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1. Introduction

Stagnation point flow reveals in practically all flow branches of engineering and science. Free
stagnation point or a line exists interior of the fluid domain while in some situations flow is stagnated
by a solid wall.

Hiemenz [1] demonstrated that Navier-Stokes equations are able to describe the stagnation point
flow. Plane stagnation point flow which is called the Hiemenz flow, firstly discussed by Hiemenz as
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follows:
f ′′′ + f f ′′ − ( f ′)2 + 1 = 0, (1.1)

with the boundaries:
f (0) = 0, f ′(0) = 0, f ′(∞) = 1. (1.2)

Gersten et al. [2] generalized these results to the stagnation point flow in three dimensions. Homotopy
analysis method is used by Liao [3] to the 2D laminar viscous flow over a semi-infinite plate. Existence
and uniqueness consequences for nonlinear third-order ODEs appeared in the stagnation point flow of
a hydromagnetic fluid are discussed by Van Gorder et al. [4]. The flow characteristics in an electrically
conducting second grade fluid pervaded by a uniform magnetic field over a stretching sheet is discussed
by Vajravelu et al. [5]. Steady 2D stagnation-point flow of an incompressible viscous electrically
conducting fluid over a flat deformable sheet is studied by Mahapatra et al. [6]. Van Gorder et al. [7]
established the existence and uniqueness consequences for fourth-order ODEs over the semi-infinite
interval, arising in the hydromagnetic stagnation point flow of a second grade fluid over a stretching
sheet.

The concept of Lie groups plays an significant rule in establishing some intense numerical
approaches to integrate ODEs, which conserve the geometrical properties. Preserving the geometry
construction under discretization, is essential in the improvement of a qualitatively true performance
in the minimization of approximation errors. So, along with the geometric structure and invariance of
the ODEs, novel approaches may be invented, which are more stable and effective than the common
approximation techniques.

A novel geometric method based on GL(6,R) is introduced for the magneto-hemodynamic flow in
a semi-porous channel in [8]. Moreover, in [9], a nonlinear heat transfer equation is considered by
S L(2,R). Order of differential equations and different initial or boundary conditions conclude different
geometric algorithms for solving differential equations. That is, numerical algorithms based on e.g.
GL(6,R) and GL(4,R) is completely different. Combination of radial basis functions with GPS are
discussed in [10]. Some other recent papers of geometric numerical approach, Lie group analysis, and
exact solution can be found in [11–33].

This paper is organized as follows. In the further section, we will touch only a few aspects of
the Mathematical formulation for the hydromagnetic stagnation point flow. In Section 3, we derive an
interesting algorithm to integrate the underlying nonlinear equation. Section 4 deals with the numerical
results. Final remarks are provided in the conclusion section.

2. Mathematical formulation

Let us investigate the 2D steady stagnation-point flow of an electrically conducting fluid in the
existence of a uniform transverse magnetic field towards a flat surface coinciding with the plane y = 0,
the flow being enclosed to the region y > 0. Two equivalent and converse forces are considered in
direction of the x−axis such that the wall is stretched keeping the origin fixed, and a uniform magnetic
field B0 is forced along the y−axis (Figure 1).
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Figure 1. A profile of the physical problem.

In the usual notation, the MHD equations for steady 2D stagnation-point flow in the boundary layer
along the stretching surface are [6, 34]:

ux + vy = 0, (2.1)

uux + vuy = UUx + νuyy +
σB2

0

ρ
(U − u), (2.2)

where ρ, σ, B0 are density, electrical conductivity and magnetic field respectively. Also, (u, v) are the
fluid velocity components toward x and y. U(x) stands for the stagnation-point velocity in the inviscid
free stream.

For this problem, the boundaries are

u = cx, v = 0, at y = 0, (2.3)
u→ U(x) = ax, as y→ ∞, (2.4)

where c, a ∈ R+. Eqs (2.1) and (2.2) together with the conditions (2.3) and (2.4) have the similarities
of the form

u(x, y) = cx f ′(ξ), v(x, y) = −
√

cν f (ξ), ξ = y
√

c
ν
. (2.5)

Substituting (2.5) into (2.2), concludes

f ′′′(ξ) + f (ξ) f ′′(ξ) −
(
f ′(ξ)

)2
− M f ′(ξ) +C(C + M) = 0, (2.6)

where M = B2
0

(
σ
ρc

)
, C = a

c and
√

M is the Hartmann number.
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With the use of the transformation (2.5), the boundary conditions (2.3) and (2.4) read
f (0) = 0, f ′(0) = 1, f ′(∞) = C.

The self-similar solutions will normally be made to meet Eq (2.6) with additional nonlinear terms

K
[
2 f ′(ξ) f ′′′(ξ) −

(
f ′′(ξ)

)2
− f (ξ) f (iv)(ξ)

]
, (2.7)

in the governing differential equation, where K ≥ 0 is the viscoelastic parameter. By the additional
condition f ′′(∞) = 0, we investigate the following fourth order differential equation:

f ′′′(ξ) + f (ξ) f ′′(ξ) −
(
f ′(ξ)

)2
− M f ′(ξ)

+K
[
2 f ′(ξ) f ′′′(ξ) −

(
f ′′(ξ)

)2
− f (ξ) f (iv)(ξ)

]
+C(C + M) = 0, (2.8)

with
f (0) = s ≥ 0, f ′(0) = χ ≥ 0, f ′(∞) = C ≥ 0, f ′′(∞) = 0, (2.9)

where M = σ0B2
0/ρB ≥ 0 is the magnetic parameter, K = ωB/ν ≥ 0 is the viscoelastic parameter,

s ≥ 0, C is the parameter due to the stagnation point flow, and χ is the stretching of the sheet.

3. An GL(4,R) Lie group method

There is no loss of generality in assuming

f (ξ) > 0 & f ′′′(ξ) > 0, ∀ξ ∈ [0,∞). (3.1)

This supposition is possible. Because in the other case, we can obtain a constant γ > 0 such that

F′′′(ξ) = f ′′′(ξ) + γ > Max{0,Υ1,Υ2}, (3.2)
F′′(ξ) = f ′′(ξ) + γξ + c1, (3.3)

F′(ξ) = f ′(ξ) +
γξ2

2
+ c1ξ + c2, (3.4)

F(ξ) = f (ξ) +
γξ3

6
+

c1ξ
2

2
+ c2ξ + c3, (3.5)

where
Υ1 = min{| f (ξ)| : ξ ∈ [0,∞)}, Υ2 = min{| f ′′′(ξ)| : ξ ∈ [0,∞)}, (3.6)

and c1–c3 are integration constants which we can assume all of them to be positive. Also, from this
assumption we clearly have |F(ξ)| > 0. Using these transformations, Eq (2.8) converts into:

F′′′ − γ +
(
F −
γξ3

6
−

c1ξ
2

2
− c2ξ − c3

) (
F′′ − γξ − c1

)
−M

(
F′(ξ) −

γξ2

2
− c1ξ − c2

)
+ K

[
2
(
F′(ξ) −

γξ2

2
− c1ξ − c2

)
(F′′′ − γ)

−
(
F′′ − γξ − c1

)2
− F(iv)

(
F −
γξ3

6
−

c1ξ
2

2
− c2ξ − c3

) ]
+C(C + M) = 0,

subject to
F(0) = s + c3 > 0, F′(0) = χ + c2 > 0, F′(∞)→ ∞, F′′(∞)→ ∞.
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Now, we are willing to erect GL(4,R) Lie group method. Suppose y1(ξ) = f (ξ), y2(ξ) = f ′(ξ), y3(ξ) =
f ′′(ξ) and y4(ξ) = f ′′′(ξ). Then equivalent system of (2.8) leaves

y′1(ξ) = y2(ξ),
y′2(ξ) = y3(ξ),
y′3(ξ) = y4(ξ),

y′4(ξ) = 2y2y4−y2
3

y1
+

y4+y1y3−y2
2−My2+C(C+M)

Ky1
,

(3.7)

with boundary conditions:

y1(0) = y0
1 = s, y2(0) = y0

2 = χ, y2(∞) = y f
2 = C, y3(∞) = y f

3 = 0. (3.8)

Equivalent system of (3.7) is:

d
dξ


y1(ξ)
y2(ξ)
y3(ξ)
y4(ξ)

 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 Ω(ξ, y1, y2, y3, y4)




y1(ξ)
y2(ξ)
y3(ξ)
y4(ξ)

 , (3.9)

where

Ω(ξ, y1, y2, y3, y4) :=
2y2y4 − y2

3

y1y4
+

y4 + y1y3 − y2
2 − My2 +C(C + M)
Ky1y4

, (3.10)

which is well-defined because of supposition (3.1). System (3.9), in spite of its nonlinearity, admits a
Lie-group of GL(4,R) and we have:

d
dξ
G = AG, G(0) = I4×4, (3.11)

where

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 Ω

 . (3.12)

Now, we are able to erect a GPS to consider Eq (3.9) as follows:

Yn+1 = G(n)Yn, G(n) ∈ GL(4,R), (3.13)

where Yn = Y|ξ=ξn . Integrating (3.9) by (3.13) along with initial condition Y(0) = Y0, results the
demanded value Y(ξ). Suppose the GPS method:

Yn+1 = Yn +
(αn − 1)Fn.Yn + βn∥Yn∥∥Fn∥

∥Fn∥
2 , (3.14)

where

αn = cosh
(
∆ξ∥Fn∥

∥Yn∥

)
, βn = sinh

(
∆ξ∥Fn∥

∥Yn∥

)
, (3.15)
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and ∆ξ = 1/N is the GPS iteration stepsize. In fact, this approach approximates the solution of{
Y′ = F (ξ,Y),

Y(0) = Y0.
(3.16)

Then
Y f = GN(∆ξ) · · ·G1(∆ξ)Y0, (3.17)

computes Y(ξ)|ξ=η∞ ,* at ξ = η∞. From the closure property of the Lie groups, G := GN(∆ξ) · · ·G1(∆ξ) ∈
GL(4,R). Therefore, we can develop a one-step transformation from Y0 to Y f as:

Y f = GY0, G ∈ GL(4,R). (3.18)

From Eqs (3.11) and (3.18) we obtain

G(ξ) = exp
(∫ ξ

0
A(η)dη

)
. (3.19)

Along with (3.8) and generalized mid-point rule, let us assume

ξ̂ = rξ0 + (1 − r)ξ f = (1 − r)η∞,
ŷ1 = ry0

1 + (1 − r)y f
1 = rs + (1 − r)y f

1 ,

ŷ2 = ry0
2 + (1 − r)y f

2 = rχ + (1 − r)C,

ŷ3 = ry0
3 + (1 − r)y f

3 = ry0
3,

ŷ4 = ry0
4 + (1 − r)y f

4 = ry0
4 + (1 − r)y f

4 ,

where r ∈ [0, 1] has to be determined. Therefore Eq (3.19) may be rewritten as:

G(r) = exp
(
A(ξ̂, ŷ1, ŷ2, ŷ3, ŷ4)

)
, (3.20)

where

A(ξ̂, ŷ1, ŷ2, ŷ3, ŷ4) =:


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 ω

 , ω = Ω(ξ̂, ŷ1, ŷ2, ŷ3, ŷ4). (3.21)

In this letter, y0
1 = s, y0

2 = χ, y f
2 = C, y f

3 = 0 are known and y f
1 , y0

3, y0
4, y f

4 are unknown values of the
current problem, which after determining y0

3 and y0
4, the B.V.P. (2.8) converts to an I.V.P.

For the fixedA ∈ gl(4,R),† we have

G(r) =


1 η∞

η2
∞

2
2eη∞ω−2η∞ω−(η∞ω)2−2

2ω3

0 1 η∞
eη∞ω−η∞ω−1

ω2

0 0 1 eη∞ω−1
ω

0 0 0 eη∞ω


, (3.22)

*By using the truncation rule for the differential equations over the infinite or semi-infinite intervals, we set ξ f = η∞ as the final value
of interval [0,∞).

†gl(4,R) is the Lie algebra associated with the Lie group GL(4,R).
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where

ω =
2ŷ2ŷ4 − ŷ2

3

ŷ1ŷ4
+

ŷ4 + ŷ1ŷ3 − ŷ2
2 − Mŷ2 +C(C + M)
Kŷ1ŷ4

. (3.23)

Therefore, each of this Lie group elements may be erected by a single parameter G(r), with r ∈ [0, 1].

From (3.18) and (3.22) we have:

y f
1

y f
2

y f
3

y f
4


=


1 η∞

η2
∞

2
2eη∞ω−2η∞ω−(η∞ω)2−2

2ω3

0 1 η∞
eη∞ω−η∞ω−1

ω2

0 0 1 eη∞ω−1
ω

0 0 0 eη∞ω




y0

1

y0
2

y0
3

y0
4


. (3.24)

Thus, for a given r, we may get the values y f
1 , y0

3, y0
4 and y f

4 by the further explained process.
Imposing the initial guesses of y0

3, y0
4, y f

1 and y f
4 , and the given boundary values of y0

1 = s, y0
2 =

χ, y f
2 = C and y0

3 = 0, with a specified r ∈ [0, 1], and from

y0
3 =
ω(C − χ)(eη∞ω − 1)
(η∞ω − 1)eη∞ω + 1

,

y0
4 =

ω2(χ −C)
(η∞ω − 1)eη∞ω + 1

,

y f
1 =

eη∞ω(2sη∞ω2−2sω+χη2
∞ω

2−2χη∞ω+Cη2
∞ω

2−2C+2χ)+2sω+2Cη∞ω+2C−2χ
2ω((η∞ω−1)eη∞ω+1) ,

y f
4 =

ω2(χ −C)eη∞ω

(η∞ω − 1)eη∞ω + 1
,

(3.25)

we may produce new values of y f
1 , y0

3, y0
4 and y f

4 . If these values satisfy the convergence criterion:√ ∑
i∈{3,4}

(
y0

i New − y0
i Old

)2
+

∑
i∈{1,4}

(
y f

i New − y f
i Old

)2
≤ ϵ, (3.26)

then iterations stop.
For a fixed value of r, we are able to compute y0

3 and y0
4 from Eq (3.25) and then approximately

integrate Eq (3.7) by GPS from 0 to η∞, and compare the end value of y f
2 and y f

3 with the exact ones
y2(η∞) = C and y3(η∞) = 0 respectively. That is, we have to find the minimum value of

min
r∈[0,1]

√(
y f

2 −C
)2
+ (y f

3)
2
. (3.27)

In the appendix, we give a brief algorithm of our proposed method to find the initial values of problem.
In the non-geometric numerical methods, investigation of the method stability is an important task

which guarantees the validity of techniques. Without considering the convergence and error analysis,
results may lead to solutions with no physical meaning or high-level of errors. This issue may arise
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from that, we do not know information about the geometric structure of original problem. However, in
this paper we introduce a GL(4,R) method which conserve the geometrical properties of problem.
Preserving the geometry construction under discretization, is essential in the improvement of a
qualitatively true performance in the minimization of approximation errors.

4. Numerical results

We emphasize that the stepping approach developed for integrating the IVP needs the initial values
f1(0) = f (0), f2(0) = f ′(0), f3(0) = f ′′(0) and f4(0) = f ′′′(0) for the fourth-order ODEs. Both of
the last initial values in Eq (2.8) are unknown. Therefore, approximating f ′′(0) and f ′′′(0) converts
Eq (2.8) into an IVP. It is worth pointing out that every IVP can be integrated by GPS.

Indeed, our proposed method in this paper is split into two parts. In the first part, initial conditions
of the problem are obtain by the GL(4,R) method. Our method is implemented by the convergence
criterion of (3.26) with ϵ = 10−8. For this value of convergence criterion, only four or five steps of
algorithm, mentioned in the Appendix, are needed. So, very fast convergence occur in this part of the
proposed method Second part of this technique starts when we obtain the initial values of BVP from
the first part. Second part which is nominated as the GPS, is an explicit iteration method which is well-
known as the weighted Euler method. Convergence of this part can be guaranteed from the geometric
structure of method.

The results of this paper were announced with η∞ = 7 and ∆ξ = 0.01 for the GPS procedure. There
is no loss of generality in assuming y0

3 = y0
4 = y f

1 = y f
4 = 1 as initial guesses.

Some mis-matching errors with various M, C, s, K and χ are plotted in Figure 2(a)–(d). Desired
values of r = 0.5314, r = 0.4993, r = 0.814 and r = 0.9546 are noticeable from these figures.
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Figure 2. Plots of mis-matching errors for some values of M,C, s,K and χ.
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In Figure 3(a)–(d), we plot the profiles of f (ξ), f ′(ξ), f ′′(ξ) and f ′′′(ξ) for various values of
magnetic parameter (the Hartmann number) M (

√
M), and fixed values of the other parameters. It is

observable that the profiles of f (ξ) and f ′(ξ) decrease, when the magnetic parameter increases, while
the reverse situation occur for f ′′(ξ) and it decrease more rapidly toward zero as ξ tends to η∞.
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Figure 3. Profiles of (a) : f (ξ), (b) : f ′(ξ), (c) : f ′′(ξ) and (d) : f ′′′(ξ), for various M when
C = s = K = 1 and χ = 3.

Figure 4(a)–(d) show the absorbing dependence of the solutions on the various viscoelastic
parameter K. Uniform decrease in the magnitudes of f (ξ) and f ′(ξ) are observable for increasing
values in K. Inverse results occur for the profiles of f (ξ) and f ′(ξ) when χ is greater than the boundary
value C; see Figure 5(a)–(d). Notice that the plots are in a good agreement with the boundary
conditions f ′(η∞) = C and f ′′(η∞) = 0.

It may be seen from Figure 6(a)–(d) that for fixed values of K, s,M and χ, the transverse velocity
increases with increase in the stagnation point flow C. Notice the behavior of solutions in the profiles
of f (ξ), f ′(ξ) and f ′′(ξ) for different cases χ < C and χ > C which are against to the profile of f ′′′(ξ).

From the Figure 7(a)–(d), an increase in the stretching sheet parameter χ results in a increase in the
profiles of f (ξ), f ′(ξ) and f ′′′(ξ). Also, an increase in χ consequences in a decrease in the magnitude
of the shear stress at the wall, f ′′(0).
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Figure 4. Variation of (a) : f (ξ), (b) : f ′(ξ), (c) : f ′′(ξ) and (d) : f ′′′(ξ), for various
viscoelastic parameter K when C = s = M = 1, and χ = 0.
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Figure 5. Profiles of (a) : f (ξ), (b) : f ′(ξ), (c) : f ′′(ξ) and (d) : f ′′′(ξ), for various
viscoelastic parameter K when C = s = M = 1, and χ = 3.
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Figure 6. Variation of (a) : f (ξ), (b) : f ′(ξ), (c) : f ′′(ξ) and (d) : f ′′′(ξ), for various
stagnation point flow C when K = s = M = 1, and χ = 1.
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Figure 7. Profiles of (a) : f (ξ), (b) : f ′(ξ), (c) : f ′′(ξ) and (d) : f ′′′(ξ), for various stretching
sheet parameter χ when K = s = M = 1, and C = 1.
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The double mesh principle is applied to estimate the error

eN(ξ) = | f N(ξ) − f 2N(ξ)|, (4.1)

where N is the number of GPS iterations. Residual errors of the present method applied for Eq (2.8)
with N = 10000 are plotted in Figure 8 for various parameters of equation. This figure shows that our
method is reliable for current types of equations. Besides, obtained solutions and results are in good
agreement with the results of [7].
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Figure 8. Plot of estimate errors of f (ξ) for some values of M,C,K, s and χ.

5. Conclusions

In this paper, a novel iterative technique based on the Lie group of GL(4,R), as the first time, is
proposed to solve the hydromagnetic stagnation point flow of a second grade fluid over a stretching
sheet. Structures of the Lie group elements in GL(4,R) and corresponding Lie algebra elements in
gl(4,R) are completely innovative for the underlying problem in this paper. Against the non-geometric
numerical techniques, the proposed method uses the geometric structure of original problem and this
guarantees that obtained results are reliable and the proposed method avoid the ghost solutions. Effects
of equation parameters are graphically considered. Point-wise errors for various parameters show the
power and effectiveness of proposed method.
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Appendix

Algorithm of finding initial values of the problem:

(i) Take arbitrary initial guesses for y0
3, y0

4, y f
1 and y f

4 .
(ii) Specify an r ∈ [0, 1] and a small ϵ ∈ R+.
(iii) Calculate G(r) and ω from (3.22) and (3.23), respectively.
(iv) Compute updated values of y0

3, y0
4, y f

1 and y f
4 from (3.25).

(v) If convergence criterion (3.26) is valid for given ϵ, then y0
3 and y0

4 are desired initial values of the
problem. Otherwise, go to Step (ii).
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