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1. Background materials

The science of fractional differentiation is related to many engineering disciplines because its basis
is based on differential equations that have a long history in chemistry, polymer rheology
electrodynamics, physics and aerodynamics. Derivatives of fractional order are also included in
mathematical simulations of structures and processes [1-3]. More broadly, differential equations of
fractional order often become means of multiple perspectives on control systems, fluid dynamics, and
SO on.

Another reason for the importance of studying fractional order differential equations is that the
fractional order models are more accurate than the correct order models and they also seem to have a
greater degree of freedom. To learn more recent results about this branch, we cite [4—13].

The integral boundary stipulations play a prominent role in many applications such as thermo-
elasticity, population dynamics, problems with blood flow and underground water supply. To obtain a
full and comprehensive explanation of the terms of integral boundaries, we direct the reader to certain
recent publications [14-24].
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The fixed point technique is one of the final modeling methods for many fields. In engineering, it is
used to achieve solutions or search for more effective results. In general, this method has become one
of the best methods used in modern mathematics, especially functional analysis. This method relates
to the existence, uniqueness and characteristics of a specified operator’s fixed points.

One of the very important discoveries of this technique is the Banach contraction principle [25], as
it contributed greatly to spread after exploring generalized metric areas that were greatly enamored by
the authors in the field of fractional differential equations. For further clarification, see [7, 10,26-29].

The notion of coupled fixed points (CFPs) was introduced in 1987 by Guo and
Lakshmikantham [30] and applications to it were recounted by Bhaskar and Lakshmikantham [31]
who were able to study the monotone property and applied the theoretical results to find a unique
solution to periodic boundary value problems (BVPs). In abstract spaces, a lot of authors generalized
this concept and obtained pivotal results and more applications. For more details, see [32-37].

Coupled fixed points are not only an abstract definition but have many vital applications in some
models of economics such as equilibrium in duopoly markets and variational principle, for instance,
see [38,39].

In the framework of b-metric space (bMS), our main aim of this paper is to establish some
common CFP results for two rational contractive mappings under mild conditions. The theoretical
results are applied to discuss the existence and uniqueness of the solution for a singular coupled
fractional differential equation (CFDE) of order v in the form of:

‘@z(t) + E(t, z(1),w(1)) = 0, T € (0, 1),
‘Ow(r) + E(t,w(1),2(1)) =0, 7€ (0, 1),
A"(0) = A”(0) = 0, .1y
A = A1) =a [ A@)d6,
where A € C[0, 1] x C[0, 1] and given by A(1) = (z(1), w(1)), v € (3,4), a € (0,2), “‘®” is the Caputo
fractional derivative and = may be singular at z = 0 and w = 0.

2. Preliminaries

The concept of bMSs initiated by Czerwik [40] in the year 1993, as a generalization of ordinary
metric spaces. Just it’s multiplying the constant b at the right-hand side of the triangle inequality.

Definition 2.1. A b-metric on a nonempty set Q is a function g, : Q X Q — R* such that for all
ai,ay,as € Q and a constant b > 1, the hypotheses below hold:
1. up(ay,a;) = 0if and only if a; = ay;
. up(ay, az) = up(az, ay);
iii. pp(ar, az) < blup(ar, a) + paz, a3)] .
The pair (Q, u;,) is called bMS with parameter b.

+00
Example 2.1. [41]Let£,(0<p<1)={{a} €R: } |aif’ < oo}and y; : €, X £, — R* be a function
i=1

==

+00

described as uy(ay, ay) = ( > |ai - a;|”) . where a; = {di}; a, = {a}} € €. Then (£, 115) is a bMS with
i=1

b=2r.
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Example 2.2. [41] Let L,(0 < p < 1) be the space of all real continuous functions a(r), 7 € [0, 1] so

1
that f la()Pdr < o and u, : L, x L, — R' be a function described as
0

1

1
ppay, a) = [ [lai(®) - a0 dT) . for each @y, a; € L, Then (L,. 1) is a bMS with b = 27
0

Definition 2.2. [41] Let (Q, u;) be a bMS, the sequence {a;} in Q is called:

(i) convergent to a € Q if for each € > 0, there exists Q(¢) € N so that u,(a;,a) < € for all i > Q(¢)
and we write lim;_,. a; = a;
(i1) a Cauchy sequence if for each & > 0, there exists Q(g) € N so that u,(a;,a;) < eforall i, j > Q(e).

If every Cauchy sequence in €2 converges in €2, then a bMS is called complete.

It should be noted that in a bMS, a convergent sequence has a unique limit and every convergent
sequence is Cauchy.

Definition 2.3. [42] Assume that Y, E : Q X Q — Q are two mappings on a bMS (Q, u;,), the pair
(ai,ar) € Q x Qs called:

1. aCFPof Yifa; = Y (a;,az) and a, = Y (as,a;);
ii. a coupled coincidence point of Y and Z if T (a;, @) = Z(ay,a;) and Z (az,a;) = Y (az,ay);
iii. a common CFP of T and E if a; = Y (a1, a2) = E(aj,a2) and a, = E(as, a1) = T (az,a1) .

For the convenience of the reader, we present some definitions and necessary lemmas from the
theory of fractional analysis.

Definition 2.4. [43] The Caputo derivative of fractional order v > 0, n — 1 < v < n, n € N, for the
function z(7) : [0, 00) — R is described as

T

Z"(6)
l"(n _ V) X (T _ 6)V—ﬂ+1

COz(1) = do, n=[v] + 1,

where [v] represents the integer part of the real number v.

Definition 2.5. [43] For a function z(7) : [0,00) — R, the Riemann-Liouville fractional integral of
order v is described as

I'z(7) = % f (v —0)""'z(0)do, v > 0,
0

provided that an integral exists.
Lemma 2.1. [44] Consider v > 0, then
ree'z(r) = (1) - Co— C11 = Ct* — .. = Gy 77,
where C; e R,i=0,1,2,...n—1,n=[v] + 1.
Lemma 2.2. [I]Ifv > 0and a > 0, then

. —_ T —y—
i ‘Ol = —F(a(‘i)y)'r“ vl for a > n;

ii. ‘@7°=0,fork=0,1,...,n-1.
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3. Common coupled fixed point results

Theorem 3.1. Assume that (Q, u,) is a complete bMS with a coefficient r(= b) > 1 and let the mappings
T,E: QX Q — Qsatisfy

e (p,0) + iy (@, b) 1+ 4, (0, Y (p, @)y (0, E (0, b))
2 (1 +p, (p, 0) + 1 (a, b))
r 9T ) r ’E ,b
+H (o, T (p, ) pr (0, E (o )). 3.1)
(1 +u, (o, 0) + pr (a, b))
forallp,a,o,b€ Qand A, 7,{ >0withrd+t<land A1+ < 1.
Then there is a unique common CFP of (" and Z.

ur (Y (p,a),2(0,b) < A

Proof. Assume that py, ay € Q is arbitrary points. Describe the sequences {0211}/, {a2i+1}15» {02i2) 5
and {azi2}/g as

P2iv1 = T (021, G27) , Qi1 = E (i, p2i) 5 Priv2 = B (0241, A2iv1) and arir = E(Qit1, P2ir1) s

foralli =0,1,2,..., then by (3.1), we have

(Y (021, a21) s E (0241, A2i41))
Pl (020> P2i+1) + 1y (Q2is A2i41)
2
[1 + 1ty (020 Y (21, @20))] fhr (02641, Z (02041, G2is1))
L + p, (020, P2i+1) + iy (Q2is G2is1)
+§.Ur (211> Y (025 @20)) pr (0205 E (P2i41, A2i41))
1+ u, (p,0) + p, (a,b)
Pl (020> P2i+1) + 1y (Q2is A2i41)
2
[1 + (20 P2i+1)] r (0216415 P2i42)
L+ py (020, P2i41) + iy (Q2i5 G2is1)
My (020415 P2i+1) My (0205 P2i42)
L + p, (020, p2i+1) + iy (Q2i, G2ig1)
Pl (020> P2i+1) + iy (Q2is A2i41) N T[l + Uy (025 P2i+1) ] r (02141, P2142)
2 L+ p, (020, p2i+1) + iy (@2i, Qg 1)
Hr (,021‘2’ P2is1) + /lllr (aziz, Azis1)

,Ur(Pzi+1 ) Pzi+2)

IA

+7

+T

IA

A

+ Ty (P2i415 P2i42) 5

this implies that

I(ﬁ i+ 7F i+ <— 2 14 IOF i+ 2 14 i» a i+ . 3~2
14 i+1» i+ is a i i» i+ . 3‘3
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Adding (3.2) and (3.3), we get

A
(2115 P2i52) + Ur(@2is1, Qivn) < m Uy (2 P2ix1) + My (@2i, A2is1))

P (Ur (021, P2iv1) + pr (A2, A2is1))

where 0 < p = (l/—l‘r) < 1.

Also, we can write

A A
r(02i12, P2i43) < M (02i41, P2i42) + =M,y (Q2i41, A2i42) - 3.4
(021425 02i43) 2(1 _T),U (021415 P2ix2) 2(1 _T)IJ (@241, A2is2) (3.4)
Similarly,
( Y L ) (3.5)
r\A2i+2, A2i+3) S ———Mr (A2i41, A2 a1 Mr i+15 P2 . .
Mr(Q2it2, A2i43 2(1_7_)# 2i+1> A2i+2 2(1_7_)# 2i+15 P2i+2
Adding (3.4) and (3.5), we have
A
(2042, P2ix3) + W (Qis2, A2iy3) < 1-1 Wr (2111, P2iv2) + pr (Q2ix1, A2is2))

P (W (P2ix1, P2i+2) + My Q21415 A2i42))

Continuing with the same previous approach, we find repeatedly that, for all i > 0,

IA

o W (pi-1, pi) + pr (aj-1, a;))
Pz Wy (pi=2, pi=1) + py (@j2, a;-1))

(i, Pis1) + (i, aigr)

IA A

IA

0" (1r (po, p1) + i (o, @) (3.6)
Now, if u,(0;, pis1) + pu(aj, ais) = A%, then (3.6) is reduces to

Ai < pAit < p*Ais < < p'Ag.
For j > i, we get

wrpi p)) + prai,ay) < r(pr pist) + 1@ @) + -+ 1 (ﬂr(Pj,PjH) + uaj, aj+1))
rp' Ao+ P Ao + -+ A
rpi (1 + (rp) + (rp)2 + ) Ao

IA

A

( P )A0—>()asi—>+oo.
1-rp

This proves that {p;} and {a;} are Cauchy sequences in Q. The completeness of Q leads to there are
p,a € Q so that lim;_, ., p; = p and lim;_, ., a; = a.

Now, we claim that p = Y (p,a) and a = Y (a, p) . Suppose that the contradiction, thatis p # T (p, @)
and a # Y (a, p) so that i, (p, Y (p,a)) = £, > 0 and u, (a, Y (a,p)) = €, > 0.

Consider

51 = ﬂr (.0, T(P’ (1))
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IA

7 (u, (0, P2i+2) + tr (02142, Y (p, a)))

= 11, (0, P2i+2) + 1t (B (P2ix1, a2is1) , T (0, a))

r \Ms P2i + U (a, ay;

I’T[l + i, (p, T (0, )] pr (02i11, 2 (02i41, @2it1))
(I + (o, p2ix1) + pr (@, azis1))
Hr (2111, T (0, @) pr (0, E (0241, Q2i11))
(1 + p, (o, P2is1) + iy (@, a2is1))

r \Ms P2i + U (a, ay;

I’T[l + 1, (0, Y (0, )|ty (P2:415 P2i42)
(1 + u, (o, 0) + p, (a, b))

Hr (P21, Y (P, @) iy (P, P2:42)

(1 + (0, p2is1) + iy (@, a2is1))

Passing i — 400 in (3.7), we have {; < 0, which is a contradiction. This conclude that
u-(p, Y (p,a)) =0, 1e., p=7T(p,a), similarly, one can obtain that a = T (a,p). It follows similarly
thatp = E(p,a) and a = E(a, p) .

For uniqueness: Assume that (o, a) € Q x Q is a different common CFP of " and Z. Then

ur(p,p) = u.(Y(p,a),E(p,a)
WP+ [+ (e, Y (o, a)l w0, E (p,a)
2 (1 +pr (p, 0) + 1y (@, a))
%M@TWWMWE@@
(1 + u, (o, ) + pr (@, a))

- (p,P) +ur(a,?z)+T [1 + u, (o, p)] - (0, ) e w0, p) iy (0, P)

2 (1 +u, (0.p) + iy (@ @) 7 (1 +p(p,p) + pr (a,a))
Hr (,;7,5) P (621,?13 (0.7,

+rd

+re (3.7)

<

= A

IA

A

this yields
Hr (o, p) < (

By the same manner, one can write

A
2_ﬂ_2§)ﬂr(a’ﬁa)' (3.8)

pr(a,a) < ( ),ur P.p). (3.9)

A
2-1-2
Adding (3.8) and (3.9), one sees that

0.7+ (@, s( )wr 0. 7)+ 1 (@.3).

2-1-2

this leads to, (2 -24-20)(u,(p,p)+u,(a,a)) < 0, since 4 + { < 1, then we have
(u, (0, p) + u, (a,a)) = 0. This is only achieved when p = p and a = a. Therefore, (o, a) is a unique
common CFP of T and =. ]
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If we put 1 = = in the above theorem, we get the result below.

Corollary 3.1. Assume that (Q, u,) is a complete bMS with a coefficient r > 1 and let the mapping
T:QXQ — Qverifies

1 (P () T(oby < @D+ @b 11+ 0, o a)w @1 (o, b)

= 2 T (U4 (o) + 1 (@ b))
1, (0, (0. @) 11y (0, E (0, b))

(I + w, (o, 0) + u,(a, b))

forallp,a,o,b € Qand 1,7, > 0withrd+t<land A1+ < 1.
Then there is a unique CFP of (.

+

The following Corollary is very important in the next section (applications).

Corollary 3.2. Let (Q, u,) be a complete bMS with a coefficient r > 1 and let the mapping T : QX Q —
Q verifies

- (p, r(a,b
e (C p,), % ) < AL LD LHED) (3.10)
forall p,a,o,b € Qand A > 0 with rAd < 1.Then Y has a unique CFP.

Proof. Just put ¥ = E and 7 = ¢ = 0 in Theorem 3.1, we get the proof. O

Theorem 3.2. Suppose that (Q, u,) is a complete bMS with a coefficient r > 1 and let the mappings
T,E: QX Q — Qverify

u (T (p,a),=E (0, b))
{ ﬂu,@,fr);ur(a,b) X EOUCECE) | e TPl )

Q T man o 12 #0,
0 ifQ=0,

<

forall p,a,o,b € Q, where

Q=0(p,a,0,b)=ru (0, (p,a) + u (p,2(0, b)) + - (p, o) + 1, (a, b)),
and A, 7,{ > 0withr (A + 1+ {) < 1. Then (" and E have a unique common coupled fixed point.
Proof. Let py,ay € Q be an arbitrary points. Define the sequences {0241}/, {a2is1} 5, (P22} and
{a2i12}5 by
paiv1 = (021, a21) 5 Aoiv1 = E(Q2is P21) 5 P2iv2 = E (0241, @2is1) and agir2 = E(@2ir1, 02i41) 5

foralli =0,1,2,.... Consider

01 = Q(p2i» a2is P21, A2i+1) # 0 and Qr = Q (ay;, Pai, A2is1, P2i+1) # 0.
Then
Wr(P2is1, P2i42) = WY (021, a2:) , E(P2ix1, A2ix1))

/vur (0215 P2ix1) + Hy (A2, A2is1)
2

IA
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Lot (021, Y (p2i> a21) pr (0211, E (02111, G2iv 1)
0O
+{/Jr (02141, T (020, @2)) [1 + p, (P21, E(02i11, @2i41))]
1+ py (020, P2i41) + iy (@205 G2i41)
Aﬂr (020> 2iv1) + U, (Q2i, Q21 1)
2
Hr (0205 P2i41) Hr (020415 P2i42)
r (e (020, P2i+2) + My (025 P2i51) + My (G2, A2it1))

+4,.Ur (21415 P2i+1) [1 + - (02, P2i42)]

L+ p, (020, P2i41) + iy (Q2is G2is1)
My (Pz:‘z, P2ir1) NPT (dziZ, azit1)

+7T

IA

A + Ty (0215 P2:i41) 5

Hence, one can write

21+ A
2

A
(2115 P2i42) < ( ),Ur (02is P2:i+1) + E,Ur (azi, ziz1) -

Similarly, one can easily prove via assumption Q, # 0 that

2T+ A
2

A
Wiz, Ariva) < ( ),Ur (a2, aris1) + E:ur (P2 P2ix1) -

By adding (3.11) to (3.12), we find that

W (P2ix15 P2i+2) + Ur(Q2i1, A2is2) < (T + A) [,Ur (02i> P2is1) + My (a2i, aZi+1)] .
Put O3 = Q (0242, @2is2, P2is1, G2ix1) # 0, then we get

(242, P2i43) = (L (02151, A2iv1) » B (02112, A2iv2))
/lllr (P2ix1> P2i+2) + Uy (Q2i415 A2i42)
2
LM (P2i415> X (0241, @2i41)) fr (02112, Z (02142, A2i12))
03
W (02052, T (021415 2i1)) [1 + 1y (021415 E (021425 A2i42))]

IA

* 1+ py (02041, P2i+2) + iy (G215 A2is2)
Hr (021115 02i42) + Uy (Q2in1, Q2iv2)
2

. Hr (P2i415 P2i42) Hr (021425 P2i43)

r (i (020415 P2i43) + Mr (P21, P2i+2) + My Q21415 G2i42))
i Hr (2112, 2i42) [T + i (02141, P2:13)]

L+ py (020115 P2i42) + pr (@241, Q2i42)
Hr (Pzi+21 » P2i+2) YL (azis 21 , (2i12)

= A

—+

IA

A

+ T, (P2i415 P2i42) »

this leads to
21+ A

2

A
,Ur(,02i+2,/02i+3) < ( )#r (,021‘+1,P2i+2) + E,ur (@2is1, A2it2) -

(3.11)

(3.12)

(3.13)
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Similarly, one can easily prove via assumption Q4 = Q (a2i1+2, P2i+2, A2it1, P2i+1) # O that

21+ A
2

A
Wr(Qziza, azis3) < ( ) W (@is1, Qzign) + E,Ur (2415 P2i12) -

By adding (3.13) to (3.14), we can write

r(P2iv2, P2ix3) + Ur(@2iv2, A2iv3) < (T + A) [y (020115 P2i42) + 1y (@2i11, 2i42) ] -

Continuing with the same scenario for all i > 0, we get

IA

(T + ) [pr i1, ) + pr (@1, a;)]
o [y (Pi-1, p0) + pr (a1, )],

Hr(is Pix1) + (@i, aiv)

where o = 7+ A < 1. Now if, u,(0;, pis1) + u(a;, aiy1) = @;, then
w; < 0w < Wiy < ... < Twy,

Suppose that for j.i € N U {0} so that j > i, then

IA

10 0)) + pai, aj;)

< rowy+ et w4+ -+ e @y

A

ro’ (1 + (ro) + (ro)* + ) (o)

rot i
wo — 0asi — +oo,
1-ro

(3.14)

r (ur(oi, piv1) + pr(ai, aipr)) + -+ + - (,ur(pjaij) + uaj, aj+1))

this proves that the two sequences {p;} and {a;} are Cauchy. Because € is complete, then there exist

p,a € Q so that lim;_, ;. p; = p and lim;_,,, a; = a.

Now, we show that p = Y (p,a) and a = Y (a,p) . Suppose the opposite, that is p # T (p,a) and

a # Y (a,p) so that u, (o, T (p,a)) = €; > 0 and y, (a, Y (a,p)) = €, > 0.
Consider

[1 Hr (p’ T (pa a))

r (u, (0, p2iv2) + tr (02112, Y (p, a)))
iy (P, Paiv2) + 1ty (B (02141, A2i+1) » X (0, @))
Hr (0, P2i41) + Hr (@, Qiv1)

2
(o, Y (p, @) 1y (P2i41, E (P2i41, A2iv1))

IA

Ty (p, Paiv2) +1a

+rT —
r (y (241, T (0, @) + w1y (0, Z (02141, 2i11)) + 1y (05 P2i41) + Uy (Q2i41, @)

W (02i1, T (0, @) [1 + - (0, E (0241, A2i11))]
1 + (0, p2i41) + iy (@, Gzis1)
(0, P2i41) + Hy (@, Qv 1)
2
HMr (p, T (/0, a)) HMr (,02i+1 ,Pzi+2)

+rd

= 11, (0, p2is2) + 1A

+7T —
Wy (O2i41, Y (0, @) + - (0, E (0241, Q2iv1)) + Uy (0, P2:i41) + Yy (Q2111, @)
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+r§/~lr (p2i+17 T (,D, Cl)) [1 + Mr (p’ p2i+2)]
(1 + (0, p2ie1) + iy (@, @2i1))

Letting i — +4o0 in (3.15), we get ¢} < rlu, (o, T (p,a)) = r{t,, this leads to (1 — r{)¢; < 0,
so either r{ > 1, this contradicts the condition r(1+ 7+ ) < 1, or £; < 0 and this contradicts the
condition ¢; > 0. Thus, in both cases we have a contradiction. This implies that u, (o, Y (p,a)) = 0,
i.e., p = Y (p,a), similarly, one can obtain that a = Y (a, p) . It follows similarly that p = = (p, a) and
a==EZ(a,p).

For uniqueness: Assume that (o, a) € Q X Q is a different common CFP of I’ and Z. Then

(3.15)

ur(o.p) = u-(Y(p,a),Z(p,a)
< Pt @a ur (o, Y (p, ) i (p, , E (p, @))
- 2 r (- (o, T (p, @) + pr (p, E(p, @) + w1, (0, ) + ptr (a, @)
+§ﬂr(/5,‘r(,0, a) [1+p, (p,E(p, a))]
L+, (o, p) + pr (a, @)
_ fep)tp@a (0, p) i, (0, P)
2 r (- (0, ) + - (0, ) + iy (0, p) + 1y (@, a))
v ur (0, p) [1 + - (0, p)]
(1 + (o, ) + py (@, a))
< ﬂur(lzo,foﬁ +ﬂur(;l,20 0 (0.5
this implies that
A
mmasgjﬁzyww» (3.16)
By the same method, one can obtain
A
m@asgfxiﬁmm@. (3.17)
By adding (3.16) to (3.17), one can write
A
K (0,p) + iy (a,a) < (—2 — = 24) (ur (o, 0) + p1r (a,@))

this implies that, (2 —24-2¢)(u, (0,p) + u,(a,a)) < 0, since A + { < 1, then we have
(u- (0,p) + u, (a,a)) = 0. This is only holds when p = p and a = a. Therefore, (p,a) is a unique
common CFP of 7" and E. O

If we set T = = in Theorem 3.2, we get the following result:

Corollary 3.3. Suppose that (Q, u,) is a complete bMS with a coefficient r > 1 and let the mappings
T:QXQ — Qverifies

1 (Y (p,a), (o, b))
{/lﬂr(Pa(f);rﬂr(asb) _I_T/J,—(p,T(p,a))y,(a‘,T(o:b)) _l_é«ﬂr(a',T(p,a))[l+/1r(p,T(0',b))] lfQ + O,

o L+, (0,0)+pr(a,b) ’

0 ifQ=0,
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forall p,a,o,b € Q, where

Q0=0(p,a,0,b) =1, (0,7 (p,a)) +u (o, (0,b)) + u, (p,o) + u, (a,b)),

and A, 7,{ > 0Owithr (A + 1+ {) < 1. Then " has a unique common CFP.
4. The existence solution of singular CFDEs

In this part, we discuss the existence and uniqueness of the solution of the nonlinear singular CFDE
in the setting of bMSs.

Here, we begin with the proof of the following lemma which demonstrate that Green’s function of
a FDE with integral boundary conditions.

Lemma 4.1. Given the pair (a,q) € (C(0,1)NL(0,1)) X (C(0,1)NL(0,1)),v € (3,4), a € (0,2),
such that v # «, the unique solution of

‘O (A(1)) + (a(1),q(1)) =0, T € (0, 1),
A"(0) =A"(0) =0, 4.1)
A =A() =a [ A@G)d6,

is
1
Ar) = j; 3(7,0)(a(0), q(0))de,
where A(t) = (z(1), w(T)) and

v2-a)+2ar(v—-1+0)(1 - Q)V—l

1 fo<9<t<
300 = s vQ2-a)(T-6)"", fo<b<7<l, 4.2)
VZ-aTW) | (o gy 420t (v—1+0)(1 -0, ifo<T<O<]1,
Proof. Based on Lemma 2.1, problem (4.1) can be reduced to the equivalent integral equation
A(T) = —I"(a(r), q(0) + Co + C 7+ Co* + C37°
1
= o) ) (T =0)"" (a(0), 9(0)do + Cy + C,7 + Co1° + C37°. (4.3)

Since (z7(0), w”(0)) = (z”"(0), w’(0)) = (0,0), so we get A”(0) = A" (0), thus, C, = C3 = 0, and we
can write

AT) = o f (t—0)"" (a(8), ¢(8))d6 + Cy + Ci7,
, V= 1 v
A = “To) f (r—6)"" (a(6),q(0))do + C,.
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Because (2/(0), w'(0)) = (2(1,w(1)) = (a [} 20)d0, @ [} w(@)do). hence A'(0) = A1) = & [} A@)do,

then one sees that

A'(0)

1
C, = af A(6)de,
0

1
A = s f (1-0)""(a(), g0)d0 + Co + C; = f A(6)db,
0

So, by (4.1), we conclude that

Co = I )f(l — 60" (a(6), 9(6))d6),

From the previous equality, we obtain that

1
AT = - f (7= 60)"" (), q(O))d0 + -~ 1 f (1-6)"" (a(), q(6))d6 + C.
(v I'(v)

0
By integrating both sides of Eq (4.5) from O to 1, one can get

1

f A(t)dr

1
—FL f f (r = 0)"" (a(8), g(6))dédr
0 0

T

1

N f f (1= 0" (a(9). q(0))dbdr + f Crdr.
I'(v)

0 0

1

0

From (4.4) and (4.6), one can write

1
o f A(6)do
0
1

v v—1 Q_Q
T f (1 -6)"(a(0), q(9))d9+ f —0)" (a(6), 9(6))do + >
0

Ci

Thus, we get

e _ oyl
=~ (2_ 5 f (1-6)" (a(®), q(@))d9+—r( T f (1-6)" ((6), g(®))de.

AIMS Mathematics

( — v—1 C]
_r(mf o q<9))d9+m f (1-0)" (a(6). g0)d6 + -
0

4.4)

4.5)

(4.6)
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Substituting the values of the constants in (4.5) we obtain

A(T)

I'(v)

f (1 - 6)" (a(0), q(6))d6 +

VF(V) (2 - I'(v )(2

— _ -l
= f (r - 0" (a(), (6)do

1
)2 - a) f (02— ) + 207 (v = 1 +6)] (1 - )" (a(6), g(6))dB

o) f (7= 6)"" (a(9), 9(0)d6 + —— f (1-6)"" (a(6), 9(6))d0 +

f (1 - 07 (a(6), ¢(0))d0

= —)f [@aR-a)+2ar(v-1+0D)](1 -0 -a-a)(v-0)" 1}(41(9) q(6))do

vI(v)(2 -

1 v
+m f[a/ 2-a)+2ar(v-1+6)]1 -06) (a(8),q(0))do

1
fo 3(x, 0)(a(®), q(6))do,

and this completes the proof.

O

The following lemma estimates the green’s function J(r,0) of FDE with integral boundary

stipulations described in (4.1) on L,(0, 1).

Lemma 4.2. Suppose that v € (3,4), a € (0,2), such that v # «, then for all 7,0 € (0, 1), the Green’s

functions 3(t,.) € L, verifies

1 5 1 (4 8a 4o’
fo [¢r. 0 d6 < 55 (§+3|a—2| +9<a—2)2)'

Proof. Whenv € (3,4), a € (0,2), such that v # a, there are two clarifications:

() For0<0<71<1,

Ve -2|+2ar(v—1+0) -l
|5(T,6)| < e 2T (1-6)

I'(v) via - 2|

(i) For0<7t<6<1,

Vie=2|+2ar(v—1+6)

v—1
via = 2|T(v) (1-6)

IA

|3, 0)|

1(2 2a (v—1+9))( )

4.7)
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= 1(1+ 2a (v—1+9))(1—9)"_1

I'(v) via - 2|
! (2 2a -1+0|a -9 4.8
o) o 2|(v +6)|(1 . (4.8)
It follow from (4.7) and (4.8) that
1 Sa 4a% (v -1 +6) 22
|5(79)| r2()( +V|a_2|(v—1+e)+ YA )(1—9) ,

which yields

f |9, 0)|" do

2v=2 _ 2y-2
Fz(v){f 4(1-6)""do+ e = 2|j‘(v 1+6)(1-6)""do

4
+L2f (v—1+6’)2(1—0)2y‘2d6’}
vi(a—2) Jo
1 ( 4 8a (2v2—2v+1) 4a? ( 22 -3y +1 ))

Eolv—1 vie-2\ 22 -1 ) v@-2 2@ - Dy + 1)
1 (4 8a 4a? )
-+ +
rZm\s 3la-2 9@-2)7°

Assume that Z(.,z(.),w(.)) € L, for any z,w € C[0, 1] and describe a mapping Y : C[O0, 1] X
C[0,1] — C]0, 1] as follows:

1
Y(z(1), w(1)) = f 3(r, )E(6, 2(6), w(0))do, (4.9)
0

where 6 — I(t,0) is continuous from [0, 1] to L,. Suppose that 7, € [0, 1] with 7, — 7. Because
J(r,.),2(., z2(.),w(.)) € L, for any z,w € C[0,1] and T € [0, 1], therefore J(r, .)=E(.,z(.), w(.)) is
integrable function. Hence, using the Lebesgue dominated convergence theorem, one can write

1
lim 5 (1,,, OZE(O, 2(6), w(0))db

n—+oo

lir+n T (2(7,), w(Tn))

1
f hm I(1,, DEG, 2(0), w(0))dO
0 n—

f I(t, 0)Z(, 2(0), w(0))dO = Y(z(1), w(T)).
0

Similarly

1
lim T (w(t,), 2(T,)) lim (1, O)Z(, w(6), z(0))do

n—+oo n—-+oo 0
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1
f lim (t,, )Z(6, w(6), 2(6))d6
0

n—+oo

1
f 3(r, E(0, w(0), 2(0))do = T(w(7), (7)),
0

this shows that I’ € C[O0, 1]. Thus, the mapping T : C[0, 1] X C[0, 1] — CIO, 1] is well-defined.
Suppose that u, : C[0, 1] X C[0, 1] — R™ is described as

pr (z,w) = sup |z(1) —w(D)P, (4.10)
7e[0,1]

Then the pair (Q, u,) is complete bMS with coefficient r = 2.

Lemma 4.3. Assume that (' is a mapping described as (4.8) and z,w € C[0, 1]. The pair (z (1) ,w (1))
is a solution of BVP (1.1) iff it is a CFP of .

Proof. Assume that the form of a solution of BVP (1.1) is (z(7),w(7)). Then from Lemma 4.1, the
unique solution can be described as

1
2(1) = f 3(1,0)Z(6, z(6), w(6))do,
0

and

1
w(T) = f 3(7, )26, w(6), 2(6))db,
0
where J(t, 0) defined in (4.2). Thus, (z(7),w (7)) is a CFP of Y. O

Conversely, suppose that (z(7),w (7)) is a CFP of Y. Since @ < n — 1, by Lemma 2.2, we get

‘0" (z(1))

1
‘@ ( f I(r, 0)Z(6, 2(0), w(e))de)
0
_ 1 cQyY ' v—1
= et { ¢) UO (~ve-oa-0")
+ (V2= )+ 2t (v = 1+0) (1 —0)™")E(0, 2(0), w(6))do

1
+ f v2-a)+2ar(v-1+6)( - 9)"—1 =0, z(0), W(Q))dQ]}
0 1
= —E(r,2(1), w(1) +° @ (T— f (1 - 6)""" 2(8, 2(6), w(6))dO
I'v) Jo

2at ! e
+m fo (v=1+60)(1-0)" E(,z(6),w®))do

= —E(1,z2(1), w(1))

Similarly, one can prove that
‘@ (w(1)) = —E(1, w(1), (7).
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Hence (z(1), w()) verifies problem (1.1), further, it is easy to verify that A”(0) = A”(0) = 0,
AN =A)=a fol A(0)df, which implies that (z(7), w(t)) is a solution to problem (1.1). Because Y is
continuous and has a CFP (z(t), w(t)), thus (z(1), w(7)) is a continuous solution for the given BVP.

In order to study the existence and uniqueness solution for the BVP (1.1), we propose the following
theorem.

Theorem 4.1. Suppose that v € (3,4) and

1 4+ 8a N 4 )<
rZm\s 3la-2 9(@-2) ’

holds foe any a € (0,2), a # v. Let Z(., z(.), w(.)) be a function in L, for any z,w € C|0, 1] and for any
7', w* € C[0, 1] the inequality below holds

4.11)

26) = ' O + [w(6) — w (O
2
Then the mapping Y has a unique CFP, which is a unique solution to the BVP (1.1).

12(6, 2(0), w(6)) — E(6, z* (0), w (O))* < , 0€[0,1], (4.12)

Proof. Based on the Cauchy—Schwarz inequality, the mapping I’ given in (4.9) and Lemma 4.2, one
can write

Y(2(7), (1) = (" (@), w' (D)
2

1
f; (1, 0) [E(6, z(0), w(0)) — E(0, 2" (0), w* (0))] db

IA

1 1
(lJWQﬁﬁdﬂ(£|aadmmun—wawmma@#d%

1 (4 Sa 4> 112(6) = 2(0) + w(6) — w* ()]
W@J§+3m—ﬂ+9W—DJ(ﬁ 2 dﬂ

/l(fl l2(6) = (O +2IW(9) - W*(9)|2d9)_
0

Taking the supremum over [0, 1], we have

W (2,2°) + - (w, w*)
5 .

Hence the contractive stipulation (3.10) of Corollary 3.2 is fulfilled, then the mapping " have a
unique CFP. Thus, by Lemma 4.3 the BVP (1.1) has a unique solution in C[0, 1]. O

W (C(zw), Y (" w)) <A

5. Supportive examples

This part is devoted to support the theoretical results, where some illustrative examples are
presented.

Example 5.1. Assume that Q =R and 7, = : R X R — R are two mappings defined by
_ 4
T(a1,a) = (a1)’ (a2)” and E(a;, a2) = 3 (a1 + az),

for all a;, a, € R, then (0, 0), (1,2) and (2, 1) are coupled coincidence points of I’ and E.
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Example 5.2. Let Q =R and 7,2 : R X R — R be two mappings described as
T(Cl], az) =a;t+a —aa — sin(a1 - az) and E(al, Clz) =a;t+a+ cos(a1 + az) ,

for all a;,a, € R, then (0, %) and (%, 0) are coupled coincidence points of T’ and =.

Example 5.3. Let Q =R and 7, Z : R X R — R be two mappings described as
Y(ay,a) = ayaz and E(ay, @) = a; + (a2 — a1)’,

for all a;,a, € R, then (0,0) and (1, 1) are common CFP of T and Z.
Example 5.4. Let Q = [0, o). Define y, : [0, 00) X [0, 0c0) — R* by

w(p, o) = (o —0o)?, forall p,o € Q.
Then (Q, u,) is bMS with r = 2. Define the mappings T, Z : Q x Q — Q as follows:

if p > o,
ifp<o,

et ifp>0',
0, ifp<oao,

p—0
b

T(p,a'):{ andE(p,O'):{?’

To fulfill the rational contractive condition (3.1) of Theorem 3.1, we consider the cases below:
) Ifp>a>o > b, then T (p,0) = &% and Z(p, o) = &=, Consider

- (Y (p,a) ,E (0, b))

2
wuun—:wnmzzeiﬁ—zlé)

5
(o —a) +(O-_b)2

IA

16 25

B ((/O—cr)+(0—a))2Jr((cr—a)+(a—b))2
- 16 16

(-0  (a-b)]
< 16 + 16 , since o < a
1 {(p—0)+(a—b)
8 2
_ A(p—a)zg(a—b)z
_ /lur(p,ff)+ﬂr(a,b)

2

< M (0,0) + 1, (a,b) +T[1 + 1, (0, Y (p, )| u, (0, 2 (0, b))
- 2 (1 + p, (o, 0) + pr (@, b))

+§ﬂr(U,T(p,a))ur(p,E(cr,b))_

(I + pr (p,0) + pr (a, b))

Hence for any value of 7 and { with 4 = % sothat A + 7 < 1 and 4 + ¢ < 1, we find that the
condition (3.1) holds.

(i) Ifp<a <o <b,then Y (po,0) =0and E(p,0) = 0. It is a trivial case. Thus, all requirements
of Theorem 3.1 are fulfilled and (0, 0) is a unique common CFP of Y and =.
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Example 5.5. Let Q = {0, 1}. Consider a b—metric y, : Q X Q — R* by
2 2
u(p, o) = g(p — o), forall p,o € Q.

Then (€, t,) is bMS with parameter r = 2. Define the mappings T,Z : Q x Q — Q by T (p,0) = &7

and Z(p,0) = &, for all p,o € Q. It is easy to conclude that the stipulation (3.1) of Theorem 3.1 is

fulfilled with A = %, T= % and £ = % Hence (0, 0) is a unique common CFP of T and ZE.

Example 5.6. Consider the BVP of fractional order below:
“©72(7) + E(r,2(r), w(1)) = 0, T € (0, 1), (5.1)

where = described as

S S
B(r, 2(7), w(r)) = { VOO
2Vz(n)+w(T)’

if —1<z,w<l,
otherwise,

which is a singular at z = 0 = w, with the stipulations
, 1 !
A"0)=A"0)=0, A =A(]) = §f A(6)do,
0

for each A € [0, 1]x[0, 1]. Itis clear that the solution of the differential equation of fractional order (5.1)
can be satisfied to fulfill the integral equations below:

1
() = f I(1, 0)Z(0, 2(0), w(0))d0,
0

and

1
w(T) = f 3(, )E(0, w(0), 2(0))db),
0

where J(t, 0) is given by

6 B42r(340))1-0F -8 (x-6), if0<O<T<I,
9(1,0) = —— (3 325(2 ) ))5( SR i (5.2)

35T(2) (2+2(3+0)a-0)7, ifo<r<0<1,

here a = % and v = %, which verify the assumption (4.11). It follows from Lemma 4.2 that

1
2 64 304
A= )| df < —— x — ~0.1223 < 1. .

‘£|mnﬂci<2%ﬂx2% 0.1223 < (5.3)

Based on Green’s funtion (5.2) and the the related mapping " described in (4.9), one can write

Y (2(r), w(T)) = T(&" (D), w' (D)
2

1
f I(1,0) [E(0, 2(0), w(0)) — (0, 7" (0), w*(8))] db
0
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IA

1 1
( f |9, 9)|2d9) ( f 12(6, 2(60), w(0)) — Z(8, 2 (0), w* () d@) (by Cauchy-Schwarz inequality)
0 0

1

A f 126, 2(6), w(8)) — E(6,2* (), w*(0))I” 6,
0

where 4 < 1 and

58, 2(0), w()) — E(6,27(6), w ()l

,ifzw, 25 w* € [-1, 1),

1 _ 1
‘ \/4(z(9)—w(9)) 4(z*(0)-w*(6))

> le’ w, Z*7W* € (—OO, _1) U [17 +OO)’

1 1
'\/ 4O+w@O) AT O+w ()

1 1
|\/4(Z(9)—W(9)) T A O+ (0)

ifz,we [-1,1), 2%, w" € (o0, =1) U [, +0),

-

1 _ 1
‘ \/4(1(9)+W(9)) AzH(O)-w*(9))

if 7,w € (=00, —1) U[1, +00), 7%, w* € [—1, 1).

-

Now, for z, w, z",w* € [—1, 1), one sees that

T(2(7), w() = (2" (), w* (@)

1
/lf
0

12

IA

do,

1 1
J4wm—ww»_4&m»—ww»

:ngmmﬂmw—m@ﬂw»w

4 Jo I @®=wio) @©® - w®)

@f%ﬂﬁ%@ﬂw@—w@%w
2 Jo I @® = wio) @©®) - w®)

1/ 2 2
< ’lf (|Z () — z(0)] +2|W(9)—W ) )d@.
0

IA

By taking the supremum over 7 € [0, 1] and put into account the metric distance (4.10), one can write

M (2,25) + pr (w, W)
5 .
By the same manner, one can show the other selections. Thus, by Corollary 3.2, we conclude that

the mapping 1" described in (4.9) has a unique CFP. So we expect a unique solution to the BVP (1.1)
in C[0, 1].

ur (C(z,w), T(Z", W) < A
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