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1. Introduction

Throughout this paper, the set of positive integers, the real number field and quaternion skew-field
are denoted by N, R and Q, respectively, the set of all real column vectors with order t and the set of all
real row vectors with order t are denoted by Rt and Rt, respectively, the set of all m×n real matrices and
the set of all m × n quaternion matrices are denoted by Rm×n and Qm×n, respectively, the set of all n × n
real symmetric matrices, the set of all n × n real Persymmetric matrices, the set of all n × n quaternion
Hermitian matrices, the set of all n × n quaternion Persymmetric matrices, and the set of all n × n
quaternion Bisymmetric matrices are denoted by SRn×n, PRn×n, HQn×n, PQn×n and BQn×n, respectively,
the conjugate of quaternion a is denoted by ā, the i−th column of identity matrix In is denoted by δi

n,
the exchange matrix with order k is denoted by Vk, the transpose, the conjugate transpose, M-P inverse
of matrix A are denoted by AT , AH and A†, the Kronecker product of matrices is denoted by ⊗ , the
Frobenius norm of a matrix or Euclidean norm of a vector is denoted by ‖·‖.

Block matrix is a common method in matrix theory. By properly dividing the matrix into blocks, a
high-order matrix can be transformed into some low-order matrices. At the same time, the structure of
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the original matrix become simple and clear, which can greatly simplify the operation steps or bring
convenience to the theoretical derivation of the matrix. There are many problems can be solved or
proved by block matrix. For example, when dealing with more complex constraint problems of matrix
equation, it will be easier to discuss the submatrices. In this paper, we will use block matrices to solve
quaternion matrix equation.

A quaternion q ∈ Q is expressed as q = a + bi + cj + dk, where a, b, c, d ∈ R, and three imaginary
units i, j,k satisfy

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Quaternion matrix equations and their least squares solutions are widely applied in many fields [1–5].
So many scholars have studied various types solutions of quaternion matrix equations [6–25]. For
example, Ivan I. Kyrchei got the minimum norm least squares solutions of quaternion matrix equations
AX = B, XA = B and AXB = D [7]; Zeyad Al-Zhour get the general solutions of three important
partitioned quaternions systems [9]; Zhang get the j-self-conjugate least squares solution of quaternion
matrix X − AX̂B = C [26]. But some matrices are difficult to be studied because of their complex
structure, for example, Bisymmetric. Bisymmetric matrix is widely used in information theory, Markov
process, physical engineering and other fields. But the process of studying it is very complicated due
to its complex internal structures. So in this paper, we divide the quaternion Bisymmetric matrix into
blocks and find out the relationship between the blocks. In addition, we apply it to solve the least
squares problem of quaternion matrix equation

AXB = C, (1.1)

by the real representation [26]. The specific problem is as follows.
Problem 1. Let A, B, C ∈ Qn×n, and find out the set of least squares Bisymmetric solutions S BQ, i.e.,

S BQ =
{
X| ‖AXB −C‖ = min, X ∈ BQn×n} .

Find out the minimal form least squares solution XBQ ∈ S BQ, i.e.,∥∥∥XBQ

∥∥∥ = min
X∈S BQ

‖X‖ .

This paper is organized as follows. In Section 2, we recall some preliminary results. In Section 3,
we find out the relationship between the Bisymmetric matrix, Hermitian and Persymmetric matrix,
which will be used to solve Problem 1. In Section 4, we provide numerical algorithms for computing
the minimal norm least squares Bisymmetric solutions of (1.1), and provide some experiments with
different dimensions. Finally in Section 5, we make some concluding remarks.

2. Preliminaries

Definition 2.1. [17] Let A = (ai j) ∈ Qn×n, A∗ = (ā ji) ∈ Qn×n, A(∗) = (ān− j+1,n−i+1) ∈ Qn×n. Then

A(∗) = VnA∗Vn, in which Vn =

[
1

. .
.

1

]
.

(1) A ∈ Qn×n is called Hermitan if A = A∗.
(2) A ∈ Qn×n is called Persymmetric if A = A(∗).
(3) A ∈ Qn×n is called Bisymmetric if ai j = an−i+1,n− j+1 = ā ji.
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Definition 2.2. [26] For A = A1 + A2i + A3j + A4k ∈ Qm×n, its real representation matrix AR is defined
as below:

AR ≡


A1 A2 A3 A4

−A2 A1 −A4 A3

−A3 A4 A1 −A2

−A4 −A3 A2 A1

 .
Now, we denote the i-th row block and column block of AR as AR

ri
, AR

ci
, respectively.

The Frobenius norm of the quaternion matrix A = A1 + A2i + A3j + A4k is defined as

‖A‖ =
√
‖A1‖

2 + ‖A2‖
2 + ‖A3‖

2 + ‖A4‖
2,

and it is not difficult to verify ‖A‖ = 1
2‖A

R‖ = ‖AR
ri
‖ = ‖AR

ci
‖, i = 1, 2, 3, 4.

The follows are some properties about AR
ri

and AR
ci

which can be used in this paper.

Lemma 2.1. [26] Suppose A, B ∈ Qm×n, C ∈ Qn×p, l ∈ R. The following properties hold.
(1) A = B⇔ AR = BR ⇔ AR

ri
= BR

ri
⇔ AR

ci
= BR

ci
, i = 1, 2, 3, 4.

(2) (A + B)R
ri

= AR
ri

+ BR
ri
, (A + B)R

ci
= AR

ci
+ BR

ci
, i = 1, 2, 3, 4.

(3) (lA)R
ri

= lAR
ri
, (lA)R

ci
= lAR

ci
, i = 1, 2, 3, 4.

(4) (AC)R
ri

= AR
ri
CR, (AC)R

ci
= ARCR

ci
, i = 1, 2, 3, 4.

For the real matrix equation, the ‘vec’ which arranges each column of a matrix into a vector in order
is an important tool, the following result gives the relationship of vec(XR) and vec(XR

r1
).

Lemma 2.2. [26]Suppose X ∈ Qm×n. Then vec(XR) = Fvec(XR
r1

), where

F =


F1

F2

F3

F4

 ∈ R16mn×4mn,

and

F1 =



Im ··· 0 0 ··· 0 0 ··· 0 0 ··· 0
0 ··· 0 −Im ··· 0 0 ··· 0 0 ··· 0
0 ··· 0 0 ··· 0 −Im ··· 0 0 ··· 0
0 ··· 0 0 ··· 0 0 ··· 0 −Im ··· 0
...

...
...

...
...

...
...

...
0 ··· Im 0 ··· 0 0 ··· 0 0 ··· 0
0 ··· 0 0 ··· −Im 0 ··· 0 0 ··· 0
0 ··· 0 0 ··· 0 0 ··· −Im 0 ··· 0
0 ··· 0 0 ··· 0 0 ··· 0 0 ··· −Im


, F2 =



0 ··· 0 Im ··· 0 0 ··· 0 0 ··· 0
Im ··· 0 0 ··· 0 0 ··· 0 0 ··· 0
0 ··· 0 0 ··· 0 0 ··· 0 Im ··· 0
0 ··· 0 0 ··· 0 −Im ··· 0 0 ··· 0
...

...
...

...
...

...
...

...
0 ··· 0 0 ··· 0 0 ··· Im 0 ··· 0
0 ··· Im 0 ··· 0 0 ··· 0 0 ··· 0
0 ··· 0 0 ··· 0 0 ··· 0 0 ··· Im
0 ··· 0 0 ··· 0 0 ··· −Im 0 ··· 0


,

F3 =



0 ··· 0 0 ··· 0 Im ··· 0 0 ··· 0
0 ··· 0 0 ··· 0 0 ··· 0 −Im ··· 0
Im ··· 0 0 ··· 0 0 ··· 0 0 ··· 0
0 ··· 0 Im ··· 0 0 ··· 0 0 ··· 0
...

...
...

...
...

...
...

...
0 ··· 0 0 ··· 0 0 ··· Im 0 ··· 0
0 ··· 0 0 ··· 0 0 ··· 0 0 ··· −Im
0 ··· Im 0 ··· 0 0 ··· 0 0 ··· 0
0 ··· 0 0 ··· Im 0 ··· 0 0 ··· 0


, F4 =



0 ··· 0 0 ··· 0 0 ··· 0 Im ··· 0
0 ··· 0 0 ··· 0 Im ··· 0 0 ··· 0
0 ··· 0 −Im ··· 0 0 ··· 0 0 ··· 0
Im ··· 0 0 ··· 0 0 ··· 0 0 ··· 0
...

...
...

...
...

...
...

...
0 ··· 0 0 ··· 0 0 ··· 0 0 ··· Im
0 ··· 0 0 ··· 0 0 ··· Im 0 ··· 0
0 ··· 0 0 ··· −Im 0 ··· 0 0 ··· 0
0 ··· Im 0 ··· 0 0 ··· 0 0 ··· 0


.
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3. The solution of Problem 1

In this section, we will introduce the block matrices of Bisymmetric matrix, then we analyze the
relationship between the internal elements of a Bisymmetric quaternion matrix, and solve Problem 1
according to this property and the real representation of quaternion matrix. Since the internal structures
of Bisymmetric matrices are different in odd and even cases, we first consider the even case.

Theorem 3.1. Let X ∈ BQ2n×2n, and X is divided into four parts with the same dimension

X =

(
Xa Xb

Xc Xd

)
,

where Xa and Xd are two Hermitian matrices, Xb Xc are two Persymmetric matrices, satisfy

Xa = VnXdVn, (3.1)

Xb = VnXcVn. (3.2)

Proof. The proof of (3.1) and (3.2) are similar, so we only prove (3.1).
Let X =

[ xa xb
xc xd

]
∈ Q2n×2n, and (xi j

k ) = xk ∈ Q
n×n, k = a, b, c, d, “Xi j” and “xi j

k ” are the element of ith
row and jth column in X and xk, respectively,1 ≤ i, j ≤ n, then

Vn(xi j
d )Vn = (xn−i+1,n− j+1

d ), and xn−i+1,n− j+1
d = X2n−i+1,2n− j+1.

If X is an Bisymmetry matrix, then

(xi j
a ) = (Xi j) = (X2n−i+1,2n− j+1) = (xn−i+1,n− j+1

d ) = Vn(xi j
d )Vn,

(3.1) holds. �

Obviously, the study of Bisymmetry matrix is transformed into Hermitian matrix and Persynmetric
matrix by Theorem 3.1. In order to simplify the operation, we extract independent elements in
Hermitian matrix and Persynmetric matrix.

Definition 3.1. For X ∈ Rn×n, let
α1 = (x11, · · · , xn1), α2 = (x22, · · · , xn2), · · · , αn−1 = (x(n−1)(n−1), xn(n−1)), αn = xnn.
β1 = (x21, · · · , xn1), β2 = (x32, · · · , xn2), · · · , βn−2 = (x(n−1)(n−2), xn(n−2)), βn−1 = (xn(n−1)).
α′1 = (x1n, · · · , xnn), α′2 = (x2(n−1), · · · , xn(n−1)), · · · , αn−1 = (x(n−1)2, xn2), α′n = xn1.
β′1 = (x2n, · · · , xnn), β′2 = (x3(n−1), · · · , xn(n−1)), · · · , β′n−2 = (x(n−1)3, xn3), β′n−1 = (xn2).
and

ved1(X) = (α1, · · · , αn)T , ved2(X) = (α′1, · · · , α
′
n)T ,

ved3(X) = (β1, · · · , βn−1)T , ved4(X) = (β′1, · · · , β
′
n−1)T .

The following theorem introduces the relationship of independent elements and ‘vec’ of Hermitian
matrix and Persymmetric matrix, respectively.
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Theorem 3.2. For A ∈ SRn×n, B ∈ PRn×n, C and D are constructed by letting the diagonal elements of
A and anti diagonal element of B be 0, respectively, then

vec(A) = W1ved1(A), vec(B) = W2ved2(B), vec(C) = W3ved3(C), vec(D) = W4ved4(D),

in which

W1 =


δ1

n δ2
n δ3

n ··· δ
n−1
n δn

n 0 0 ··· 0 0 ··· 0 0 0
0 δ1

n 0 ··· 0 0 δ2
n δ3

n ··· δ
n−1
n δn

n ··· 0 0 0
0 0 δ1

n ··· 0 0 0 δ2
n ··· 0 0 ··· 0 0 0

...
...
...

...
...
...
...

...
...

...
...
...

0 0 0 ··· δ1
n 0 0 0 ··· δ2

n 0 ··· δn−1
n δn

n
0 0 0 ··· 0 δ1

n 0 0 ··· 0 δ2
n ··· 0 δn−1

n δn
n

 ,W2 =


0 0 0 ··· 0 δ1

n 0 0 ··· 0 δ2
n ··· 0 δn−1

n δn
n

0 0 0 ··· δ1
n 0 0 0 ··· δ2

n 0 ··· δn−1
n δn

n
...
...
...

...
...
...
...

...
...

...
...
...

0 0 δ1
n ··· 0 0 0 δ2

n ··· 0 0 ··· 0 0 0
0 δ1

n 0 ··· 0 0 δ2
n δ3

n ··· δ
n−1
n δn

n ··· 0 0 0
δ1

n δ2
n δ3

n ··· δ
n−1
n δn

n 0 0 ··· 0 0 ··· 0 0 0

 ,

W3 =


δ2

n δ3
n ··· δ

n−1
n δn

n 0 ··· 0 0 ··· 0
−δ1

n 0 ··· 0 0 δ3
n ··· δ

n−1
n δn

n ··· 0
0 −δ1

n ··· 0 0 −δ2
n ··· 0 0 ··· 0

...
...

...
...

...
...

...
...

0 0 ··· −δ1
n 0 0 ··· −δ2

n 0 ··· δn
n

0 0 ··· 0 −δ1
n 0 ··· 0 −δ2

n ··· −δ
n−1
n

 ,W4 =


0 0 ··· 0 −δ1

n 0 ··· 0 −δ2
n ··· −δ

n−1
n

0 0 ··· −δ1
n 0 0 ··· −δ2

n 0 ··· δn
n

...
...

...
...

...
...

...
...

0 −δ1
n ··· 0 0 −δ2

n ··· 0 0 ··· 0
−δ1

n 0 ··· 0 0 δ3
n ··· δ

n−1
n δn

n ··· 0
δ2

n δ3
n ··· δ

n−1
n δn

n 0 ··· 0 0 ··· 0

 .
Next, we give the relationship between ‘vec’ of a matrix and its four blocks.

Theorem 3.3. Let X =

(
Xa Xb

Xc Xd

)
∈ Qn×n, Xa ∈ Q

k×k, k ≤ n, then

vec(X) = P′


vec(Xa)
vec(Xc)
vec(Xb)
vec(Xd)

 ,
in which P′ = diag(P1, P2), and

P1 =

 δ1
n ··· δ

k
n ··· 0 ··· 0 δk+1

n ··· δn
n ··· 0 ··· 0

...
...

...
...
...

...
...

...
0 ··· 0 ··· δ1

n ··· δ
k
n 0 ··· 0 ··· δk+1

n ··· δn
n

 ∈ Rnk×nk,

P2 =

 δ1
n ··· δ

k
n ··· 0 ··· 0 δk+1

n ··· δn
n ··· 0 ··· 0

...
...

...
...
...

...
...

...
0 ··· 0 ··· δ1

n ··· δ
k
n 0 ··· 0 ··· δk+1

n ··· δn
n

 ∈ Rn(n−k)×n(n−k).

Theorem 3.2 and Theorem 3.3 can be obtained by direct verification, so we omit the concrete
proving process.

Theorem 3.4. Let A, B, C ∈ Q2n×2n, denote Ã = (BR ⊗ AR
r1)FPKLW, in which

P = diag(P′, P′, P′, P′), K = diag(K1, K1, K1, K1), K1 = diag(In2 , In2 ,VT ⊗ V,VT ⊗ V),

L = diag(L1, L1, L1, L1), L1 =

 In2 0
0 In2
0 In2

In2 0

, W = diag(W1,W2,W3,W4,W3,W4,W3,W4), we can obtain

S HQ = {X|ved(X) =


(

ved1(X1a)
ved2(X1c)

)
...(

ved3(X4a)
ved4(X4c)

)
 , ved(X) = Ã†vec(CR

r1) + (I4n2−2n − Ã†Ã)y, ∀y ∈ R4n2−2n}. (3.3)
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And then, the minimal norm least squares Bisymmetric solution XBQ of (1.1) satisfies

ved(XBQ) = Ã†vec(CR
r1). (3.4)

Proof. By Lemma 2.1, we get

‖AXB −C‖ = ‖AR
r1XRBR −CR

r1‖

= ‖(BR ⊗ AR
r1)vec(XR) − vec(CR

r1)‖
= ‖(BR ⊗ AR

r1)Fvec(XR
r1) − vec(CR

r1)‖.

Let XR
r1 =

(
X1 X2 X3 X4

)
, and Xi =

(
Xia Xib

Xic Xid

)
.

The next work is removing the repeated elements in vec(X).

vec(XR
r1) = vec

X1a X1b · · · X4a X4b

X1c X1d · · · X4c X4d



=


vec

(
X1a X1b
X1c X1d

)
...

vec
(

X4a X4b
X4c X4d

)
 =



P′


vec(X1a)
vec(X1c)
vec(X1b)
vec(X1d)


...

P′


vec(X4a)
vec(X4c)
vec(X4b)
vec(X4d)




= P




vec(X1a)
vec(X1c)

vec(VX1cV)
vec(VX1aV)


...

vec(X4a)
vec(X4c)

vec(VX4cV)
vec(VX4aV)




= P



K1


vec(X1a)
vec(X1c)
vec(X1c)
vec(X1a)


...

K1


vec(X4a)
vec(X4c)
vec(X4c)
vec(X4a)





= PK




vec(X1a)
vec(X1c)
vec(X1c)
vec(X1a)


...

vec(X4a)
vec(X4c)
vec(X4c)
vec(X4a)




= PK


L1

(
vec(X1a)
vec(X1c)

)
...

L1

(
vec(X4a)
vec(X4c)

)
 = PKL


(

vec(X1a)
vec(X1c)

)
...(

vec(X4a)
vec(X4c)

)
 = PKLW


(

ved1(X1a)
ved2(X1c)

)
...(

ved3(X4a)
ved4(X4c)

)
 .

Thus
‖AXB −C‖ = min,

if and only if
‖Ãved(X) − vec(CR

r1)‖ = min.

For the real matrix equation
Ãved(X) = vec(CR

r1).

According to the classical matrix theory, its least squares solutions can be represented as

ved(X) = Ã†vec(CR
r1) + (I4n2−2n − Ã†Ã)y, ∀y ∈ R4n2−2n.

�

Corollary 3.5. Let A, B, C ∈ Qn×n, (1.1) is compatible over BQn×n if and only if(
ÃÃ† − I16n2

)
vec(CR

r1) = 0. (3.5)
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Moreover, if (3.5) holds, the solution set of (1.1) over BQn×n is

S̃ BQ =
{
X | ved(X) = Ã†vec(CR

r1) + (I2n2−n − Ã†Ã)y, ∀y ∈ R2n2−n
}
, (3.6)

in which Ã and ved(X) are described in Theorem 3.4.

Proof. (1.1) has a solution X if and only if

‖AXB −C‖ = 0.

By Theorem 3.4 and the properties of the M-P inverse, we get

‖AXB −C‖ =
∥∥∥ÃÃ†Ãved(X) − vec(CR

r1)
∥∥∥ =

∥∥∥ÃÃ†vec(CR
r1) − vec(CR

r1)
∥∥∥ =

∥∥∥(ÃÃ† − I16n2)vec(CR
r1)

∥∥∥ .
Therefore for XBQ ∈ S BQ, we obtain

‖AXB −C‖ = 0⇐⇒
∥∥∥(ÃÃ† − I16n2)vec(CR

r1)
∥∥∥ = 0⇐⇒ (ÃÃ† − I16n2)vec(CR

r1) = 0.

Thus (1.1) is compatible over BQn×n if and only if

(ÃÃ† − I16n2)vec(CR
r1) = 0.

Moreover, according to the classical matrix theory, the solution XBQ satisfies

ved(XBQ) = Ã†vec(CR
r1) + (I4n2−2n − Ã†Ã)y, y ∈ R4n2−2n.

So the formula (3.9) holds. �

Next, we discuss the case of odd Bisymmetric dimension.
By studying the odd dimensional Bisymmetric matrix, we find that for any X ∈ BQ(2n−1)×(2n−1),

after dividing X into four blocks, X1 ∈ Q
n×n, X2 ∈ Q

n×(n−1), X3 ∈ Q
(n−1)×n, X4 ∈ Q

(n−1)×(n−1). Since
Xi(i = 1, 2, 3, 4) do not have the same order. So we add the new n − th row between the original n − th
row and the original (n + 1)− th row, and add the new n− th column between the original n− th column
and the original (n + 1) − th column, then we can get the new matrix X′ ∈ BQ2n×2n.

We can use Theorem 3.4 to solve the problem. Finally, we delete the added elements.
Define some matrices: (i) Z1 = [0, I(n−1)] ∈ R(n−1)×n; (ii) Z2 ∈ R

n×n is n × n zeros matrix; (iii) Z3 ∈

R(n−1)×n is (n − 1) × n zeros matrix.

Theorem 3.6. Let X ∈ BQ(2n−1)×(2n−1), then
vec(X1)
vec(X3)
vec(X2)
vec(X4)

 = E1


vec(X′1)
vec(X′3)
vec(X′2)
vec(X′4)

 ,
where

E1 =

( H1
H2

H3
H4

)
, H1 = In2 ,H2 =

( Z1

...
Z1

)
∈ R(n−1)n×n2

,

H3 =

( Z2 In
...

...
Z2 In

)
∈ R(n−1)n×n2

, H4 =

( Z3 Z1
...

...
Z3 Z1

)
∈ R(n−1)2×n2

.
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The next work is to deal with independent elements.
In the following theorem, we associate the vec of X ∈ BQ(2n−1)×((2n−1)) with the vec of a newly

constructed matrix X′ ∈ BQ2n×2n.

Theorem 3.7. Let X ∈ BQ(2n−1)×(2n−1), we can obtain

vec(XR
r1) = vec

(
X1a X1b · · · X4a X4b

X1c X1d · · · X4c X4d

)
= PE



vec


X′1a
X′1c
X′1b
X′1d


...

vec


X′4a
X′4c
X′4b
X′4d




,

in which E =

( E1
E1

E1
E1

)
,

Proof.

vec(XR
r1) = vec

(
X1a X1b · · · X4a X4b

X1c X1d · · · X4c X4d

)

=


P′vec


X1a
X1c
X1b
X1d


...

P′vec


X4a
X4c
X4b
X4d




=



E1vec


X′1a
X′1c
X′1b
X′1d


...

E1vec


X′4a
X′4c
X′4b
X′4d




= PE



vec


X′1a
X′1c
X′1b
X′1d


...

vec


X′4a
X′4c
X′4b
X′4d




.

�

Theorem 3.8. Let A, B, C ∈ BQ(2n−1)×(2n−1), denote ˜̃A = (BR ⊗ AR
r1)FPEKLWG, in which

G =

 G1
G2

G2
G2

 ,G1 =

(
In(n+1)/2

G3
In(n−1)/2

)
, G2 =

(
In(n−1)/2

G4
I(n−1)(n−2)/2

)
,G3 =



(
δ

n(n+1)
2

n(n+1)
2

)T

...(
δ

(n+i)(n+1−i)
2

n(n+1)
2

)T

...(
δn

n(n+1)
2

)T


,G4 = G3(n − 1), the role of G is

to delete added elements. We can obtain

S BQ = {X|ved(X) =


(

ved1(X1a)
ved2(X1c)

)
...(

ved3(X4a)
ved4(X4c)

)
 , ved(X) = ˜̃A†vec(CR

r1) + (I4n2−6n+3 − Ã†Ã)y, ∀y ∈ R4n2−6n+3}.

And then, the minimal norm least squares Bisymmetric solution XBQ of (1.1) satisfies

ved(XBQ) = ˜̃A†vec(CR
r1). (3.7)
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Corollary 3.9. Let A, B, C ∈ Q(2n−1)×(2n−1), (1.1) is compatible over BQ(2n−1)×(2n−1), if and only if

( ˜̃A ˜̃A† − I16n2

)
vec(CR

r1) = 0. (3.8)

Moreover, if (3.8) holds, the solution set of (1.1) over BQ(2n−1)×(2n−1) is

S̃ BQ =
{
X | ved(X) = ˜̃A†vec(CR

r1) + (I4n2−6n+3 −
˜̃A† ˜̃A)y, ∀y ∈ R4n2−6n+3

}
, (3.9)

in which ˜̃A and ved(X) are described in Theorem 3.8.

4. Algorithm and numerical experiments

In this section, we propose the corresponding algorithms based on the discussion in Section 3.

Algorithm 4.1. (For Problem 1)
(1) Input A, B, C ∈ Qn×n, output AR

r1, BR, CR
r1.

(2) Input F, P, E, K, L, W, G, output the matrix Ã or ˜̃A.
(3) Output the minimal norm least squares solution XBQ according to (3.4) or (3.7).

Example. The following tables are the test of different dimensions of the minimal norm least squares
solution of Problems 1 according to Algorithm 4.1. The specific steps are as follows: first, generating
the appropriate A, B and X of the corresponding structure randomly in MATLAB, and calculate C =

AXB, then use the method in this paper to calculate the numerical solution, and then compute the error
between the real solution and the numerical solution. As shown in Figure 1.The below figure shows
the effectiveness of the method in Section 3.

Figure 1. The errors of Problem 1 with different sizes.
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5. Conclusions

In this paper, we use internal relations between block Bisymmetric matrices, the real representation
of quaternion matrix and the properties of M-P inverse to study the least squares Bisymmetric solution
of AXB = C. We obtain the least squares Bisymmetric solution of this quaternion matrix equation and
its compatable conditions. This method is effective and it is more convenient to analyze the problems
of solution with special structures of quaternion matrix equation.
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