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1. Introduction

In convex functions theory, Hermite-Hadamard (H-H) inequality is very important and was
discovered by C. Hermite and J. Hadamard independently (see, also [23], [41, p.137]),

b
f(a+b) < Lff(x)dxs M (1.1
b-a 2

2

where f is a convex function. In the case of concave mappings, the above inequality is satisfied in
reverse order. For more recent developments, one can consult [17, 18,42,48,49].

Hudzik and Maligranda defined s-convex functions in the second sense in [28], which may be
expressed as: a mapping f : R* — R, where R* = [0, o), is called s-convex in the second sense if

fx+ A -y <’f)+A -1 f()

for all x,y € R*, t € [0, 1], s € (0, 1] and these functions are denoted by f € kf. After that, Dragomir
and Fitzpatrick [22] used this newly class of functions and proved the following H-H inequality:

2s_1f(a+b) f f( )dx < (Cl)+f(b) (1.2)

For more recent integral inequalities related to the class of s-convex functions and its generalizations
via different integral operators, one can consult [11,19,20,24,25,34,36,40].

On the other hand, several studies have been carried out in the domain of g-analysis, beginning
with Euler, in order to achieve proficiency in mathematics that constructs quantum computing
g-calculus, which is considered a relationship between physics and mathematics. It has a wide range
of applications in mathematics, including combinatorics, simple hypergeometric functions, number
theory, orthogonal polynomials, and other sciences, as well as mechanics, relativity theory, and
quantum theory [27,32]. Euler is thought to be the inventor of this significant branch of mathematics.
He used the g-parameter in Newton’s work on infinite series. Later, Jackson presented the g-calculus,
which knew no limits calculus, in a methodical manner [26, 30]. In 1966, Al-Salam [10] introduced a
g-analogue of the g-fractional integral and g-Riemann-Liouville fractional. Since then, the related
research has gradually increased. In particular, in 2013, Tariboon and Ntouyas introduced
«D,-difference operator and g,-integral in [46]. In 2020, Bermudo et al. introduced the notion of qu
derivative and ¢’-integral in [12].

Many integral inequalities have been studied using quantum integrals for various types of
functions. For example, in [3,6,8,9,12-14,31,37,43-45], the authors used ,D,,, ”Dq-derivatives and
ga» ¢ -integrals to prove H-H integral inequalities and their left-right estimates for convex and
coordinated convex functions. In [38], Noor et al. presented a generalized version of quantum H-H
integral inequalities. For generalized quasi-convex functions, Nwaeze et al. proved certain
parameterized quantum integral inequalities in [39]. Khan et al. proved quantum H-H inequality
using the green function in [35]. Budak et al. [15], Ali et al. [2,4], Chu et al. [21] and Vivas-Cortez et
al. [47] developed new quantum Simpson’s and quantum Newton’s type inequalities for convex and
coordinated convex functions. For quantum Ostrowski’s inequalities for convex and co-ordinated
convex functions, one can consult [5,7, 16].
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Inspired by these ongoing studies, we offer a variant of quantum H-H inequality (1.2) and Ostrowski
type inequalities for s-convex functions in the second sense. Since the s-convexity is the generalization
of convexity, therefore the inequalities proved in this paper using the s-convexity are the generalization
of already proved inequalities for convexity that is the main motivation of this paper.

The following is the structure of this paper: A brief overview of the concepts of g-calculus, as
well as some related works, is given in Section 2. In Section 3, we show the relationship between the
results presented here and comparable results in the literature by proving quantum H-H inequalities for
s-convex functions in the second sense. Quantum Ostrowski type inequalities for s-convex functions
in the second sense are presented in Section 4. Some applications to special means are given in Section
5. Section 6 concludes with some recommendations for future studies.

2. Preliminaries of g-calculus and some inequalities

In this section, we recollect some formerly regarded concepts. Also, here and further we use g € (0, 1)
and the following notation (see [32]):

[n], = =l+qg+q+...+q¢"", qge(0,1).

In [30], Jackson gave the g-Jackson integral from O to b as follows:

b
f F@) dpx =(1=q)b Y q"f (bq") 2.1)
0 n=0

provided the sum converges absolutely.
Definition 2.1. [46] The q,-derivative of a mapping f : [a,b] — R at x € [a, b] is defined as:

_ 1 —
D,f ) =1 ( 1{ (Z; (Z (_ " DY s 2.2)

If x = a, we define ,D, f (a) = lim,_,, ,D,f (x) ifit exists and it is finite.

Definition 2.2. [12] The g’-derivative of a mapping f : [a,b] — R at x € [a, b] is defined as:

1-qg)b) -
’D,f (x) = f(qx(—; (_ 2 EIZ _)x)f(x)’ x#b.

If x = b, we define °D,, f (b) = lim,_,,, *D,f (x) ifit exists and it is finite.

Definition 2.3. [46] The q,-integral of a mapping f : [a,b] — R is defined as:
ff(t) Ayt =(1=q)(x=a) ) q'f(@'x+(1-q)a),
n=0

where x € |a, b] .
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Definition 2.4. [12] The ¢"-integral of a mapping f : [a,b] — R is defined as:

b
ff(z) bt = (1) (b-x) Y q"f(@x+(1-q")b),
n=0

where x € |a, b] .
In [12], Bermudo et al. established the following quantum H-H type inequality:

Theorem 2.1. For the convex mapping f : [a,b] — R, the following inequality holds

b b
b !
f(az )S 20 -a) lffm o +ff(x) o

In [16], Budak et al. proved the following Ostrowski inequality by using the concepts of quantum
derivatives and integrals:

< f(a);f(b)-

(2.3)

Theorem 2.2. Let f : [a,b] € R — R be a function and *D,f and ,D,f be two continuous and
integrable functions on [a, b] . If |qu F@OL1Dgf @) | £ M forall t € [a,b], then we have the following
quantum Ostrowski inequality

X b
lf(x)—ﬁlff(r) i+ [ £ hdqt}

gM [(x —aY’ + (- x)Z]
(b-a) (2],

(2.4)

3. Hermite-Hadamard inequalities

In this section, we prove H-H inequalities for s-convex functions in the second sense using the
quantum integrals.

Theorem 3.1. Assume that the mapping f : Rt — R is s-convex in the second sense and a,b € R*
witha < b. If f € Li([a, b]), then the following inequality holds for s € (0, 1]:

b 1 ’ ’
23‘1f(a; ) = 20-a U 7 ”dq“ff(X) bdqx]

[s+1],

3.1

Proof. As f is s-convex in the second sense on R* we have

fax+A-ny) <r'f)+A-0"f0),

forall x,y e R* and r € [0, 1].
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Obverse that X+
2f () < rw+ s, (3.2)

We get the following, by putting x =tb+ (1 —f)aandy =ta+ (1 —t) b in (3.2)

a+b
2

27( )sjnb+a—nm+faa+a—nm.

From Definitions 2.3 and 2.4, we have

b 1 b b
ZHfF;)szw_mLffuM@mh[f@ﬂ%4

and the first inequality in (3.1) is proved.
To proved the second inequality, we use the s-convexity and we have

fb+(A-na)<t'fb)+(1 -1’ f(a) (3.3)

and
fa+(A-0b)<t’f(a)+(1-1)°f(b). (3.4)
By adding (3.3) and (3.4), from Definition 2.3 and 2.4, we have

1 ’ o b f@)+f®)
2(b_a)[fa f(x)adqx+faf(x) dqx]s T

and the proof is completed. O
Remark 3.1. If we set s = 1 in Theorem 3.1, then we recapture the inequality (2.3).

Remark 3.2. In Theorem 3.1, if we take the limit as g — 17, then inequality (3.1) becomes the
inequality (1.2).

4. Ostrowski’s inequalities

In this section, we prove Ostrowski’s type inequalities for s-convex functions in the second sense.
We use the following lemma to prove the new results.

Lemma 4.1. [16] Let f : [a,b] C R — R be a function. Ifquf and ,D,f are two continuous and
integrable functions on [a, b, then for all x € [a, b] we have

X b
1
f(x)—mlff(t) Wt +ff<r) ”dqr}

1
2
- %Itaqu(tx+(l—t)a)dqt
0
1
2
_% t°D, f(tx+(1-1)b)d,t. 4.1)
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Theorem 4.1. Assume that the mapping f : I C R* — R is differentiable and a,b € I with a < b. If
lDy f1 and Ith [l are s-convex mappings in the second sense, then the following inequality holds:

X b
1
ﬂw—;:;ffma%t+ff®b%t
gix-—ay’| 1
S b-a [[s+2]q oDy 09|+ “D"f(a)|]
q(b—x)2 1 b b
= [S+2]q| D, f(x)|+0:| D, f®) (4.2)

where

1
0, :f t(1—1)'d,t
0

Proof. From Lemma 4.1 and properties of the modulus, we have
X b
1
f(x)m[ff(f) adyt +ff(f) Pd,t

1
2
< q(x—a) ft
b—a
0

Since the mappings |,D,f] and |”D, f| are s-convex in the second sense, therefore

1
1
ft f ts+1
0
0

1
2
D, f(tx+(1—t)a)|dqt+%ft| D, f(tx+ (1 —1)b)|d,t.(4.3)
0

IA

1
Dy f(x)|a’qt+f t(1-1)°
0

Dy fltx+(1-0a)|dt

Dy [ (@)|dyt

= G| P f@|+01] Dy [ (@ (4.4)
and
2 1 1
ftl "Dy fltx+(1=0b)|dt < ff+1| ”qu(x)|dqt+f t(1-0'| *D, f(b)|d,t
. 0 0
1
= [S+2]q| ’D, f(X)|+ 0| *D, f(®). (4.5)
We obtain the resultant inequality (4.2) by putting (4.4) and (4.5) in (4.3). O

Remark 4.1. If we set s = 1 in Theorem 4.1, then we obtain the following inequality

X b
1
f(x)mlff(t) adqt +ff(t) bdqt}
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q 2
batrotrar ol

Dy £ (a)))

Dy f ()|

+ (b= (1 +q)| "Dy f |+ | *Dy £ b)])]
which is given by Budak et al. in [16].

Corollary 4.1. If we assume |,D,f (x)|, ’"D,f (x)| < M in Theorem 4.1, then we have following
quantum Ostrowski’s type inequality for s-convex functions in the second sense:

X b
1
f(x)_mlff(t) oyt +ff(t) bdqtl

Mgq
b_

1 2 2
a([s+2]q+®1)[(x—a) +(b—x)]. (4.6)

Remark 4.2. Ifwe set s = 1 in Corollary 4.1, then we recapture inequality (2.4).

Remark 4.3. In Corollary 4.1, if we take the limit as ¢ — 17, then Corollary 4.1 reduces to [ 1, Theorem
2].

Theorem 4.2. Assume that the mapping f : I C R* — R is differentiable and a,b € I with a < b. If
l.D, f1P" and Iqu f1P', p1 = 1 are s-convex mappings in the second sense, then the following inequality

holds:
1| b
‘f(x)—m[ffa) vy +ff<r) b1

g 1\ 1
2
b—a(@) [(x_a) ([s+2]q

+(b—x)2(

D, f(a>|"‘)'”

Dy f

T RAC B R (b)l’”)p' } @7
q

Proof. From Lemma 4.1, using properties of the modulus and power mean inequality, we have

X b
1
f(.X') - m[ff(t) adqt + ff(t) bdqt

1 o 1
t| D, f(zx+(1—z)a)|dqt+%fz| PD, f(tx+(1-1)b)|dyt
0

1
q(x ay U
0
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| e h
f qut] [ f t| 'D, f(tx+ (1 -0b)|" dqt] . (4.8)

0 0

q(b - x)
* b—a

Since the mappings |,D, f|”' and |”Dq f|P" are s-convex in the second sense, therefore

-1 €1
1 Pl 1 r1
[ftdqt [fr Dy fltx+ A -Da)” dqt]

0 0
1-L 1
< () Tt D, f@|" +6,| .0, f@|"] (4.9)
= 2, [s+2],'“7° e ‘
and
1 =0 o
[ f qut] [ f t| *D, ftx+ (1 -0b)|" dqt]
0 0
< (- o ! | D, f )| +0:|’D, f®)|" " (4.10)
= [2]q [S T Z]q q X 1 q . .
We obtain the resultant inequality (4.7) by putting (4.9) and (4.10) in (4.8). O

Remark 4.4. If we set s = 1 in Theorem 4.2, then we obtain the following inequality

x b
1
f(”‘mlff(’) adyt +ff(t) ”dqt}

L (X—a)2 [2](] lqu f(x)|p] +q2 aDL] ‘f(a)|p1 ﬁ
b -a)[2], A
+w—xf(mb|q”f‘wm+q4b0qfwﬁj”}

o,

which is proved by Budak et al. in [16].

Corollary 4.2. If we assume |, D,f (x), |.D,f (@)| < M in Theorem 4.2, then we have following
quantum Ostrowski’s type inequality for s-convex functions in the second sense:

X b
1
‘f (x) - E |:ff(t) adqt + ff(t) bdqt

Mg ll_ﬁ 1 - e -
b—a(mb) &s+ﬂq+®d [(x—ay+ (b x7).

AIMS Mathematics Volume 6, Issue 12, 13327-13346.



13335

Remark 4.5. In Corollary 4.2, if we take the limit as g — 17, then Corollary 4.2 reduces to [ 1, Theorem
4].

Theorem 4.3. Assume that the mapping f : I C R* — R is differentiable and a,b € I with a < b. If
l.D,f1’" and "D, fI’', p1 > 1 are s-convex mappings in the second sense, then the following inequality

holds:
| X b
f(x)—m[ff(t) adyt +ff(t) bd,t
q ( 1 )’11 (x—a)z( 1 ( D f(x)|p1 +1 D f(a)|pl))pll
b—al\[n +1], [s+1], ¢ e
1 1 A\

+(b—x)2(m (| ', f @ +| *Dy £ ®B)| )) ] (4.11)

where = =1.

Proof. From Lemma 4.1, using properties of the modulus and Holder’s inequality, we have
q(®

X b
!
f(x)_ m[ff(t) adqt +ff(t) bdqt
a X 1
_a)fz| *D, f(tx+ (1 - 1)b)|dyt

1
2
< %I Dy fltx+ (1 -1a)|dgt+ p
0 0

< q(;c ar (ftr'dt]

¢ 0
1 1 ﬁ
f t"dqt] [ f | D, fax+(1-0b)|" dqt] : (4.12)

0 0

1

D, fex+(1-na)|" dqt]

q@—ﬂ
b—a

Since the mappings |,D, f|”' and |qu f|P' are s-convex in the second sense, therefore

1 " 1 1
[ft”dqt { Dy fltx+A-Da)” dqt]

0

1 V{1
([r1+1]q) ([s+l]q(

1
1 al
[ f " dqt]

0

0
€1

D, f<a>|”‘))” (4.13)

Dy f@"+

and

1

f | D, fx+ 1 -0b)|" dqt]

0
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1

1
1 W 1 b P1 b p1 E
b D, f(b : 4.14
([rl+1]q) ([S+1]q (I "Dy f@" +| "D, fOI") (4.14)
We obtain the resultant inequality (4.11) by putting (4.13) and (4.14) in (4.12). O

Remark 4.6. If we set s = 1 in Theorem 4.3, then we obtain the following inequality

X b
1
f(X) - E {ff(t) adqt + ff(t) bdqt

: ( 1 )rﬂ[u_a)z DLy f @I +a Dy f @[V
b—al\[r +1], [2]q
o IbD f" +aq| "Dy fO"\" ]
2],

which is proved by Budak et al. in [16].

Corollary 4.3. If we assume |,D,f (x)|, I’D,f (a)| < M in Theorem 4.3, then we have the following
quantum Ostrowski’s type inequality for s-convex functions in the second sense:

X b
f(x)—ﬁlff(r) oyt +ff(r> bdqr}

1

Mq ([ ! )”([ 2 )p][(x—a)2+(b—x)2]. (4.15)

b—al\lr+1], s+1],

Remark 4.7. In Corollary 4.3, if we set s = 1, then we recapture the following inequality

x b
1
f(x)—mlff(t) ot +ff<r) bdqr}

< M
b-a

([ ! )” [(x—a)2+(b—x)2]

ry + l]q
which is obtained by Budak et al. in [16].

Remark 4.8. In Corollary 4.3, if we take the limit as g — 17, then Corollary 4.3 reduces to [ 1, Theorem
3].

Theorem 4.4. Assume that the mapping f : I C R* — R is differentiable and a,b € I with a < b. If
l.D,f1’" and "D, fI’', p1 > 1 are s-convex mappings in the second sense, then the following inequality

holds:
(X)—[ff(t) adyt +ff(t) bd,t

AIMS Mathematics Volume 6, Issue 12, 13327-13346.
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1

q ( q )_”‘
b-a)\[2],[3],

(1 1 . )
x|(x - a) (([S+2]q—[s+3]q) D,f @™ + 0, |.D,f (a)| )
)2 1 1 b P b P1 ]
+(b-x) (([s+2] T )Iqu( )" + 0, |"Dyf () ) ]
+—1 (L)l (x—a)z( ! D,f " +© Df(a)|p')pll
(b —a) \[3], [s +3], " 3 1T

€1

+(b—x)2( IPD,f " + 04 |quf(b)|‘”)m , (4.16)
[s + 3],
where
1
0, = ft(l—t)s“dqt,
0
1
Q; = ft2(1—t)sdqt.
0

Proof. From Lemma 4.1, using properties of the modulus and improved power mean inequality (see
[33]), we have

‘f()—[ff(t) gt +ff(t) bd,t

) 2
< q(x a) fz WDy ftx+(1=1)a)|dyt+ (;f ;) f’|”qu(tx+(1—f)b)|dqf
0 0
R T
< 1 a)[ (= dy [f aqu<rx+<1—r>a>|pldqt]
0

1-L L

1 Pl
f 2| Dy fltx+ (1 -Da)" dqt]
0
1

) , 1 I—H 1 r1
+Q(b X) ft(l _ t)dqt] [ft(l — [)| qu f(tx+ (1 - t)b)|pl dqt]

b—a
0 0
1 l_ﬁ 1 ﬁ
(b-x)
D ftqut] [ft2| "Dy fx+(1=0b)|" dqf] : 4.17)
0 0
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Since the mappings |,D, f|”' and |qu f|P' are s-convex in the second sense, therefore

1 S o
[ft(lt)dqt] (ft(lt) Dy fltx+ A -Da)” dqt]

0 0

qz l_ﬁ 1 1 P P ﬁ
&%BJ (m+%_u+%)ﬁwﬁﬂ+%“mﬂd)’ 19
1 =51 7
[ f zquz] [ f 2| Dy ftx+(1-0a)|" a’qt]
0 0
L\ D,f @|" + 05 |.D,f (@] g (4.19)
= \3y, [s+3], “ ¢ 3 e ’ '
1 =51 5
[ft(l—t)dqt] [ft(l—t)| "Dy ftx+ (1 -0b)|" dqt]
0 0
VA R N "D,f @[ +©, 'D,f B)|" " (4.20)
21,131, L+2), [ea),) | DO > Dot '
and
I = T
[ f lqut] [ f 2D, ftx+ 1 -b)|" dqt]
0 0
L) IPD.f " +©; |"'D,f @)|" " (4.21)
31, [s+3], ' ° 2T ' '
We obtain the resultant inequality (4.16) by putting (4.18), (4.19), (4.20) and (4.21) in (4.17). |

Corollary 4.4. If we assume |,D,f (x)|, |qu f((xX)| £ M in Theorem 4.4, then we have the following
quantum Ostrowski’s type inequality for s-convex functions in the second sense:

x b
f(x)—ﬁ[ff(r) oyt +ff<r> b,z

( 7 )1—,3.[(x_a)2+(b_x)2]( . +®)m
21, [3], [s+2], [s+3],

1-L 1

l[(x—a)2+(b—x)2]( Hl +®3)" .

(4.22)
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Corollary 4.5. In Corollary 4.4, if we set s = 1, then we obtain the following new Ostrowski type

inequality:
| X b
f(X) - m [ff(t) adqt + ff(t) bdqt

1 1
2

gM 7 )_”' 2 2 ( q )"'
_ b—
®—a) [(mq E AL el Ve

1 i 2 o1 ] a
+(E) [(x—a) +(b—x)](E) }

Theorem 4.5. Assume that the mapping f : I C R* — R is differentiable and a,b € I with a < b. If

l.D,f1’" and "D, fI’', p1 > 1 are s-convex mappings in the second sense, then the following inequality
holds:

x b
1
f(x)—m{ff(r) adyt +ff(r) bd, 1

q 1 B 1 "I
b—al\[r+1], [rn+2],

x| (- ay (([s - T . 2]q) Do O + ﬁ D, f <a>|”')pl'

Fo=a (([s ; 0, s . ZL,) Dt 0 + 3 . T (b)rl)pll]

b ? a ([r1 Jlr 1]q)rl

x [(x —a)’ ([s +12]q Dof " + 0 |.Dyf <a>|’“)pll

+ (b — x)* (ﬁ "D, f 0)|" + 0, |'D,f (b)|”1)pll] , (4.23)

where L + L =1,
r P1

Proof. From Lemma 4.1, using properties of the modulus and Holder’s Iscan inequality (see [29]), we

have
1| ’
‘f(x)—m[ff(t) adyt +ff<t> bt

1
2
SMft
b—a
0

AIMS Mathematics Volume 6, Issue 12, 13327-13346.
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L L

1 Pl
Dy f(tx+(1—t)a)|’”dz]

< —Q(x @) [f(l t)t”dt] [f(
0
q(x—a) 1r+1 ( P "
e f;l d,t ft Dy flax+ A -Da)" dyt
0

0

1

2/ T o
S f(l—t)t"dqt] {f(l—t)| D, fax+1-nb)" dqt]
0 0

1 1
1 2} 1 2
(b-x)’ ,
+% ftl”dqt] (fz| 'D, ftx+(1-0b)|" dqu .

0 0

Since the mappings |,D,f|”" and |”D, f|P' are s-convex in the second sense, therefore

! T
[f(l —t)tr‘dqt] [f(l — 1)
0 0

()
[+ 10, [n+2],

(=)
X — oD
[s+1], [s+2],

Dy fltx+1-na)” dqt]

qf ()C)|p1 +

p1 ﬁ
z]q Dyf (@) ) :

| L | €1
n Pl
[ft”“dqt] [ft Dy dqt]
0

0

(v [
[r1 +2], [s+2], ¢

D,f (a)l”‘)” :

D,f @™ + 0],

| Ao o
[f(l—t)t"dqt] (f(l—t)| "D, ftx+ (1 -b)|" dqt]

0 0

(e )
[ri+1], [ +2],

1 b P1
><(([s+1] s +2 ) "Duf @[ +

L

b P1 e
e )

(4.24)

(4.25)

(4.26)

(4.27)
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and
1 T o
[f t"+'d z] [f | 'D, fx+ 1 -0b)|" dqt]
0
1 \n
"D m D P 4.2

([r1+2]q) ([S+2 "Dyf " + 1| qf(b>| (4.28)

We obtain the resultant inequality (4.23) by putting (4.25), (4.26), (4.27) and (4.28) in (4.24). O

Corollary 4.6. If we assume |,D,f (x)|, Iqu f(xX)| £ M in Theorem 4.5, then we have the following
quantum Ostrowski’s type inequality for s-convex functions in the second sense:

X b
1
f(x)—m[ff(t) adyt +ff(t) bd,t

< Mq
~ b-a
1 1 " 2 2 1 a
X ([r1+1]q_ [r1+2]q) [(x—a) +(b—x)]([s+1]q)
+(— g[(x_a)2+(b_x)2] S " (4.29)
[r +1], [s +2], ! ) '

Corollary 4.7. In Corollary 4.6, if we use s = 1, then we obtain the following new Ostrowski type

inequality:
X b
f(x)—ﬁlff(t) ot +ff<r) ”dqr}

Mg (1 \»
— (E) [(x —a)+b- x)z]

e )
[r + 1](1 [r + Z]q [r + 1],1 ’

5. Applications to special means

€

For arbitrary positive numbers ki, k, (k| # k3), we consider the means as follows:

1. The arithmetic mean

+
A = Ak, k2) = a 2 =
2. The logarithmic mean
Kp+1 _ Kp+1
= LP (K, k) = 2 1 )
)= e e~k
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Proposition 5.1. For 0 < a < b and 0 < g < 1, the following inequality is true:

[ @) - A )

qb—a) 1 s a+b B a+b
= T m+mﬂ?%q2 td-aa, 2)

b b
+ L (q% +(1-q)b, %)} +20,4(d’, bS>] :

where
- a+b s
h=(F@Zf@77HF¢@ :
n=0
0 . na+b . s+1
ko= (-9 ) ¢'\¢"——+1-a"b| .

xs+1
s+1°

Proof. The inequality (4.2) in Theorem 4.1 with x = % for f(x) =

where x > O and 5 € (0,1)

leads to this conclusion. O
Proposition 5.2. For 0 < a < band 0 < g < 1, the following inequality is true:
1

[ @b - A k)

s+ 1

Mg (b — 1

b q( a) + 0.
2 [s + 2],

Proof. The inequality (4.6) in Corollary 4.1 with x = "zib for f(x) = );TT where x > O and s € (0, 1)
leads to this conclusion. O

Proposition 5.3. For 0 < a < b and 0 < g < 1, the following inequality is true:

[ @b - A )

+1
go-a( LN 1 | fatb  a+b\
< 20 " el v a-0a )
1| [ a+b a+b\" o\
+&“ﬂh£%q2 +a—@a—7J +@w|)].

X‘Hl
s+1°

Proof. The inequality (4.7) in Theorem 4.2 with x = % for f(x) =
leads to this conclusion.

Proposition 5.4. For 0 < a < b and 0 < g < 1, the following inequality is true:

[ @by - A, k)

1
P1
+@mw)

where x > Oand s € (0, 1)

O
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P1 ﬁ
+ Iaslp‘))

Li(qa+b+(1_q)a’a+b)

)
2 \n+11,) \\Is+1],

2 2
1 a+b a+b\[" 0
+ s +(1-¢q)b, + b1 .
e e S R
Proof. The inequality (4.11) in Theorem 4.3 with x = asz for f(x) = );%11 where x > O and s € (0,1)
leads to this conclusion. O

Proposition 5.5. For 0 < a < band 0 < g < 1, the following inequality is true:

1
— [A (a,b) - Ak, k)
s+ 1
Mgb-a)( 1 \if 2 \n
2 [r +1], [s+1],)
Proof. The inequality (4.15) in Corollary 4.3 with x = % for f(x) = %1’ where x > O and s € (0, 1)
leads to this conclusion. O

6. Conclusions

In this investigation, Hermite-Hadamard and Ostrowski type inequalities for s-convex mappings
in the second sense are derived, by applying quantum integrals. It is also showed that the results
established in this paper are potential generalization of the existing comparable results in the literature.
As future directions, one can find similar inequalities for co-ordinated s-convex functions in the second
sense.
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