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1. Introduction

The study of left almost semigroups (briefly, LA-semigroups), as a generalization of commutative
semigroups, was first introduced in 1972 by Kazim and Naseeruddin [25]. It is also called an
Abel-Grassmann’s groupoid (briefly, AG-groupoid) [32]. An LA-semigroup is a non-associative and
non-commutative algebraic structure midway between a groupoid and a commutative semigroup.
Mushtaq and Yousuf [27] examined some basic results of the structure of LA-semigroups, for
examples, a commutative monoid is an LA-semigroup with right identity, every left cancellative
LA-semigroup is right cancellative and every right cancellative LA-monoid is left cancellative. On
LA-semigroups, regularities are interesting and essential properties to investigate. Khan and Asif [20]
classified intra-regular LA-semigroups based on the features of their fuzzy ideals in 2010. Abdullah,
Aslam and Amin [2] began discussing regular LA-semigroup categorizations in terms of interval
(α, β)-fuzzy ideals. Also, Khan, Jun and Yousafzai [22] used their fuzzy left ideals and fuzzy right
ideals to characterize right regular LA-semigroups. In 2016, Khan, Yousafzai and Khan [24] defined a
class of (m, n)-regular LA-semigroups based on their (m, n)-ideals. Several characterizations of
weakly regular LA-semigroups by using the smallest ideals and fuzzy ideals of LA-semigroups were
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investigated by Yousafzai, Iampan and Tang [46]. Furthermore, Sezer [36] has developed soft sets to
characterize regular, intra-regular, completely regular, weakly regular and quasi-regular
LA-semigroups. Recently, various properties of LA-semigroups have been studied by many
mathematicians (see, e.g., [4, 8, 14, 15, 44, 47]). Additionally, the notion of left almost semirings
(briefly, LA-semirings), which is a generalization of left almost rings (briefly, LA-rings) [37], has been
considered different properties by some mathematicians (see, e.g., [12, 13, 33]). Moreover, the
concept of left almost was studied in other algebraic structures (for example, in ordered
LA-(Γ)-semigroups [5, 7, 19, 45], in gamma LA-rings and gamma LA-semigroups [23], in
LA-polygroups [3, 40, 42]).

The concept of hyperstructures was introduced by Marty [26] in the 8th Congress of Scandinavian
Mathematicians. There are many authors expanded the concept of hyperstructures (see,
e.g., ( [9–11, 28, 29, 31, 38, 39]). Hila and Dine [18] introduced the notion of left almost
semihypergroups (briefly, LA-semihypergroups) which is a generalization of LA-semigroups and
commutative semihypergroups. It is a useful non-associative algebraic hyperstructure, midway
between a hypergroupoid and a commutative semihypergroup, with wide applications in the theory of
flocks etc. In 2013, Yaqoob, Corsini and Yousafzai [41] used the properties of their left and right
hyperideals to characterize intra-regular LA-semihypergroups. Then, the class of regular
LA-semihypergroups was characterized in terms of (∈Γ, ∈Γ ∨q∆)-cubic (resp., left, right, two-sided, bi,
generalized bi, interior, quasi)-hyperideals of LA-semihypergroups by Gulistan, Khan, Yaqoob and
Shahzad [16]. In addition, Khan, Farooq, Izhar and Davvaz [21] studied into some properties of fuzzy
left and right hyperideals in regular and intra-regular LA-semihypergroups. In terms of soft interior
hyperideals, Abbasi, Khan, Talee and Khan [1] gave different essential characterizations of left
regular LA-semihypergroups. On the other hand, Yaqoob and Gulistan [43] introduced the concept of
ordered LA-semihypergroups which is a generalization of LA-semihypergroups. Next, the results of
fuzzy hyperideals and generalized fuzzy hyperideals of ordered LA-semihypergroups were then
examined by Azhar, Gulistan, Yaqoob and Kadry (see, [6, 17]).

In 2018, Nawaz, Rehman and Gulistan [30] defined the idea of left almost semihyperrings (briefly,
LA-semihyperrings), as a generalization of LA-semirings, and studied at some of their basic properties.
In 2020, Rahman, Hidayat and Alghofari [34] applied the concept of fuzzy sets to define the new
algebraic structure, namely, fuzzy left almost semihyperrings, and they have shown that the set of
all fuzzy subsets in LA-semihyperrings is also LA-semihyperrings. In this paper, we are interesting
in the classes of weakly regular LA-semihyperrings and regular LA-semihyperrings. Then, we give
some characterizations of weakly regular LA-semihyperrings and regular LA-semihyperrings in terms
of their hyperideals.

2. Preliminaries

Firstly, we recall some of the basic concepts and properties, which are necessary for this paper. Let
H be a nonempty set. Then, the map ◦ : H × H → P∗(H) is called a hyperoperation on H where
P∗(H) = P(H) \ {∅} denotes the set of all nonempty subsets of H. A hypergroupoid is called the pair
(H, ◦), where ◦ is a hyperopartion on a nonempty set H. If x ∈ H and A, B are two nonempty subsets
of H, then we denote
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A ◦ B =
⋃

a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦ B = {x} ◦ B.

A hypergroupoid (H, ◦) is called an LA-semihypergroup [18] if for all x, y, z ∈ H,
(x ◦ y) ◦ z = (z ◦ y) ◦ x, which means that⋃

u∈x◦y

u ◦ z =
⋃
v∈z◦y

v ◦ x.

This law is known as a left invertive law.
For any nonempty subsets A, B and C of an LA-semihypergroup (H, ◦), we have that

(A ◦ B) ◦C = (C ◦ B) ◦ A.

The following the notion, which appears in [30], will be considering in this study.
A hyperstructure (S ,+, ·) is called an LA-semihyperring if it satisfies the following conditions:

(i) (S ,+) is an LA-semihypergroup;
(ii) (S , ·) is an LA-semihypergroup;

(iii) x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x for all x, y, z ∈ S .

Example 2.1. [30] Let S = {a, b, c} be a set with the hyperoperations + and · on S defined as follows:

+ a b c
a {a} {a, b, c} {a, b, c}
b {b, c} {b, c} {b, c}
c {a, b, c} {a, b, c} {a, b, c}

· a b c
a {a} {a} {a}
b {a} {a, b, c} {c}
c {a} {a, b, c} {a, b, c}

Then, (S ,+, ·) is an LA-semihyperring.

For more convenient, we say an LA-semihyperring S instead of an LA-semihyperring (S ,+, ·) and
we write xy instead of x · y for any x, y ∈ S .

In an LA-semihyperring S , the medial law (xy)(zw) = (xz)(yw) holds for all x, y, z,w ∈ S . An
element e of an LA-semihyperring S is called a left identity (resp., pure left identity) if for all x ∈ S ,
x ∈ ex (resp., x = ex). If an LA-semihyperring S contains a pure left identity e, then it is unique. In
an LA-semihyperring S with a pure left identity e, the paramedial law (xy)(zw) = (wy)(zx) holds for all
x, y, z,w ∈ S .

An element a of an LA-semihyperring S with a left identity (resp., pure left identity) e is called a
left invertible (resp., pure left invertible) if there exists x ∈ S such that e ∈ xa (resp., e = xa). An
LA-semihyperring S is called a left invertible (resp., pure left invertible) if every element of S is a left
invertible (resp., pure left invertible).

We observe that if an element e is a pure left identity of an LA-semihyperring S , then e is a left
identity. But the converse is not true in general, as the following example.

Example 2.2. Let S = {a, b, c} be a set with the hyperoperations + and · on S defined as follows:

+ a b c
a {a} {a, b, c} {a, b, c}
b {a, b, c} {b, c} {b, c}
c {a, b, c} {a, b, c} {a, b, c}

· a b c
a {a} {a} {a}
b {a} {a, b, c} {c}
c {a} {a, b, c} {a, b, c}
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Then, (S ,+, ·) is an LA-semihyperring [35]. One can see that b is a left identity, but it is not a pure left
identity.

Lemma 2.3. [30] Let S be an LA-semihyperring with a pure left identity e. Then x(yz) = y(xz) for all
x, y, z ∈ S .

For any LA-semihyperring S , the following law holds (AB)(CD) = (AC)(BD) for all nonempty
subsets A, B,C,D of S . If an LA-semihyperring S contains the pure left identity e, then (AB)(CD) =
(DB)(CA) and A(BC) = B(AC) for every nonempty subsets A, B,C,D of S .

Now, we recall the concepts of different types of hyperideals of LA-semihyperrings which occurred
in [30] as follows. Let S be an LA-semihyperring and a nonempty subset A of S such that A + A ⊆ A.
Then:

(i) A is called a left hyperideal of S if S A ⊆ A;
(ii) A is called a right hyperideal of S if AS ⊆ A;

(iii) A is called a hyperideal of S if it is both a left and a right hyperideal of S ;
(iv) A is called a quasi-hyperideal of S if S A ∩ AS ⊆ A;
(v) A is called a bi-hyperideal of S if AA ⊆ A and (AS )A ⊆ A.

Example 2.4. Let S = {a, b, c, d, e} be a set with the hyperoperations + and · on S defined as follows:

+ a b c d e
a {a} {a} {a} {a} {a}
b {a} {a} {a} {a} {a}
c {a} {a} {a} {a} {a}
d {a} {a} {a} {a} {a}
e {a} {a} {a} {a} {a}

· a b c d e
a {a} {a} {a} {a} {a}
b {a} {a, e} {a, e} {a, c} {a, e}
c {a} {a, e} {a, e} {a, b} {a, e}
d {a} {a, b} {a, c} {d} {a, e}
e {a} {a, e} {a, e} {a, e} {a, e}

Then, (S ,+, ·) is an LA-semihyperring. Now, we can see that A = {a, b, e} is a left hyperideal of S , but
it is not a right hyperideal, because b · d = {a, c} ⊈ {a, b, e}.

Proposition 2.5. Let S be an LA-semihyperring such that S = S 2. Then every right hyperideal of S is
a hyperideal.

Proof. Let R be a right hyperideal of S . Let a ∈ S R. Then a ∈ sr for some r ∈ R and s ∈ S . Since
S = S 2, s ∈ xy for some x, y ∈ S . By using the left invertive law, we have

a ∈ sr ⊆ (xy)r = (ry)x ⊆ (RS )S ⊆ RS ⊆ R.

Thus, S R ⊆ R. This shows that R is a left hyperideal of S . Therefore, R is a hyperideal of S . □

For any LA-semihyperring S with a pure left identity e, we have that S = S 2. Then, we have the
following lemma.

Lemma 2.6. Let S be an LA-semihyperring with a pure left identity e. Then every right hyperideal of
S is a hyperideal of S .

Lemma 2.7. Every left (resp., right) hyperideal of an LA-semihyperring S is a quasi-hyperideal of S .

Proof. Let Q be a left hyperideal of an LA-semihyperring S . Then, Q+Q ⊆ Q and S Q∩QS ⊆ S Q ⊆ Q.
Hence, Q is a quasi-hyperideal of S . For the case of the right hyperideal, we can prove similarly. □
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Lemma 2.8. The intersection of a left hyperideal L and a right hyperideal R of an LA-semihyperring
S is a quasi-hyperideal of S .

Proof. It is easy to show that L ∩ R + L ∩ R ⊆ L ∩ R. Next, consider

S (L ∩ R) ∩ (L ∩ R)S ⊆ S L ∩ RS ⊆ L ∩ R.

Hence, L ∩ R is a quasi-hyperideal of S . □

Lemma 2.9. Let S be an LA-semihyperring with a left identity e such that (xe)S ⊆ xS for all x ∈ S .
Then every quasi-hyperideal of S is a bi-hyperideal of S .

Proof. Let B be a quasi-hyperideal of S . Then, B + B ⊆ B and S B ∩ BS ⊆ B. Clearly, BB ⊆ B. Now,
we have that (BS )B ⊆ S B. Next, let x ∈ (BS )B. So, x ∈ (as)b for some a, b ∈ B and s ∈ S . By
assumption and using the medial law, we have

x ∈ (as)b ⊆ (as)(eb) = (ae)(sb) ⊆ (ae)S ⊆ aS ⊆ BS .

Thus, (BS )B ⊆ BS . It follows that (BS )B ⊆ S B ∩ BS ⊆ B. Therefore, B is a bi-hyperideal of S . □

Lemma 2.10. If S is an LA-semihyperring with a pure left identity e, then for every a ∈ S , a2S is a
hyperideal of S such that a2 ⊆ a2S .

Proof. Assume that S is an LA-semihyperring with a pure left identity e. Let a ∈ S . By using the left
invertive law, we have

a2S + a2S = (aa)S + (aa)S = (S a)a + (S a)a
= ((S + S )a)a ⊆ (S a)a
= (aa)S = a2S .

Then, using Lemma 2.3, the left invertive law and the paramedial law, we have

S (a2S ) = a2(S S ) ⊆ a2S

and

(a2S )S = ((aa)S )S = ((S a)a)S = (S a)(S a) = (aa)(S S ) ⊆ a2S .

Hence, a2S is a hyperideal of S . Now, using the left invertive law, we have

a2 = aa = (ea)a = (aa)e ⊆ a2S .

This completes the proof. □
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3. Weakly regular LA-semihyperrings

In this section, the class of weakly regular LA-semihyperrings has been studied, we give some
characterizations of weakly regular LA-semihyperrings by using the concepts of left hyperideals and
right hyperideals of LA-semihyperrings.

Definition 3.1. An element a of an LA-semihyperrnig S is said to be weakly regular if there exist
x, y ∈ S such that a ∈ (ax)(ay). The LA-semihyperring S is called weakly regular if every element of
S is weakly regular.

Example 3.2. In Example 2.1, we can show that there exist x, y ∈ S such that a ∈ (ax)(ay) for all
a ∈ S . Therefore, S is weakly regular.

Theorem 3.3. Let S be a pure left invertible LA-semihyperring with a pure left identity e. Then S is
weakly regular if and only if R1 ∩ R2 ⊆ R1R2, where both R1 and R2 are right hyperideals of S .

Proof. Assume that S is weakly regular. Let R1 and R2 be right hyperideals of S and a ∈ R1 ∩ R2.
Then, there exist x, y ∈ S such that a ∈ (ax)(ay) ⊆ (R1S )(R2S ) ⊆ R1R2. Hence, R1 ∩ R2 ⊆ R1R2.

Conversely, let a ∈ S . Since S is a pure left invertible LA-semihyperring, there exists x ∈ S such
that e = xa. By Lemma 2.10, we have that a2S is a right hyperideal of S and a2 ⊆ a2S . Then, by using
assumption, the left invertive law and Lemma 2.3, we have

a2 ⊆ (a2S ) ∩ (a2S )
⊆ (a2S )(a2S )
= a2((a2S )S )
= a2((S S )a2)
⊆ (aa)(S (aa))
= (aa)(a(S a))
⊆ (aS )(aS ).

Next, using the left invertive law and Lemma 2.3, we have

a = ea = (xa)a = (aa)x ⊆ ((aS )(aS ))x

= (x(aS ))(aS ) = (a(xS ))(aS )
⊆ (aS )(aS ).

This implies that a ∈ (ax)(ay) for some x, y ∈ S . Therefore, S is weakly regular. □

The proof of the following theorem is similar to Theorem 3.3.

Theorem 3.4. Let S be a pure left invertible LA-semihyperring with a pure left identity e. Then S is
weakly regular if and only if L1 ∩ L2 ⊆ L1L2, where both L1 and L2 are left hyperideals of S .

Theorem 3.5. Let S be a pure left invertible LA-semihyperring with a pure left identity e. Then S is
weakly regular if and only if R ∩ L ⊆ L2R2, for every right hyperideal R and left hyperideal L of S .
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Proof. Assume that S is weakly regular. Let R be a right hyperideal and L be a left hyperideal of S and
a ∈ R ∩ L. Then, there exist x, y ∈ S such that a ∈ (ax)(ay). By using the left invertive law, the medial
law, the paramedial law and Lemma 2.3, we have

a ∈ (ax)(ay)
⊆ (((ax)(ay))x)(((ax)(ay))y)
= ((ax)(ay))((((ax)(ay))x)y)
= ((ax)(ay))((yx)((ax)(ay)))
= ((ax)(ay))((ax)((yx)(ay)))
= ((ax)(ay))(((ay)(yx))(xa))
= ((ax)(ay))((((yx)y)a)(xa))
⊆ ((aS )(aS ))((S a)(S a))
= ((S a)(S a))((aS )(aS ))
⊆ ((S L)(S L))((RS )(RS ))
⊆ L2R2.

Therefore, R ∩ L ⊆ L2R2.
Conversely, let R1 and R2 be right hyperideals of S . By Lemma 2.6, we have that R1 is also a left

hyperideal of S . By assumption, R1 ∩ R2 ⊆ R2
1R2

2 ⊆ R1R2. Consequently, S is weakly regular by
Theorem 3.3. □

Theorem 3.6. Let S be a pure left invertible LA-semihyperring with a pure left identity e. Then S is
weakly regular if and only if R ∩ L ⊆ L3R, for every right hyperideal R and left hyperideal L of S .

Proof. Let R be a right hyperideal and L be a left hyperideal of S and a ∈ R ∩ L. By assumption,
there exist x, y ∈ S such that a ∈ (ax)(ay). Then, by using the left invertive law, the medial law, the
paramedial law and Lemma 2.3, we have

a ∈ (ax)(ay)
⊆ (((ax)(ay))x)(((ax)(ay))y)
= (y((ax)(ay)))(x((ax)(ay)))
= ((ax)(y(ay)))((ax)(x(ay)))
= ((ax)(ay2))((ax)(a(xy)))
= ((y2a)(xa))((ax)(a(xy)))
= (((ax)(a(xy)))(xa))(y2a)
= ((((xy)a)(xa))(xa))((yy)a)
= ((((xy)a)(xa))(xa))((ay)y)
⊆ (((S L)(S L))(S L))((RS )S )
⊆ ((LL)L)R
= L3R.

Hence, R ∩ L ⊆ L3R.
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Conversely, let R1 and R2 be right hyperideals of S . By Lemma 2.6, we have that R1 also a left
hyperideal of S . By assumption, R1 ∩ R2 ⊆ R3

1R2 = ((R1R1)R1)R2 ⊆ R1R2. By Theorem 3.3, S is
weakly regular. □

4. Regular LA-semihyperrings

In this section, we characterize the class of regular LA-semihyperrings in terms of (resp., left, right)
hyperideals, quasi-hyperideals and bi-hyperideals of LA-semihyperrings.

Definition 4.1. An element a of an LA-semihyperrnig S is said to be regular if there exists an element
x ∈ S such that a ∈ (ax)a. The LA-semihyperring S is called regular if every element of S is regular.

Example 4.2. In Example 2.2, we have that there exists x ∈ S such that a ∈ (ax)a for all a ∈ S . Hence,
S is regular.

Lemma 4.3. Let S be an LA-semihyperring. Then the following conditions are equivalent:

(i) S is regular;
(ii) a ∈ (aS )a, for every a ∈ S ;

(iii) A ⊆ (AS )A, for all ∅ , A ⊆ S .

Theorem 4.4. Let S be a pure left invertible LA-semihyperring with a pure left identity e. Then S is
regular if and only if R ∩ L = RL, for every right hyperideal R and left hyperideal L of S .

Proof. Assume that S is regular. Let R be a right hyperideal and L be a left hyperideal of S and let
a ∈ R ∩ L. Then, a ∈ (aS )a ⊆ (RS )L ⊆ RL. It follows that R ∩ L ⊆ RL. Since RL ⊆ R and RL ⊆ L, we
have RL ⊆ R ∩ L. Thus, R ∩ L = RL.

Conversely, let a ∈ S . Since S is a pure left invertible LA-semihyperring, there exists x ∈ S such
that e = xa. By Lemma 2.10, a2S is both a right hyperideal and a left hyperideal of S . Moreover,
a2 ⊆ a2S . Then, by using the given assumption, Lemma 2.3 and the left invertive law, we have

a2 ⊆ (a2S ) ∩ (a2S )
= (a2S )(a2S )
= a2((a2S )S )
= a2((S S )a2)
⊆ (aa)(S (aa))
= (aa)(a(S a))
= ((a(S a))a)a
⊆ ((aS )a)a.

Hence, using the invertive law, we have

a = ea = (xa)a = (aa)x ⊆ (((aS )a)a)x

= (xa)((aS )a) = e((aS )a)
= (aS )a.

Therefore, S is regular. □
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Theorem 4.5. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following statements are equivalent:

(i) S is regular;
(ii) (BS )B = B, for every bi-hyperideal B of S ;

(iii) (QS )Q = Q, for every quasi-hyperideal Q of S .

Proof. (i)⇒ (ii) Assume that S is regular. Let B be a bi-hyperideal of S and a ∈ B. Then, a ∈ (aS )a ⊆
(BS )B. Thus, B ⊆ (BS )B. On the other hand (BS )B ⊆ B. Hence, (BS )B = B.

(ii)⇒ (iii) It follows from Lemma 2.9.
(iii) ⇒ (i) Let R be a right hyperideal and L be a left hyperideal of S . By Lemma 2.8, R ∩ L is a

quasi-hyperideal of S . By assumption, we have that R ∩ L = ((R ∩ L)S )(R ∩ L) ⊆ (RS )L ⊆ RL. Any
other way, RL ⊆ R ∩ L. Thus, R ∩ L = RL. Therefore, S is regular by Theorem 4.4. □

Theorem 4.6. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following statements are equivalent:

(i) S is regular;
(ii) B ∩ I ⊆ (BI)B, for every bi-hyperideal B and hyperideal I of S ;

(iii) Q ∩ I ⊆ (QI)Q, for every quasi-hyperideal Q and hyperideal I of S .

Proof. (i) ⇒ (ii) Assume that S is regular. Let B be a bi-hyperideal and I be a hyperideal of S . Now,
let a ∈ B ∩ I. It turns out that a ∈ (aS )a. Thus, by left invertive law and Lemma 2.3, we have

a ∈ (aS )a ⊆ (((aS )a)S )a
= ((S a)(aS ))a
= (a((S a)S ))a
⊆ (B((S I)S ))B
⊆ (BI)B.

Hence, B ∩ I ⊆ (BI)B.
(ii)⇒ (iii) By Lemma 2.9, we have that every quasi-hyperideal of S is a bi-hyperideal. Hence, (iii)

holds.
(iii) ⇒ (i) Let R be a right hyperideal and L be a left hyperideal of S . Then, R ∩ L is a quasi-

hyperideal of S by Lemma 2.8. Since (iii) holds, we get that R∩L = (R∩L)∩S ⊆ ((R∩L)S )(R∩L) ⊆
(RS )L ⊆ RL. Also, R ∩ L = RL. By Theorem 4.4, S is regular. □

Theorem 4.7. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following conditions are equivalent:

(i) S is regular;
(ii) B ∩ L ⊆ (BS )L, for every bi-hyperideal B and left hyperideal L of S ;

(iii) Q ∩ L ⊆ (QS )L, for every quasi-hyperideal Q and left hyperideal L of S .

Proof. (i)⇒ (ii) Assume that S is regular. Let B be a bi-hyperideal and L be a left hyperideal of S and
a ∈ B ∩ L. Then, a ∈ (aS )a. By using the left invertive law, we have
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a ∈ (aS )a ⊆ (aS )((aS )a)
= (((aS )a)S )a
⊆ (((BS )B)S )L
⊆ (BS )L.

Hence, B ∩ L ⊆ (BS )L.
(ii)⇒ (iii) Since every quasi-hyperideal is a bi-hyperideal of S , (iii) holds.
(iii) ⇒ (i) Let R be a right hyperideal and L be a left hyperideal of S . By Lemma 2.7, R is also a

quasi-hyperideal of S . By assumption, R ∩ L ⊆ (RS )L ⊆ RL. So, R ∩ L = RL. Therefore, S is regular
by Theorem 4.4. □

The proof of the following theorem is similar to Theorem 4.7.

Theorem 4.8. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following conditions are equivalent:

(i) S is regular;
(ii) B ∩ R ⊆ (RS )B, for every bi-hyperideal B and right hyperideal R of S ;

(iii) Q ∩ R ⊆ (RS )Q, for every quasi-hyperideal Q and right hyperideal R of S .

Theorem 4.9. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following conditions are equivalent:

(i) S is regular;
(ii) B ∩ R ∩ L ⊆ (BR)L, for every bi-hyperideal B, right hyperideal R and left hyperideal L of S ;

(iii) Q ∩ R ∩ L ⊆ (QR)L, for every quasi-hyperideal Q, right hyperideal R and left hyperideal L of S .

Proof. (i)⇒ (ii) Assume that S is regular. Let B be a bi-hyperideal, R be a right hyperideal and L be a
left hyperideal of S and a ∈ B ∩ R ∩ L. Then, a ∈ (aS )a. By using the medial law, we have

a ∈ (aS )a ⊆ (((aS )a)S )((aS )a)
= (((aS )a)(aS ))(S a)
⊆ (((BS )B)(RS ))(S L)
⊆ (BR)L.

This implies that B ∩ R ∩ L ⊆ (BR)L.
(ii)⇒ (iii) The implication follows by Lemma 2.9.
(iii) ⇒ (i) Let R be a right hyperideal and L be a left hyperideal of S . By Lemma 2.7, R is also

a quasi-hyperideal of S . By the hypothesis, we have that R ∩ L = R ∩ R ∩ L ⊆ (RR)L ⊆ RL. Since
RL ⊆ R ∩ L, it follows that R ∩ L = RL. By Theorem 4.4, S is regular. □

5. Conclusions

In this paper, the classes of weakly regular LA-semihyperrings and regular LA-semihyperrings
have been considered. In Section 3, the characterizations of weakly regular LA-semihyperrings by the
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properties of their left hyperideals and right hyperideals were shown in Theorem 3.3–Theorem 3.6. In
Section 4, the fundamental characterization of regular LA-semihyperrings by using their left
hyperideals and right hyperideals has been given in Theorem 4.4. Finally, we characterized regular
LA-semihyperrings in terms of (resp., left, right) hyperideals, quasi-hyperideals and bi-hyperideals of
LA-semihyperrings were shown in Theorem 4.5–Theorem 4.9. In our future work, we will
characterize the class of intra-regular LA-semihyperrings by using the concept of their hyperideals.
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