (4.2) on (0, 1) for some ω > 0. We also assume
that

χk, j(x) = e2πkix · ϕ j, x ∈ J, k ∈ Z, j ∈ 1,m.

Since Vϕ j = µ jϕ j, we have V1C−1ϕ j = µ jC−1ϕ j and, for the functions ψk, j(x) = µx
j · C

−1χk, j, ψk, j(0) =

C−1ϕ j, ψk, j(1) = V1C−1ϕ j,

(ψk, j)x(0) = (ln µ j + 2πki)C−1ϕ j, (ψk, j)x(1) = (ln µ j + 2πki)V1C−1ϕ j.

As we see, ψk, j are eigenfunctions of the operator H0 with eigenvalues

λk, j = ω − d j(ln µ j + 2πki)2 = ω + d j(2πk − i ln µ j)2, (4.3)

where d j ≡ d > 0 in case (i). The operators V1(u, v) continuously depend on (u, v) ∈ N , and hence this
also holds for their spectrum. By the compactness ofN ⊂ Xα×Xα, we have 0 < c1 ≤ µ j ≤ c2, j ∈ 1,m,
for some c1(A), c2(A). Thus, the values

∣∣∣ ln µ j

∣∣∣ are uniformly bounded in j ∈ 1,m and u, v ∈ A. We
put

S 0(x) = CV−x
1 = V−xC
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for x ∈ J and H = S 0H0S −1
0 . Then S 0ψk, j = χk, j and

Hχk, j = S 0H0ψk, j = λk, j S 0ψk, j = λk, j χk, j.

Since the system of functions {χk, j} is complete and orthonormal in X = L2(J,Rm), it follows that the
operators H = H(u, v) are normal in X for u, v ∈ A. Let S = S 0U−1(x) = S 0V(x). We use Lemma 3.6
to write decomposition (2.4) of the vector field (3.1) on the attractorA with

T (u, v) = UH0U−1 = US −1
0 HS 0U−1 = S −1(u, v)H(u, v)S (u, v)

and operators T0(u, v) of the form (3.4.1). We see that S −1 = U(x)S −1
0 .

By Lemma 3.4, the operator field U onN ranging in the Banach algebraL(X) is regular, and hence,
the field of inverse operators V : N → L(X) is regular. Since V1 = V(1) and V = CV1C−1, it follows
that the operator field V : N → Mm is regular and ‖∂tV(u, v)‖ ≤ c3 for the derivative ∂tV at zero for
all (u, v) ∈ N (see Definition 2.1). Here ‖ · ‖ is the Euclidean norm of matrices. Let b = 2 max(c2, c3)
and δ = 1 − c1/b, then δ ∈ (0, 1). Since the spectrum σ(b−1V − E) ⊂ (−δ, 0) and ‖b−1V − E‖ < δ, it
follows that the matrix representation

lnV = ln(bE) + ln(E + b−1V − E) = ln(bE) +

∞∑
n=1

(−1)n−1

n
(b−1V − E)n (4.4)

converges uniformly on N . By [19, Section 5.8, Exercise 3], we have

∂t(b−1V − E)n =

n∑
i=1

(b−1V − E)i−1∂t(b−1V)(b−1V − E)n−i,

and therefore, ‖∂t(b−1V−E)n‖ < nδn−1. If we differentiate (4.4) with respect to t, we obtain a uniformly
converging series with the estimate

‖∂t lnV(u, v)‖ <
∞∑

n=1

δn−1 =
1

1 − δ
, (u, v) ∈ N .

So the operator field lnV : N → Mm is regular. We have V−x = exp(−x lnV) and the standard
decomposition of the matrix exponent guarantees that the field V−x : N → L(X) is regular, which
implies the regularity of fields of the operators S 0, S , S −1 : N → L(X).

Finally, by Lemma 3.3, the field of operators T0 in (3.4.1) is regular on N with values in L(Xα, X)
and bounded with values in L(Xα).

Let ΣH = ΣT be the total spectrum of the field of operators H(u, v) on N . Using (4.3), we choose
a parameter ω > 0 that ensures the inclusion ΣH ⊂ Ω(c, θ) of the form (2.3) with θ = 1/2 and an
appropriate c > 0. As we can see, operators H(u, v) are sectorial. Since 3/4 < α < 1, we have
β = (α+ θ)/3 < 1/2. Moreover, from (4.3) we derive that the set C\ΣH contains vertical strips Γ(ak, ξk)
with

ak ∼ 4π2k2, ξk ∼ 4π2k

and hence aβk = o(ξk) as k → ∞. Thus, all conditions of Theorem 2.2 are satisfied and the dynamics of
system (1.1) is finite-dimensional on the attractor. �
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Remark 4.2. For all u, v ∈ A, the monodromy operators U1 = U1(u, v) and V1 = V1(u, v) = U−1
1 are

self-adjoint and positive definite if any of the following two conditions is satisfied:
(a) The matrices D−1B(x1) and D−1B(x2) are symmetric and commutative for x1, x2 ∈ J;
(b) (D−1B(x))t = D−1B(1 − x) for all x ∈ J, where (·)t is the operation of transposition.
Under conditions (a), Lemma 3.2 holds with C = E and the matrix

U1 = exp(−
1
2

1∫
0

D−1B(x)dx )

is symmetric and positive definite. The sufficiency of condition (b) was proved in [20, Proposition 2.3].

Theorem 4.3. Assume that system (1.1) is dissipative in Xα with α ∈ (3/4, 1) and the convection
matrix f is diagonal on coA. Then the phase dynamics is finite-dimensional on the attractor.

Proof. Under the conditions of the theorem, the matrices B(·; u, v) from (3.2.2), and hence (see the
proof of Lemma 3.6), also the matrices U(·; u, v),V(·; u, v), are diagonal on A × A. According to
Remark 4.2.(a) matrices U(·; u, v),V(·; u, v) are positive definite. The monodromy operators V1(u, v)
are also positive definite and are diagonal, so we can refer to Lemma 4.1.(ii) with C = E. �

Lemma 4.4. Assume that system (1.1) is dissipative in Xα with α ∈ (3/4, 1) and D = dE. Then the
phase dynamics is finite-dimensional on the attractor if, for (x, u) ∈ J × coA,

D−1 f (x, u(x)) = CH(x, u(x))C−1, (4.5)

where the symmetric matrix functions H(x; u) commute with each other for any (x, u) ∈ J × coA and
C is a constant nondegenerate matrix.

Proof. From (3.2.2) we derive that D−1B(x) = CW(x)C−1, where

W(x) = W(x; u, v) =

∫ 1

0
H(x; w(x))dτ

for u, v ∈ A, w(x) = τu(x) + (1 − τ)v(x), x ∈ J. By Lemma 3.2, the monodromy operator V1(u, v) =

U−1
1 (u, v), u, v ∈ A, satisfies the relation V1 = C(U(1))−1C−1 with operator U given in formula (3.5).

In this case, U x = −
1
2

W(x)U and the matrices W(x; u, v) are symmetric and commutative on J for all

u, v ∈ A. By Remark 4.2.(a), the operator U(1) is self-adjoint and positive definite and the assertion of
the theorem follows from Lemma 4.1.(i). �

We shall give two more arguments ensuring that the final dynamics is finite-dimensional.

Theorem 4.5. Assume that system (1.1) is dissipative in Xα with α ∈ (3/4, 1) and D = dE. Then the
phase dynamics is finite-dimensional on the attractor if the following two conditions are satisfied:

(i) The numerical matrices f (x, u(x)) have m distinct real eigenvalues for each (x, u) ∈ J × coA;
(ii) The matrices f (x, u) commute with each other for any (x, u) ∈ J × coA.

Proof. Condition (ii) and assumption D = dE imply that the matrices D−1 f (x, u(x)) commute with each
other on J × coA. It is known [19, Theorem 8.6.1] that two simple (similar to diagonal) commutative
m × m matrices have a common set of m of linearly independent eigenvectors. By condition (i), all
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eigenvalues of each numerical matrix f (x, u(x)) with (x, u) ∈ J × coA are real and distinct, and hence
there exists a unique (up to permutations and multiplications by −1) common (for all these matrices)
normalized basis E = (e1, . . . , em) of their eigenvectors in Rm. By C we denote the constant matrix of
transition from the canonical basis in Rm to the basis E, and by H(x) we denote diagonal (symmetric)
matrices of linear operators D−1 f (x, u(x)) ∈ L(Rm) in this basis. We see that relation (4.5) is satisfied
and it remains to apply Lemma 4.4. �

Theorem 4.6. Assume that system (1.1) is dissipative in Xα with α ∈ (3/4, 1) and D = dE. Then
the phase dynamics is finite-dimensional on the attractor if the matrices f (x, u) are symmetric and
commute with each other for any (x, u) ∈ J × coA.

Proof. The conditions of the theorem guarantee that the numerical matrices
D−1 f (x, u(x)) commute with each other on J × coA. As in the proof of Lemma 4.4, from formula
(3.2.2) for B(x), we derive that the matrices D−1B(x1) and D−1B(x2) are symmetric and commutative
for arbitrary x1, x2 ∈ J. By Remark 4.2.(a), the monodromy operators V1(u, v) are positive definite for
any u, v ∈ A and the assertion of the theorem follows from Lemma 4.1.(i) with C = E. �

In contrast to Theorem 4.5, we here admit the multiplicity of eigenvalues of the numerical matrices
f (x, u(x)), but we assume that these matrices are symmetric.

5. Some examples

We consider several examples illustrating the above-described theory in terms of properties of
the convection matrix f . Here we restrict ourselves to the case of scalar diffusion and assume that
system (1.1) is dissipative in the phase space Xα with α ∈ (3/4, 1). We assume that all the conditions
assumed below on f = f (x, u) are valid for x ∈ J and u = u(x), u ∈ coA.

Proposition 5.1. Assume that D = dE and f (x, u) = f1(x, u)Q with a scalar C∞ function f1 and
numerical m ×m matrix Q. Then, the dynamics on the attractor of system (1.1) is finite-dimensional if
any of the following two conditions is satisfied:

(i) The matrix Q has m distinct real eigenvalues and f1(x, u(x)) , 0 for x ∈ J and u ∈ coA;
(ii) The matrix Q is symmetric.

Proof. The numerical matrices f = f1(x, u(x))Q are commutative. In the case of (i), each of
these matrices has distinct real eigenvalues λ j f1(x, u(x)), where λ1, . . . , λm are eigenvalues of Q, and
Theorem 4.5 can be applied. In the case of (ii), the fact that the dynamics is finite-dimensional on the
attractor is a direct consequence of Theorem 4.6. �

Remark 5.2. Condition (i) in Proposition 5.1 is satisfied on Q for upper-triangular and lower-triangular
matrices with distinct elements on the diagonal. For m = 2 and Q = {q jl}, this condition precisely
means that (q11 − q22)2 + 4q12q21 > 0.

Example 5.3. The dynamics on the attractor of system (1.1) is finite-dimensional in the case of m = 2,
D = dE and f (x, u) = { f jl(x, u)} with f11 = f22 and f12 = f21. This is a consequence of Theorem 4.6

and the commutativity of numerical matrices of the form
(

a b
b a

)
.

Example 5.4. Assume that D = dE, the matrix f = Pn(Q), where Pn is a polynomial of degree n ≥ 0
with coefficients ai = ai(x, u), 0 ≤ i ≤ n, ai ∈ C∞(J ×Rm,R), and the numerical matrix Q is symmetric.

AIMS Mathematics Volume 6, Issue 12, 13407–13422.



13420

Then the dynamics of the attractor of system (1.1) is finite-dimensional. This is also a consequence of
Theorem 4.6.

Proposition 5.5. Assume that D = dE and f = Q(x), where Q is a C∞ function matrix. Then the
dynamics of system (1.1) is finite-dimensional on the attractor if Q t(x) = Q(1 − x) for x ∈ J.

Proof. Since f = Q(x), the matrix B(x) in (3.2.2) satisfies the condition (D−1B(x))t = D−1B(1 − x) for
all x ∈ J and u, v ∈ A. By Remark 4.2.(b), the monodromy operators V1(u, v) are positive definite for
all u, v ∈ A, and we can apply Lemma 4.1.(i) with C = E. �

6. Other possible approaches

The above presentation is based on Theorem 2.2, which means the verification of regularity (in the
sense of Definition 2.1) of operator vector fields on the attractor. Alternatively, one can obtain a finite-
dimensional reduction of one-dimensional parabolic systems by using the technique [5, Sections 2.3,
2.4 and 3.3] closely related to the results obtained in [21] about the dichotomies of non-autonomous
parabolic equations. Here we will discuss the X1/2-dissipative systems of general form (1.2). In
our short description (on the sketch level), we omit technical details and refer to the criteria for the
final dynamics to be finite-dimensional, i.e., criteria (Fl) and (GrF) in Section 2. The results of [4,
Section 3.6] about inverse uniqueness of solutions of SPE (2.1) allow one to conclude that the phase
semiflow on the attractorA expands to the continuous flow {Φt}t∈R. If u1, u2 ∈ A and h(t) = Φtu1−Φtu2

for t ∈ R, then
ht = Dhxx + B0(t, x)h + B(t, x)hx, (6.1)

B0(t, x) =

∫ 1

0
fu(x,w,wx)dτ, B(t, x) =

∫ 1

0
fux(x,w,wx)dτ,

w = τΦtu1+(1−τ)Φtu2, with matrix functions B0 and B sufficiently smooth in (t, x) ∈ R×J and bounded
in (u1, u2). We assume that the invertible change v(t, x) = S (t, x)h(t, x) with operators S , S −1 ∈ L(X)
depending on u1, u2 allows one to reduce (6.1) to the equation

vt = −Hv + R(t)v,

where H = H(u1, u2) ∈ L(X1, X) are normal (or uniformly with respect to (u1, u2) similar to normal)
sectorial operators and R = R(· ; u1, u2) : R → L(X) is a continuous operator function. Assume that
the norms of the operators S , S −1, and R are uniformly bounded in the parameter (u1, u2). In this
case, if the spectrum ΣH combined over u1, u2 ∈ A is “sufficiently rare”, then using the technique give
in [5], one can verify that the phase flow is Lipschitzian on the attractor and then apply criterion (Fl).
In contrast to the preceding presentation, we here have to deal with second-order linear differential
expression in t ∈ R and not in x ∈ J. The assertions of Section 4 can be obtained in this way after the
change v(t, x) = V−x(t, 1)V(t, x)h(t, x), where V(·, x) is a solution of the Cauchy problem (4.1).

Another possible approach to the problem of finite-dimension of the final dynamics is related to
the verification of criterion (GrF). In [22], a scalar parabolic equation of the form (1.2) is considered
in a rectangle with Dirichlet boundary condition. The authors present conditions under which the
attractor is a Lipschitz graph over finitely many first modes of the Laplace operator. And they use the
cone condition well-known in the literature [3–5]. In this connection, it seems to be very perspective
to study the problem of finite-dimensional reduction of systems of Eq (1.2) on the two-dimensional
torus T2.

AIMS Mathematics Volume 6, Issue 12, 13407–13422.



13421

7. Conclusions

We show that for new wide classes of 1D periodic systems of reaction-diffusion-convection Eq (1.1)
the final (for large values of time) phase dynamics is finite-dimensional. For this, we develop in a
nontrivial way the general methodology of [9]. The difficulties associated with the transition from a
scalar equation to a system of equations have been successfully overcome. Alternative approaches to
the problem of finite-dimensional reduction for more general systems (1.2) are also discussed.
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