
Research article**Left almost semihyperrings characterized by their hyperideals****Warud Nakkanasen***

Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand

* **Correspondence:** Email: warud.n@msu.ac.th.

Abstract: The notion of left almost semihyperrings (briefly, *LA*-semihyperrings), as a generalization of left almost semirings (briefly, *LA*-semirings), was introduced by Nawaz, Rehman and Gulistan in 2018. The purpose of this article is to study the classes of weakly regular *LA*-semihyperrings and regular *LA*-semihyperrings. Then, characterizations of weakly regular *LA*-semihyperrings and regular *LA*-semihyperrings in terms of their hyperideals have been obtained.

Keywords: *LA*-semihypergroup; *LA*-semihyperring; regular *LA*-semihyperring; weakly regular *LA*-semihyperring

Mathematics Subject Classification: 20M17, 20N20, 16Y60

1. Introduction

The study of left almost semigroups (briefly, *LA*-semigroups), as a generalization of commutative semigroups, was first introduced in 1972 by Kazim and Naseeruddin [25]. It is also called an Abel-Grassmann's groupoid (briefly, *AG*-groupoid) [32]. An *LA*-semigroup is a non-associative and non-commutative algebraic structure midway between a groupoid and a commutative semigroup. Mushtaq and Yousuf [27] examined some basic results of the structure of *LA*-semigroups, for examples, a commutative monoid is an *LA*-semigroup with right identity, every left cancellative *LA*-semigroup is right cancellative and every right cancellative *LA*-monoid is left cancellative. On *LA*-semigroups, regularities are interesting and essential properties to investigate. Khan and Asif [20] classified intra-regular *LA*-semigroups based on the features of their fuzzy ideals in 2010. Abdullah, Aslam and Amin [2] began discussing regular *LA*-semigroup categorizations in terms of interval (α, β) -fuzzy ideals. Also, Khan, Jun and Yousafzai [22] used their fuzzy left ideals and fuzzy right ideals to characterize right regular *LA*-semigroups. In 2016, Khan, Yousafzai and Khan [24] defined a class of (m, n) -regular *LA*-semigroups based on their (m, n) -ideals. Several characterizations of weakly regular *LA*-semigroups by using the smallest ideals and fuzzy ideals of *LA*-semigroups were

investigated by Yousafzai, Iampan and Tang [46]. Furthermore, Sezer [36] has developed soft sets to characterize regular, intra-regular, completely regular, weakly regular and quasi-regular *LA*-semigroups. Recently, various properties of *LA*-semigroups have been studied by many mathematicians (see, e.g., [4, 8, 14, 15, 44, 47]). Additionally, the notion of left almost semirings (briefly, *LA*-semirings), which is a generalization of left almost rings (briefly, *LA*-rings) [37], has been considered different properties by some mathematicians (see, e.g., [12, 13, 33]). Moreover, the concept of left almost was studied in other algebraic structures (for example, in ordered *LA*-(Γ)-semigroups [5, 7, 19, 45], in gamma *LA*-rings and gamma *LA*-semigroups [23], in *LA*-polygroups [3, 40, 42]).

The concept of hyperstructures was introduced by Marty [26] in the 8th Congress of Scandinavian Mathematicians. There are many authors expanded the concept of hyperstructures (see, e.g., [9–11, 28, 29, 31, 38, 39]). Hila and Dine [18] introduced the notion of left almost semihypergroups (briefly, *LA*-semihypergroups) which is a generalization of *LA*-semigroups and commutative semihypergroups. It is a useful non-associative algebraic hyperstructure, midway between a hypergroupoid and a commutative semihypergroup, with wide applications in the theory of flocks etc. In 2013, Yaqoob, Corsini and Yousafzai [41] used the properties of their left and right hyperideals to characterize intra-regular *LA*-semihypergroups. Then, the class of regular *LA*-semihypergroups was characterized in terms of $(\in_{\Gamma}, \in_{\Gamma} \vee q_{\Delta})$ -cubic (resp., left, right, two-sided, bi, generalized bi, interior, quasi)-hyperideals of *LA*-semihypergroups by Gulistan, Khan, Yaqoob and Shahzad [16]. In addition, Khan, Farooq, Izhar and Davvaz [21] studied into some properties of fuzzy left and right hyperideals in regular and intra-regular *LA*-semihypergroups. In terms of soft interior hyperideals, Abbasi, Khan, Talee and Khan [1] gave different essential characterizations of left regular *LA*-semihypergroups. On the other hand, Yaqoob and Gulistan [43] introduced the concept of ordered *LA*-semihypergroups which is a generalization of *LA*-semihypergroups. Next, the results of fuzzy hyperideals and generalized fuzzy hyperideals of ordered *LA*-semihypergroups were then examined by Azhar, Gulistan, Yaqoob and Kadry (see, [6, 17]).

In 2018, Nawaz, Rehman and Gulistan [30] defined the idea of left almost semihyperrings (briefly, *LA*-semihyperrings), as a generalization of *LA*-semirings, and studied at some of their basic properties. In 2020, Rahman, Hidayat and Alghofari [34] applied the concept of fuzzy sets to define the new algebraic structure, namely, fuzzy left almost semihyperrings, and they have shown that the set of all fuzzy subsets in *LA*-semihyperrings is also *LA*-semihyperrings. In this paper, we are interesting in the classes of weakly regular *LA*-semihyperrings and regular *LA*-semihyperrings. Then, we give some characterizations of weakly regular *LA*-semihyperrings and regular *LA*-semihyperrings in terms of their hyperideals.

2. Preliminaries

Firstly, we recall some of the basic concepts and properties, which are necessary for this paper. Let H be a nonempty set. Then, the map $\circ : H \times H \rightarrow \mathcal{P}^*(H)$ is called a *hyperoperation* on H where $\mathcal{P}^*(H) = \mathcal{P}(H) \setminus \{\emptyset\}$ denotes the set of all nonempty subsets of H . A *hypergroupoid* is called the pair (H, \circ) , where \circ is a hyperoperation on a nonempty set H . If $x \in H$ and A, B are two nonempty subsets of H , then we denote

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, A \circ x = A \circ \{x\} \text{ and } x \circ B = \{x\} \circ B.$$

A hypergroupoid (H, \circ) is called an *LA-semihypergroup* [18] if for all $x, y, z \in H$, $(x \circ y) \circ z = (z \circ y) \circ x$, which means that

$$\bigcup_{u \in x \circ y} u \circ z = \bigcup_{v \in z \circ y} v \circ x.$$

This law is known as a left invertive law.

For any nonempty subsets A, B and C of an *LA-semihypergroup* (H, \circ) , we have that

$$(A \circ B) \circ C = (C \circ B) \circ A.$$

The following the notion, which appears in [30], will be considering in this study.

A hyperstructure $(S, +, \cdot)$ is called an *LA-semihyperring* if it satisfies the following conditions:

- (i) $(S, +)$ is an *LA-semihypergroup*;
- (ii) (S, \cdot) is an *LA-semihypergroup*;
- (iii) $x \cdot (y + z) = x \cdot y + x \cdot z$ and $(y + z) \cdot x = y \cdot x + z \cdot x$ for all $x, y, z \in S$.

Example 2.1. [30] Let $S = \{a, b, c\}$ be a set with the hyperoperations $+$ and \cdot on S defined as follows:

$+$	a	b	c	\cdot	a	b	c
a	$\{a\}$	$\{a, b, c\}$	$\{a, b, c\}$	a	$\{a\}$	$\{a\}$	$\{a\}$
b	$\{b, c\}$	$\{b, c\}$	$\{b, c\}$	b	$\{a\}$	$\{a, b, c\}$	$\{c\}$
c	$\{a, b, c\}$	$\{a, b, c\}$	$\{a, b, c\}$	c	$\{a\}$	$\{a, b, c\}$	$\{a, b, c\}$

Then, $(S, +, \cdot)$ is an *LA-semihyperring*.

For more convenient, we say an *LA-semihyperring* S instead of an *LA-semihyperring* $(S, +, \cdot)$ and we write xy instead of $x \cdot y$ for any $x, y \in S$.

In an *LA-semihyperring* S , the medial law $(xy)(zw) = (xz)(yw)$ holds for all $x, y, z, w \in S$. An element e of an *LA-semihyperring* S is called a *left identity* (resp., *pure left identity*) if for all $x \in S$, $x \in ex$ (resp., $x = ex$). If an *LA-semihyperring* S contains a pure left identity e , then it is unique. In an *LA-semihyperring* S with a pure left identity e , the paramedial law $(xy)(zw) = (wy)(zx)$ holds for all $x, y, z, w \in S$.

An element a of an *LA-semihyperring* S with a left identity (resp., pure left identity) e is called a *left invertible* (resp., *pure left invertible*) if there exists $x \in S$ such that $e \in xa$ (resp., $e = xa$). An *LA-semihyperring* S is called a *left invertible* (resp., *pure left invertible*) if every element of S is a left invertible (resp., pure left invertible).

We observe that if an element e is a pure left identity of an *LA-semihyperring* S , then e is a left identity. But the converse is not true in general, as the following example.

Example 2.2. Let $S = \{a, b, c\}$ be a set with the hyperoperations $+$ and \cdot on S defined as follows:

$+$	a	b	c	\cdot	a	b	c
a	$\{a\}$	$\{a, b, c\}$	$\{a, b, c\}$	a	$\{a\}$	$\{a\}$	$\{a\}$
b	$\{a, b, c\}$	$\{b, c\}$	$\{b, c\}$	b	$\{a\}$	$\{a, b, c\}$	$\{c\}$
c	$\{a, b, c\}$	$\{a, b, c\}$	$\{a, b, c\}$	c	$\{a\}$	$\{a, b, c\}$	$\{a, b, c\}$

Then, $(S, +, \cdot)$ is an *LA-semihyperring* [35]. One can see that b is a left identity, but it is not a pure left identity.

Lemma 2.3. [30] *Let S be an *LA-semihyperring* with a pure left identity e . Then $x(yz) = y(xz)$ for all $x, y, z \in S$.*

For any *LA-semihyperring* S , the following law holds $(AB)(CD) = (AC)(BD)$ for all nonempty subsets A, B, C, D of S . If an *LA-semihyperring* S contains the pure left identity e , then $(AB)(CD) = (DB)(CA)$ and $A(BC) = B(AC)$ for every nonempty subsets A, B, C, D of S .

Now, we recall the concepts of different types of hyperideals of *LA-semihyperrings* which occurred in [30] as follows. Let S be an *LA-semihyperring* and a nonempty subset A of S such that $A + A \subseteq A$. Then:

- (i) A is called a *left hyperideal* of S if $SA \subseteq A$;
- (ii) A is called a *right hyperideal* of S if $AS \subseteq A$;
- (iii) A is called a *hyperideal* of S if it is both a left and a right hyperideal of S ;
- (iv) A is called a *quasi-hyperideal* of S if $SA \cap AS \subseteq A$;
- (v) A is called a *bi-hyperideal* of S if $AA \subseteq A$ and $(AS)A \subseteq A$.

Example 2.4. Let $S = \{a, b, c, d, e\}$ be a set with the hyperoperations $+$ and \cdot on S defined as follows:

$+$	a	b	c	d	e	\cdot	a	b	c	d	e
a	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	a	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
b	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	b	$\{a\}$	$\{a, e\}$	$\{a, e\}$	$\{a, c\}$	$\{a, e\}$
c	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	c	$\{a\}$	$\{a, e\}$	$\{a, e\}$	$\{a, b\}$	$\{a, e\}$
d	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	d	$\{a\}$	$\{a, b\}$	$\{a, c\}$	$\{d\}$	$\{a, e\}$
e	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	e	$\{a\}$	$\{a, e\}$	$\{a, e\}$	$\{a, e\}$	$\{a, e\}$

Then, $(S, +, \cdot)$ is an *LA-semihyperring*. Now, we can see that $A = \{a, b, e\}$ is a left hyperideal of S , but it is not a right hyperideal, because $b \cdot d = \{a, c\} \not\subseteq \{a, b, e\}$.

Proposition 2.5. *Let S be an *LA-semihyperring* such that $S = S^2$. Then every right hyperideal of S is a hyperideal.*

Proof. Let R be a right hyperideal of S . Let $a \in SR$. Then $a \in sr$ for some $r \in R$ and $s \in S$. Since $S = S^2$, $s \in xy$ for some $x, y \in S$. By using the left invertive law, we have

$$a \in sr \subseteq (xy)r = (ry)x \subseteq (RS)S \subseteq RS \subseteq R.$$

Thus, $SR \subseteq R$. This shows that R is a left hyperideal of S . Therefore, R is a hyperideal of S . \square

For any *LA-semihyperring* S with a pure left identity e , we have that $S = S^2$. Then, we have the following lemma.

Lemma 2.6. *Let S be an *LA-semihyperring* with a pure left identity e . Then every right hyperideal of S is a hyperideal of S .*

Lemma 2.7. *Every left (resp., right) hyperideal of an *LA-semihyperring* S is a quasi-hyperideal of S .*

Proof. Let Q be a left hyperideal of an *LA-semihyperring* S . Then, $Q+Q \subseteq Q$ and $SQ \cap QS \subseteq SQ \subseteq Q$. Hence, Q is a quasi-hyperideal of S . For the case of the right hyperideal, we can prove similarly. \square

Lemma 2.8. *The intersection of a left hyperideal L and a right hyperideal R of an LA-semihyperring S is a quasi-hyperideal of S .*

Proof. It is easy to show that $L \cap R + L \cap R \subseteq L \cap R$. Next, consider

$$S(L \cap R) \cap (L \cap R)S \subseteq SL \cap RS \subseteq L \cap R.$$

Hence, $L \cap R$ is a quasi-hyperideal of S . \square

Lemma 2.9. *Let S be an LA-semihyperring with a left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then every quasi-hyperideal of S is a bi-hyperideal of S .*

Proof. Let B be a quasi-hyperideal of S . Then, $B + B \subseteq B$ and $SB \cap BS \subseteq B$. Clearly, $BB \subseteq B$. Now, we have that $(BS)B \subseteq SB$. Next, let $x \in (BS)B$. So, $x \in (as)b$ for some $a, b \in B$ and $s \in S$. By assumption and using the medial law, we have

$$x \in (as)b \subseteq (as)(eb) = (ae)(sb) \subseteq (ae)S \subseteq aS \subseteq BS.$$

Thus, $(BS)B \subseteq BS$. It follows that $(BS)B \subseteq SB \cap BS \subseteq B$. Therefore, B is a bi-hyperideal of S . \square

Lemma 2.10. *If S is an LA-semihyperring with a pure left identity e , then for every $a \in S$, a^2S is a hyperideal of S such that $a^2 \subseteq a^2S$.*

Proof. Assume that S is an LA-semihyperring with a pure left identity e . Let $a \in S$. By using the left invertive law, we have

$$\begin{aligned} a^2S + a^2S &= (aa)S + (aa)S = (Sa)a + (Sa)a \\ &= ((S + S)a)a \subseteq (Sa)a \\ &= (aa)S = a^2S. \end{aligned}$$

Then, using Lemma 2.3, the left invertive law and the paramedial law, we have

$$S(a^2S) = a^2(SS) \subseteq a^2S$$

and

$$(a^2S)S = ((aa)S)S = ((Sa)a)S = (Sa)(Sa) = (aa)(SS) \subseteq a^2S.$$

Hence, a^2S is a hyperideal of S . Now, using the left invertive law, we have

$$a^2 = aa = (ea)a = (aa)e \subseteq a^2S.$$

This completes the proof. \square

3. Weakly regular *LA*-semihyperrings

In this section, the class of weakly regular *LA*-semihyperrings has been studied, we give some characterizations of weakly regular *LA*-semihyperrings by using the concepts of left hyperideals and right hyperideals of *LA*-semihyperrings.

Definition 3.1. An element a of an *LA*-semihyperring S is said to be *weakly regular* if there exist $x, y \in S$ such that $a \in (ax)(ay)$. The *LA*-semihyperring S is called *weakly regular* if every element of S is weakly regular.

Example 3.2. In Example 2.1, we can show that there exist $x, y \in S$ such that $a \in (ax)(ay)$ for all $a \in S$. Therefore, S is weakly regular.

Theorem 3.3. Let S be a pure left invertible *LA*-semihyperring with a pure left identity e . Then S is weakly regular if and only if $R_1 \cap R_2 \subseteq R_1 R_2$, where both R_1 and R_2 are right hyperideals of S .

Proof. Assume that S is weakly regular. Let R_1 and R_2 be right hyperideals of S and $a \in R_1 \cap R_2$. Then, there exist $x, y \in S$ such that $a \in (ax)(ay) \subseteq (R_1 S)(R_2 S) \subseteq R_1 R_2$. Hence, $R_1 \cap R_2 \subseteq R_1 R_2$.

Conversely, let $a \in S$. Since S is a pure left invertible *LA*-semihyperring, there exists $x \in S$ such that $e = xa$. By Lemma 2.10, we have that $a^2 S$ is a right hyperideal of S and $a^2 \subseteq a^2 S$. Then, by using assumption, the left invertive law and Lemma 2.3, we have

$$\begin{aligned} a^2 &\subseteq (a^2 S) \cap (a^2 S) \\ &\subseteq (a^2 S)(a^2 S) \\ &= a^2((a^2 S)S) \\ &= a^2((S S)a^2) \\ &\subseteq (aa)(S(aa)) \\ &= (aa)(a(Sa)) \\ &\subseteq (aS)(aS). \end{aligned}$$

Next, using the left invertive law and Lemma 2.3, we have

$$\begin{aligned} a &= ea = (xa)a = (aa)x \subseteq ((aS)(aS))x \\ &= (x(aS))(aS) = (a(xS))(aS) \\ &\subseteq (aS)(aS). \end{aligned}$$

This implies that $a \in (ax)(ay)$ for some $x, y \in S$. Therefore, S is weakly regular. \square

The proof of the following theorem is similar to Theorem 3.3.

Theorem 3.4. Let S be a pure left invertible *LA*-semihyperring with a pure left identity e . Then S is weakly regular if and only if $L_1 \cap L_2 \subseteq L_1 L_2$, where both L_1 and L_2 are left hyperideals of S .

Theorem 3.5. Let S be a pure left invertible *LA*-semihyperring with a pure left identity e . Then S is weakly regular if and only if $R \cap L \subseteq L^2 R^2$, for every right hyperideal R and left hyperideal L of S .

Proof. Assume that S is weakly regular. Let R be a right hyperideal and L be a left hyperideal of S and $a \in R \cap L$. Then, there exist $x, y \in S$ such that $a \in (ax)(ay)$. By using the left invertive law, the medial law, the paramedial law and Lemma 2.3, we have

$$\begin{aligned}
a &\in (ax)(ay) \\
&\subseteq (((ax)(ay))x)((((ax)(ay))y)) \\
&= ((ax)(ay))(((ax)(ay))x)y) \\
&= ((ax)(ay))((yx)((ax)(ay))) \\
&= ((ax)(ay))((ax)((yx)(ay))) \\
&= ((ax)(ay))(((ay)(yx))(xa)) \\
&= ((ax)(ay))(((yx)y)a)(xa)) \\
&\subseteq ((aS)(aS))((S a)(S a)) \\
&= ((S a)(S a))((aS)(aS)) \\
&\subseteq ((S L)(S L))((RS)(RS)) \\
&\subseteq L^2 R^2.
\end{aligned}$$

Therefore, $R \cap L \subseteq L^2 R^2$.

Conversely, let R_1 and R_2 be right hyperideals of S . By Lemma 2.6, we have that R_1 is also a left hyperideal of S . By assumption, $R_1 \cap R_2 \subseteq R_1^2 R_2^2 \subseteq R_1 R_2$. Consequently, S is weakly regular by Theorem 3.3. \square

Theorem 3.6. *Let S be a pure left invertible LA-semihyperring with a pure left identity e . Then S is weakly regular if and only if $R \cap L \subseteq L^3 R$, for every right hyperideal R and left hyperideal L of S .*

Proof. Let R be a right hyperideal and L be a left hyperideal of S and $a \in R \cap L$. By assumption, there exist $x, y \in S$ such that $a \in (ax)(ay)$. Then, by using the left invertive law, the medial law, the paramedial law and Lemma 2.3, we have

$$\begin{aligned}
a &\in (ax)(ay) \\
&\subseteq (((ax)(ay))x)((((ax)(ay))y)) \\
&= (y((ax)(ay)))(x((ax)(ay))) \\
&= ((ax)(y(ay)))(((ax)(x(ay)))) \\
&= ((ax)(ay^2))((ax)(a(xy))) \\
&= ((y^2 a)(xa))((ax)(a(xy))) \\
&= (((ax)(a(xy)))(xa))(y^2 a) \\
&= (((((xy)a)(xa))(xa))((yy)a)) \\
&= (((((xy)a)(xa))(xa))((ay)y)) \\
&\subseteq (((S L)(S L))(S L))((RS)(RS)) \\
&\subseteq ((LL)L)R \\
&= L^3 R.
\end{aligned}$$

Hence, $R \cap L \subseteq L^3 R$.

Conversely, let R_1 and R_2 be right hyperideals of S . By Lemma 2.6, we have that R_1 also a left hyperideal of S . By assumption, $R_1 \cap R_2 \subseteq R_1^3 R_2 = ((R_1 R_1) R_1) R_2 \subseteq R_1 R_2$. By Theorem 3.3, S is weakly regular. \square

4. Regular *LA*-semihyperrings

In this section, we characterize the class of regular *LA*-semihyperrings in terms of (resp., left, right) hyperideals, quasi-hyperideals and bi-hyperideals of *LA*-semihyperrings.

Definition 4.1. An element a of an *LA*-semihyperring S is said to be *regular* if there exists an element $x \in S$ such that $a \in (ax)a$. The *LA*-semihyperring S is called *regular* if every element of S is regular.

Example 4.2. In Example 2.2, we have that there exists $x \in S$ such that $a \in (ax)a$ for all $a \in S$. Hence, S is regular.

Lemma 4.3. Let S be an *LA*-semihyperring. Then the following conditions are equivalent:

- (i) S is regular;
- (ii) $a \in (aS)a$, for every $a \in S$;
- (iii) $A \subseteq (AS)A$, for all $\emptyset \neq A \subseteq S$.

Theorem 4.4. Let S be a pure left invertible *LA*-semihyperring with a pure left identity e . Then S is regular if and only if $R \cap L = RL$, for every right hyperideal R and left hyperideal L of S .

Proof. Assume that S is regular. Let R be a right hyperideal and L be a left hyperideal of S and let $a \in R \cap L$. Then, $a \in (aS)a \subseteq (RS)L \subseteq RL$. It follows that $R \cap L \subseteq RL$. Since $RL \subseteq R$ and $RL \subseteq L$, we have $RL \subseteq R \cap L$. Thus, $R \cap L = RL$.

Conversely, let $a \in S$. Since S is a pure left invertible *LA*-semihyperring, there exists $x \in S$ such that $e = xa$. By Lemma 2.10, $a^2 S$ is both a right hyperideal and a left hyperideal of S . Moreover, $a^2 \subseteq a^2 S$. Then, by using the given assumption, Lemma 2.3 and the left invertive law, we have

$$\begin{aligned} a^2 &\subseteq (a^2 S) \cap (a^2 S) \\ &= (a^2 S)(a^2 S) \\ &= a^2((a^2 S)S) \\ &= a^2((SS)a^2) \\ &\subseteq (aa)(S(aa)) \\ &= (aa)(a(Sa)) \\ &= ((a(Sa))a)a \\ &\subseteq ((aS)a)a. \end{aligned}$$

Hence, using the invertive law, we have

$$\begin{aligned} a &= ea = (xa)a = (aa)x \subseteq (((aS)a)a)x \\ &= (xa)((aS)a) = e((aS)a) \\ &= (aS)a. \end{aligned}$$

Therefore, S is regular. \square

Theorem 4.5. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following statements are equivalent:

- (i) S is regular;
- (ii) $(BS)B = B$, for every bi-hyperideal B of S ;
- (iii) $(QS)Q = Q$, for every quasi-hyperideal Q of S .

Proof. (i) \Rightarrow (ii) Assume that S is regular. Let B be a bi-hyperideal of S and $a \in B$. Then, $a \in (aS)a \subseteq (BS)B$. Thus, $B \subseteq (BS)B$. On the other hand $(BS)B \subseteq B$. Hence, $(BS)B = B$.

(ii) \Rightarrow (iii) It follows from Lemma 2.9.

(iii) \Rightarrow (i) Let R be a right hyperideal and L be a left hyperideal of S . By Lemma 2.8, $R \cap L$ is a quasi-hyperideal of S . By assumption, we have that $R \cap L = ((R \cap L)S)(R \cap L) \subseteq (RS)L \subseteq RL$. Any other way, $RL \subseteq R \cap L$. Thus, $R \cap L = RL$. Therefore, S is regular by Theorem 4.4. \square

Theorem 4.6. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following statements are equivalent:

- (i) S is regular;
- (ii) $B \cap I \subseteq (BI)B$, for every bi-hyperideal B and hyperideal I of S ;
- (iii) $Q \cap I \subseteq (QI)Q$, for every quasi-hyperideal Q and hyperideal I of S .

Proof. (i) \Rightarrow (ii) Assume that S is regular. Let B be a bi-hyperideal and I be a hyperideal of S . Now, let $a \in B \cap I$. It turns out that $a \in (aS)a$. Thus, by left invertive law and Lemma 2.3, we have

$$\begin{aligned} a \in (aS)a &\subseteq (((aS)a)S)a \\ &= ((Sa)(aS))a \\ &= (a((Sa)S))a \\ &\subseteq (B((SI)S))B \\ &\subseteq (BI)B. \end{aligned}$$

Hence, $B \cap I \subseteq (BI)B$.

(ii) \Rightarrow (iii) By Lemma 2.9, we have that every quasi-hyperideal of S is a bi-hyperideal. Hence, (iii) holds.

(iii) \Rightarrow (i) Let R be a right hyperideal and L be a left hyperideal of S . Then, $R \cap L$ is a quasi-hyperideal of S by Lemma 2.8. Since (iii) holds, we get that $R \cap L = (R \cap L) \cap S \subseteq ((R \cap L)S)(R \cap L) \subseteq (RS)L \subseteq RL$. Also, $R \cap L = RL$. By Theorem 4.4, S is regular. \square

Theorem 4.7. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following conditions are equivalent:

- (i) S is regular;
- (ii) $B \cap L \subseteq (BS)L$, for every bi-hyperideal B and left hyperideal L of S ;
- (iii) $Q \cap L \subseteq (QS)L$, for every quasi-hyperideal Q and left hyperideal L of S .

Proof. (i) \Rightarrow (ii) Assume that S is regular. Let B be a bi-hyperideal and L be a left hyperideal of S and $a \in B \cap L$. Then, $a \in (aS)a$. By using the left invertive law, we have

$$\begin{aligned}
a \in (aS)a &\subseteq (aS)((aS)a) \\
&= (((aS)a)S)a \\
&\subseteq (((BS)B)S)L \\
&\subseteq (BS)L.
\end{aligned}$$

Hence, $B \cap L \subseteq (BS)L$.

(ii) \Rightarrow (iii) Since every quasi-hyperideal is a bi-hyperideal of S , (iii) holds.

(iii) \Rightarrow (i) Let R be a right hyperideal and L be a left hyperideal of S . By Lemma 2.7, R is also a quasi-hyperideal of S . By assumption, $R \cap L \subseteq (RS)L \subseteq RL$. So, $R \cap L = RL$. Therefore, S is regular by Theorem 4.4. \square

The proof of the following theorem is similar to Theorem 4.7.

Theorem 4.8. *Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following conditions are equivalent:*

- (i) S is regular;
- (ii) $B \cap R \subseteq (RS)B$, for every bi-hyperideal B and right hyperideal R of S ;
- (iii) $Q \cap R \subseteq (RS)Q$, for every quasi-hyperideal Q and right hyperideal R of S .

Theorem 4.9. *Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following conditions are equivalent:*

- (i) S is regular;
- (ii) $B \cap R \cap L \subseteq (BR)L$, for every bi-hyperideal B , right hyperideal R and left hyperideal L of S ;
- (iii) $Q \cap R \cap L \subseteq (QR)L$, for every quasi-hyperideal Q , right hyperideal R and left hyperideal L of S .

Proof. (i) \Rightarrow (ii) Assume that S is regular. Let B be a bi-hyperideal, R be a right hyperideal and L be a left hyperideal of S and $a \in B \cap R \cap L$. Then, $a \in (aS)a$. By using the medial law, we have

$$\begin{aligned}
a \in (aS)a &\subseteq (((aS)a)S)((aS)a) \\
&= (((aS)a)(aS))(Sa) \\
&\subseteq (((BS)B)(RS))(SL) \\
&\subseteq (BR)L.
\end{aligned}$$

This implies that $B \cap R \cap L \subseteq (BR)L$.

(ii) \Rightarrow (iii) The implication follows by Lemma 2.9.

(iii) \Rightarrow (i) Let R be a right hyperideal and L be a left hyperideal of S . By Lemma 2.7, R is also a quasi-hyperideal of S . By the hypothesis, we have that $R \cap L = R \cap R \cap L \subseteq (RR)L \subseteq RL$. Since $RL \subseteq R \cap L$, it follows that $R \cap L = RL$. By Theorem 4.4, S is regular. \square

5. Conclusions

In this paper, the classes of weakly regular LA-semihyperrings and regular LA-semihyperrings have been considered. In Section 3, the characterizations of weakly regular LA-semihyperrings by the

properties of their left hyperideals and right hyperideals were shown in Theorem 3.3–Theorem 3.6. In Section 4, the fundamental characterization of regular *LA*-semihyperrings by using their left hyperideals and right hyperideals has been given in Theorem 4.4. Finally, we characterized regular *LA*-semihyperrings in terms of (resp., left, right) hyperideals, quasi-hyperideals and bi-hyperideals of *LA*-semihyperrings were shown in Theorem 4.5–Theorem 4.9. In our future work, we will characterize the class of intra-regular *LA*-semihyperrings by using the concept of their hyperideals.

Acknowledgments

This research project was financially supported by Mahasarakham University.

Conflict of interest

The author declares no conflict of interest.

References

1. M. Y. Abbasi, S. A. Khan, A. F. Talee, A. Khan, Soft interior-hyperideals in left regular *LA*-semihypergroups, *Kragujev. J. Math.*, **44** (2020), 217–236.
2. S. Abdullah, S. Aslam, N. U. Amin, *LA*-semigroups characterized by the properties of interval valued (α, β) -fuzzy ideals, *J. Appl. Math. Inform.*, **32** (2014), 405–426.
3. N. Abughazalah, N. Yaqoob, A. Bashir, Cayley graphs over *LA*-groups and *LA*-polygroups, *Math. Probl. Eng.*, **2021** (2021), 1–9.
4. I. Ahmad, S. Rahman, M. Iqbal, Amanullah, A note on left abelian distributive *LA*-semigroups, *Punjab Univ. J. Math.*, **52** (2020), 47–63.
5. M. A. Ansari, Roughness in generalized (m, n) bi-ideals in ordered *LA*-semigroups, *Int. J. Math. Comput. Sci.*, **14** (2019), 371–386.
6. M. Azhar, M. Gulistan, N. Yaqoob, S. Kadry, On fuzzy ordered *LA*-semihypergroups, *Int. J. Anal. Appl.*, **16** (2018), 276–289.
7. A. Basar, A note on (m, n) - Γ -ideals of ordered *LA*- Γ -semigroups, *Konuralp J. Math.*, **7** (2019), 107–111.
8. S. I. Batool, I. Younas, M. Khan, N. Yaqoob, A new technique for the construction of confusion component based on inverse *LA*-semigroups and its application in stenography, *Multimed. Tools Appl.*, **80** (2021), 28857–28877.
9. P. Corsini, *Prolegomena of hypergroup theory*, USA: Aviani Editore, 1993.
10. P. Corsini, V. Leoreanu, *Applications of hyperstructure theory*, Dordrecht: Kluwer Academic Publishers, 2003.
11. B. Davvaz, V. Leoreanu-Fotea, *Hyperring theory and applications*, USA: International Academic Press, 2007.
12. D. M. Devi, G. S. Latha, *LA*-semirings satisfying the identity $a \cdot b = a + b + 1$, *Int. J. Innovative Sci., Eng. Tech.*, **2** (2015), 378–389.

13. D. M. Devi, G. S. Latha, *LA-semirings in which $(S, .)$ is anti-inverse semigroup*, *Int. J. Eng. Tech.*, **2** (2016), 124–127.

14. A. Elmoasy, On rough fuzzy prime ideals in left almost semigroups, *Int. J. Anal. Appl.*, **19** (2021), 455–464.

15. T. Gaketem, Bipolar (λ, δ) -fuzzy ideals in *LA-semigroups*, *Appl. Sci.*, **23** (2021), 49–55.

16. M. Gulistan, M. Khan, N. Yaqoob, M. Shahzad, Structural properties of cubic sets in regular *LA-semihypergroups*, *Fuzzy Inf. Eng.*, **9** (2017), 93–116.

17. M. Gulistan, N. Yaqoob, S. Kadry, M. Azhar, On generalized fuzzy sets in ordered *LA-semihypergroups*, *Proc. Est. Acad. Sci.*, **68** (2019), 43–54.

18. K. Hila, J. Dine, On hyperideals in left almost semihypergroups, *ISRN Algebra*, **2011** (2011), 1–8.

19. W. Jantanan, R. Chinram, P. Petchkaew, On (m, n) -quasi-gamma-ideals in ordered *LA-gamma-semigroups*, *J. Math. Comput. Sci.*, **11** (2021), 3377–3390.

20. M. Khan, T. Asif, Characterizations of intra-regular left almost semigroups by their fuzzy ideals, *J. Math. Res.*, **2** (2010), 87–96.

21. A. Khan, M. Farooq, M. Izhar, B. Davvaz, Fuzzy hyperideals of left almost semihypergroups, *Int. J. Anal. Appl.*, **15** (2017), 155–171.

22. M. Khan, Y. B. Jun, F. Yousafzai, Fuzzy ideals in right regular *LA-semigroups*, *Hacet. J. Math. Stat.*, **44** (2015), 569–586.

23. W. A. Khan, A. Taouti, A. Salami, Z. Hussain, On gamma *LA-rings* and gamma *LA-semirings*, *Eur. J. Pure Appl. Math.*, **14** (2021), 989–1001.

24. W. Khan, F. Yousafzai, M. Khan, On generalized ideals of left almost semigroups, *Eur. J. Pure Appl. Math.*, **9** (2016), 277–291.

25. M. A. Kazim, M. Neseeruddin, On almost semigroups, *Alig. Bull. Math.*, **2** (1972), 1–7.

26. F. Marty, Sur une generalization de la notion de group, *8th Congress Mathematics Scandinaves*, Stockholm, 1934.

27. Q. Mushtaq, S. M. Yousuf, On *LA-semigroups*, *Alig. Bull. Math.*, **8** (1978), 65–70.

28. W. Nakkhasen, On *Q*-fuzzy hyperideals of semihyperrings, *Int. J. Math. Comput. Sci.*, **14** (2019), 535–546.

29. W. Nakkhasen, B. Pibaljommee, Intra-regular semihyperrings, *J. Discrete Math. Sci. Cryptogr.*, **22** (2019), 1019–1034.

30. S. Nawaz, I. Rehman, M. Gulistan, On left almost semihyperrings, *Int. J. Anal. Appl.*, **16** (2018), 528–541.

31. B. Pibaljommee, W. Nakkhasen, Connections of (m, n) -bi-quasi hyperideals in semihyperrings, *Thai J. Math.*, 2020, 39–48.

32. P. V. Protić, N. Stevanović, AG-test and some general properties of Abel-Grassmann's groupoids, *Pure Math. Appl.*, **6** (1995), 371–383.

33. K. Rahman, F. Husain, S. Abdullah, M. Khan, Left almost semirings, *Int. J. Comput. Sci. Inf. Secur.*, **14** (2016), 201–216.

34. I. Rahman, N. Hidayat, A. R. Alhofari, Fuzzy left almost semihyperrings, *Adv. Soc. Educ. Humanities Res.*, **550** (2020), 412–417.

35. I. Rehman, N. Yaqoob, S. Nawaz, Hyperideals and hypersystems in *LA*-hyperrings, *Songklanakarin J. Sci. Tech.*, **39** (2017), 651–657.

36. A. S. Sezer, Certain characterizations of *LA*-semigroups by soft sets, *J. Intell. Fuzzy Syst.*, **24** (2014), 1035–1046.

37. T. Shah, I. Rehman, On *LA*-rings of finitely nonzero functions, *Int. J. Contemp. Math. Sci.*, **5** (2010), 209–222.

38. T. Vougiouklis, On some representation of hypergroups, *Ann. Sci. Univ. Clermont-Ferrand II Math.*, **95** (1990), 21–29.

39. T. Vougiouklis, *Hyperstructures and their representations*, USA: Hadronic Press, Inc., 1994.

40. N. Yaqoob, Approximations in left almost polygroups, *J. Intell. Fuzzy Syst.*, **36** (2019), 517–526.

41. N. Yaqoob, P. Corsini, F. Yousafzai, On intra-regular left almost semihypergroups with pure left identity, *J. Math.*, **2013** (2013), 1–10.

42. N. Yaqoob, I. Cristea, M. Gulistan, S. Nawaz, Left almost polygroups, *Ital. J. Pure Appl. Math.*, **39** (2018), 465–474.

43. N. Yaqoob, M. Gulistan, Partially ordered left almost semihypergroups, *J. Egypt. Math. Soc.*, **23** (2015), 231–235.

44. P. Yiarayong, On generalizations of fuzzy quasi-prime ideals in *LA*-semigroups, *Soft Comput.*, **24** (2020), 2125–2137.

45. P. Yiarayong, On generalizations of quasi-prime ideals of an ordered left almost semigroups, *Afrika Mathematika*, **32** (2021), 969–982.

46. F. Yousafzai, A. Iampam, J. Tang, Study on smallest (fuzzy) ideals of *LA*-semigroups, *Thai J. Math.*, **16** (2018), 549–561.

47. I. Younas, Q. Mushtaq, A. Rafiq, Presentation of inverse *LA*-semigroups, *Maejo Int. J. Sci. Tech.*, **14** (2020), 242–251.

AIMS Press

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>)