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1. Introduction

The topological indices (TIs) are found to be one of the effective tools in determining the properties
such as: boiling point, melting point and bond energy of each compound. These are certain parameters
that represent the physical and biochemical properties of different compounds depending upon their
structures. TIs are helpful in describing the qualitative as well as quantitative analysis of a given
molecular structure. Several aspects of TIs are still being vastly studied by different researchers, some
recent contributions include [13, 16]. Use of TIs in drugs and chemistry are mentioned in [3, 19–22]
and few other applications can be seen in [9, 10, 12, 15].

Before proceeding further, we set the notations of this paper. We denote an undirected connected
graph with no multiple edge or loop by G, the number of edges and vertices by m and n, respectively, a
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cycle with n vertices by Cn, complete graph by Kn, degree of a vertex v in G by dG(v) (or simply d(v))
and the distance between the vertices u and v by d(u, v). The Wiener index of G is defined as

W(G) =
∑

{u,v}∈V(G)

d(u, v).

The main objective of producing this index was to determine the boiling points of alkanes [17]. Wiener
index is also implicitly used in network topology as it plays a vital role in the computation of average
distance which is an important measure in the network topology. It is also known due to its frequent use
in communication theory and facility location, sociometry and crystallography, for details see [2], [4]
and references therein. Due to its vast applications, the Wiener index and its different variants have
been studied extensively, for example see [1, 6, 7, 18] and surveys [8, 11].

Although, the study of several papers comprises of different aspects of Wiener index, but there are
still unsolved problems related to this descriptor. The attempts to solve these problems have resulted
in to formulations and solutions of new variants of related problems as well. In [14], Šoltés posed the
question of finding all graphs G for which W(G) does not change upon removal of any vertex. Up to
now, the only such known graph is C11. Recently, Knor et al. [4] studied some relaxed versions of this
problem and produced partial solutions to those problems. In this paper, we solved an open problem
which was formulated by Knor et al. during their investigations on relaxed version of Šoltés problem.

Before presenting the main results, we recall the formulations of the related problems: we start with
the Šoltés [14] problem:
Problem 1: Find all possible graphs G such that W(G) = W(G − {v}), for any vertex v in G. The first
graph, which is C11, with this property was found by Šoltés himself. Till now, several efforts have
been made to solve this problem. However, Problem 1 still remains open until now. Knor et al. [5]
investigated a relaxed version of the Problem 1 by considering:
Problem 2: Find all possible graphs G such that W(G) = W(G − {v}) is true for some v ∈ V(G).
They constructed many infinite classes of graphs G in which W(G) = W(G − {v}) for some vertex v
of degree 2. Recently, in [4], some infinite classes of graphs G with a vertex v such that d(v) ≥ 3 and
W(G) = W(G − {v}) are constructed. Other than that, the existence of vertices of degree n − 2 and
n − 1 in an n-vertex graph G with W(G) = W(G − {v}) have also been shown in [4]. But, finding all
such graphs is still a quite challenging problem. Knor et al. [4] continued to study this problem and
formulated the following three problems as well:
Problem 3: Are there k-regular connected graphs G , C11 with W(G) = W(G−{v}) for some v ∈ V(G)
?
Problem 4: Find connected graphs G with W(G) = W(G−S ) where S ⊆ V(G) is arbitrary and |S | ≥ 2.
Problem 5: For a given r, find (infinitely many) graphs G with W(G) = W(G − {v1}) = W(G − {v2}) =

· · · = W(G − {vr}) for some distinct vertices v1, · · · , vr ∈ V(G).
An infinite family of graphs G with W(G) = W(G − {vi}) for some vertices vi of G, i = 1, ..., k (k is an
arbitrary natural number) is constructed in [23]. Moreover, the symmetry of G leads to the following
property: W(G) = W(G − {v1}) = ... = W(G − {vk}).

In this paper, we extend the study of the work presented in [4] by solving Problem 5. The following
section contains the main results of this paper.
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2. Results

We start the section by introducing the following symbols and notations. For an integer r ≥ 1, a star
with r + 1 vertices is called an (r + 1)-star and the vertex with the maximum degree is called the center.
For r1 ≥ 1, r2 ≥ 2, H(r1, r2) is a graph obtained from the (r1 + 1)-star and Kr2 by adding an edge uv
where u is the center of an (r1 + 1)-star and v is a vertex of Kr2 , so H(r1, r2) has r1 + r2 + 1 vertices. We
declare that tG(u) =

∑
v∈V(G)−{u}

d(u, v).

For a given graph G, the integers r ≥ 2 and |V(G)| + r − 1 ≤ q ≤ r(r+2|V(G)|−1)
2 , we define a set of

graphs T (G, r, q) as follows:

T (G, r, q) = {G′|V(G′) = V(G) ∪ U, E(G′) = E(G) ∪ E′,

where U = {u1, . . . , ur}, |E′| = q and u1v ∈ E′ for every v ∈ U ∪ V(G) − {u1},

E′ ⊂ U × (U ∪ V(G))},

i.e. T (G, r, q) is a set of the graphs G′ obtained from G by adding r vertices {u1, . . . , ur} and q edges
such that dG′(u1) = |V(G)|+r−1, V(G′) = {u1, . . . , ur}∪V(G),G′[V(G)] = G. Clearly, if |V(G)|+r−1 ≤
q ≤ r(r+2|V(G)|−1)

2 , we have T (G, r, q) , ∅.
Given two trees T1, T2 with vi ∈ V(Ti) for i = 1, 2 and an integer k ≥ 1, let T j

1 � T1 and T j
2 � T2

with f (v j
1) = v1 and f (v j

2) = v2 under an isomorphic mapping f for j = 1, 2, · · · , k. Now we define a
graph, denoted by G′ = G(T1,T2, k, v1, v2) (see Figure 1), with

V(G′) = {u} ∪
(
∪k

j=1V(T j
1)
)
∪

(
∪k

j=1V(T j
2)
)
∪ {p j

1, p j
2,w j : j = 1, 2, · · · , k},

E(G′) =
(
∪k

j=1E(T j
1)
)
∪

(
∪k

j=1E(T j
1)
)
∪ {uw j, uv j

1, v
j
1w j,w jv

j
2, v

j
1 p j

1, p j
1 p j

2, p j
2v j

2 : j = 1, 2, · · · , k}.

Figure 1. The graph G(T1,T2, k, v1, v2) constructed from an integer k and trees T1,T2 with
v1 ∈ V(T1) and v2 ∈ V(T2).

Lemma 1. For a graph G, if there is a vertex v ∈ V(G) with d(v) = n − 1, then we have W(G) =

n(n − 1) − m.
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Proof. Since there is a vertex v ∈ V(G) with d(v) = n − 1, then for any vertex u ∈ V(G), we have
d(u, v) ≤ 2. Since there are m pairs of vertices u, v with d(u, v) = 1, there are n(n−1)

2 −m pairs of vertices
u, v with d(u, v) = 2. Therefore, we have W(G) = m + 2(n(n−1)

2 − m) = n(n − 1) − m. �

Lemma 2. For integers r1 ≥ 1 and r2 ≥ 2, let H = H(r1, r2). Then we have W(H) = n2 − 3
2r2

2 + nr2 −

3n + 3
2r2 + 1 and m = n − r2 +

r2(r2−1)
2 .

Proof. By the definition of H(r1, r2), we assume that G1 is the (r1 + 1)-star, G2 is a Kr2 , and uv ∈ E(H)
with u ∈ V(G1), v ∈ V(G2). Then V(H(r1, r2)) = V(G1) ∪ V(G2). For any vertex w1 ∈ V(G1) − {u}, we
have tH(w1) = 2r1 + 1 + 3(r2 − 1). For any vertex w2 ∈ V(G2)− {v}, we have tH(w2) = (r2 − 1) + 2 + 3r1.
Since tH(u) = r1 + 1 + 2(r2 − 1), tH(v) = r2 + 2r1, therefore

W(H) =
1
2

(r1(2r1 + 1 + 3(r2 − 1)) + (r2 − 1)((r2 − 1) + 2 + 3r1) + r1 + 1 + 2(r2 − 1) + r2 + 2r1).

(2.1)

Also, we have
r1 + r2 + 1 = n. (2.2)

By using Eq (2.2) in Eq (2.1), we get

W(H) = n2 −
3
2

r2
2 + nr2 − 3n +

3
2

r2 + 1.

By counting the edges of H, we have m = r1 + 1 +
r2(r2−1)

2 = n − r2 +
r2(r2−1)

2 . �

Lemma 3. For any integer r ≥ 2, let y, r2, q be three integers with r2 = 2r, y ≥ r + 4r2−1
r−1 , q = −1 −

r + r2 + r2
2 + y + 2yr − yr2. Let H = H(y − 1 − r2, r2). Then, for any graph G ∈ T (H, r, q), we have

W(G) = W(H).

Proof. We first show that r + y − 1 ≤ q ≤ r(r+2y−1)
2 . Since q = −1 − r + r2 + r2

2 + y + 2yr − yr2, we have
q−(r+y−1) = −2r+r2+r2

2+2yr−yr2. Moreover, r ≥ 2, r2 = 2r ≥ 4 yield r2−2r ≥ 0, r2
2 > 0, 2yr−yr2 = 0,

thus we have q − (r + y − 1) ≥ 0. Now, we will show that q ≤ r(r+2y−1)
2 :

q −
r(r + 2y − 1)

2
= −1 +

(−1 + r)r
2

+ r2
2 + y + (r − r2)y

= (1 − r)y +
r2 − r

2
+ 4r2 − 1.

Since y ≥ 4r2−1
r−1 , 1 − r < 0, we have y(1 − r) ≤ (1 − r) 4r2−1

r−1 ≤ −4r2 + 1. Then, we have

q −
r(r + 2y − 1)

2
= (1 − r)y +

r2 − r
2

+ 4r2 − 1

≤ −4r2 + 1 + 4r2 − 1
= 0.

Consequently, we have r+y−1 ≤ q ≤ r(r+2y−1)
2 . ThenT (H, r, q) , ∅. By Lemma 2, W(H) = y2− 3

2r2
2+

yr2−3y + 3
2r2 + 1. Furthermore, for a graph G ∈ T (H, r, q), |V(G)| = n = y + r, |E(G)| = m = |E(H)|+ q.
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By Lemma 1, we have W(G) = n(n − 1) − m = (y + r)(y + r − 1) − |E(H)| − q, and by Lemma 2, we
have |E(H)| = (y − r2 +

r2(r2−1)
2 ), then we have W(G) = y2 + 2yr + r2 − y − r − (y − r2 +

r2(r2−1)
2 ) − (−1 −

r + r2 + r2
2 + y + 2yr − yr2) = y2 + r2y − 3y − 3r2

2
2 + 3r2

2 + 1 = W(H). Thus for any graph G ∈ T (H, r, q)
W(G) = W(H) which completes the proof. �

Lemma 4. For a graph G and r ≥ 1, let there be r vertices u1, . . . , ur such that W(G) = W(G −
{u1, . . . , ur}). Denote by G′ = G − {u1, . . . , ur}, then there is a vertex v ∈ V(G′) with tG′(v) − tG(v) ≥ r.

Proof. Suppose to the contrary, we have tG′(v) − tG(v) < r for any v ∈ V(G′). Clearly, we have

tG(v) ≥ n−1 for any v ∈ V(G). Since W(G) = 1
2

n∑
i=1

tG(ui),W(G′) = 1
2

n−r∑
i=1

tG′(ui+r),W(G) = W(G′). Then,

we have 2(W(G) − W(G′)) =
r∑

i=1
(tG(ui)) +

n∑
i=r+1

(tG(ui) − tG′(ui)) > r(n − 1) − r(n − r) = r2 − r ≥ 0, a

contradiction with W(G) = W(G′). �

Lemma 5. For three integers r,m, k with m ≥ r ≥ 2, (1+rk)rk
2 ≥ m, there is a set of trees F , ∅ such that

|V(T )| = rk + 1 and there is a vertex v ∈ V(T ) with tT (v) = mk for any T ∈ F .

Proof. First we consider following equations:

x1 + x2 + x3 + . . . + x j = z1

x2 + x3 + . . . + x j = z2

...

x j = z j

Let Vi(T, v0) = {v|dT (v, v0) = i}. Clearly, for x1, x2, . . . , x j, if all x′i s are in N+, then there is a tree T
and v0 ∈ V(T ) with |Vi(T, v0)| = xi, |V(T )| = z1 +1. And for this tree T , we have |V(T )| = z1 +1, tT (v0) =

z1 + . . . + z j. Clearly, if zi+1 < zi for any 1 ≤ i ≤ j − 1, there is a solution x1, x2, . . . , x j in which all xi’s
are in N+.

So if we can find z1, . . . , z j with z1 = rk, z1 + . . . + z j = mk, and zi+1 < zi for any 1 ≤ i ≤ j − 1, then
we can get the tree as required. If m ≥ r ≥ 2, (1+rk)rk

2 ≥ m, we do following procedure:
(1) Let z1 = rk, i = 1.

(2) If mk −
i∑

k=1
zk > zi − 1, let zi+1 = zi − 1, i = i + 1 and go to step 2, else let zi+1 = mk −

i∑
k=1

zk.

Since rk + (rk − 1) + . . .+ 1 =
(1+rk)rk

2 ≥ m, we can get z1, . . . , z j with z1 = rk, z1 + . . .+ z j = mk, and
zi+1 < zi for any 1 ≤ i ≤ j − 1.

�

Theorem 1. For any r ≥ 2, there are infinitely many graphs G for which W(G) = W(G − {v1, . . . , vr})
for some distinct vertices v1, . . . , vr ∈ V(G).

Proof. By Lemma 3, there exist graphs G,H, with H = G − {u1, . . . , ur},W(G) = W(H). By Lemma
4, there is a vertex u ∈ V(G) with u < {u1, . . . , ur}, tH(u) − tG(u) ≥ r. Clearly, we can find integer k
with (1+rk)r

2 ≥ tH(u) − tG(u), then by lemma 5, there is a tree T1 with |V(T1)| = rk + 1 and a vertex
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v ∈ V(T1) such that tT1(v) = (tH(u) − tG(u))k. By identifying u with v, we obtain G1. Then, we have
W(G1) = W(G) + W(T1) + (|V(T1)| − 1)tG(u) + (|V(G)| − 1)tT1(v), and we have:

W(G1 − {u1, . . . , ur}) =W(H) + W(T1) + (|V(T1)| − 1)tH(u) + (|V(H)| − 1)tT1(v)
=W(H) + W(T1) + (kr + 1 − 1)tH(u) + (|V(G)| − 1 − r)tT1(v)
=W(H) + W(T1) + (kr + 1 − 1)tH(u) + (|V(G)| − 1)tT1(v) − rtT1(v)
=W(H) + W(T1) + krtH(u) + (|V(G)| − 1)tT1(v) − r(tH(u) − tG(u))k
=W(G) + W(T1) + (|V(G)| − 1)tT1(v) + rktG(u)
=W(G) + W(T1) + (|V(G)| − 1)tT1(v) + (|V(T1)| − 1)tG(u)
=W(G1).

(2.3)

Then, for G1, take G′1 = G1 − {u1, . . . , ur}, by Lemma 4, there is a vertex u ∈ V(G1) with
u < {u1, . . . , ur}, (t′G1

(u) − tG1(u)) ≥ r. By Lemma 5, there is a tree T2 with V(T2) = rk2 + 1 such
that there is a vertex v ∈ V(T ) with tT2(v) = (tG′1(u) − tG1(u))k2. By identifying u with v, we obtain
G2. Similarly, we have W(G2 − {u1, . . . , ur}) = W(G2). Similarly, we can obtain G3,G4, . . ., which
completes the proof. �

Remark 1. For an integer k > 0, there exist a rational number u = a
b and integer n2 > 0 such that

(i) 0 < 8uk−4u+8k−8−ku2

4k < 1
3 .

(ii) n2 ≡ 0 (mod 4ka2), 0 < ω2 = λ2n2
2+λ1n2+λ0 <

n2(n2−1)
2 , 0 < ω1 =

n2
1

4 < n1(n1−1)
2 , where n1 = un2−4,

λ2 = 8uk−4u+8k−8−ku2

4k = 8bka−4ba+8ka2−8a2+kb2

4ka2 , λ1 = −5k+2+u
k = −5ka+2a+b

ak , and λ0 = −5

Proof. (i) Let fk(u) = 8uk−4u+8k−8−ku2

4k . If k = 1, we have fk(4) = 0, fk(0) = 0. Since fk(u) is a quadratic
function, there is a rational number u with 0 < fk(u) < 1

3 . If k > 1, we have fk(0) = 2 − 2
k > 0. Then

there is a real number x > 0 with fk(x) = 0. Then there is a rational number u with 0 < fk(u) < 1
3 .

(ii)Since 0 < λ2 <
1
3 <

1
2 , we have λ2n2

2 + λ1n2 + λ0 <
n2(n2−1)

2 when n2 is large enough. And clearly,

we have 0 < ω1 =
n2

1
4 < n1(n1−1)

2 when n1 is large enough. Now, let n2 ≡ 0 (mod 4ka2) and large enough.
Let n1 = un2 − 4. (ii) holds.

�

Clearly, n1, n2, ω1, ω2 all are positive integers.

Lemma 6. For an integer k ≥ 1, let T1,T2 be two trees with |V(T1)| = n1, tT1(v1) = ω1, |V(T2)| =

n2, tT2(v2) = ω2 and G = G(T1,T2, k, v1, v2). Then we have W(G) = W(G − {w1}) = . . . = W(G − {wk}).
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Proof. We will only show W(G) = W(G − {w1}). Let G − {w1} = G′, then we have:

W(G) −W(G′) =
∑

u,v∈V(G−{w1}),u,v

(d(u, v|G) − d(u, v|G′)) + tG(w1)

=
∑

u,v∈V(T 1
2 ),u,v

(d(u, v|G) − d(u, v|G′)) +
∑

u,v∈V(G′)−V(T 1
2 ),u,v

(d(u, v|G) − d(u, v|G′))

+
∑

u∈V(T 1
2 ),v∈V(G′)−V(T 1

2 )

(d(u, v|G) − d(u, v|G′)) + tG(w1)

=
∑

u∈V(T 1
2 ),v∈V(G′)−V(T 1

2 )

(d(u, v|G) − d(u, v|G′)) + tG(w1)

= − (n2n1 + 2(1 + (k − 1)(n1 + n2 + 3))n2) + n2 + tT2(v2) + n1 + tT1(v1) + 4 + 1
+ (k − 1)(2n1 + tT1(v1)) + 2(k − 1) + (k − 1)(3n2 + tT2(v2))
+ 3(k − 1) + 4(k − 1).

(2.4)

Since n1 = un2 − 4, tT2(v2) = ω2 = λ2n2
2 + λ1n2 + λ0, tT1(v1) = ω1 =

n2
1

4 , then we have:

W(G) −W(G′) = − (n2n1 + 2(1 + (k − 1)(n1 + n2 + 3))n2) + n2 + tT2(v2) + n1 + tT1(v1) + 4 + 1
+ (k − 1)(2n1 + tT1(v1)) + 2(k − 1) + (k − 1)(3n2 + tT2(v2))
+ 3(k − 1) + 4(k − 1)

=(λ2k +
u2k
4
− 2ku + u − 2k + 2)n2

2 + (λ1k + 5k − 2 − u)n2 + λ0k + 5k.

(2.5)

Since λ2 = 8uk−4u+8k−8−ku2

4k , λ1 = −5k+2+u
k , λ0 = −5, therefore, we have:

W(G) −W(G′) =(λ2k +
u2k
4
− 2ku + u − 2k + 2)n2

2 + (λ1k + 5k − 2 − u)n2 + λ0k + 5k

=0.
(2.6)

�

For example, let b = 13, a = 2, u = 13
2 , n1 = 2076, n2 = 320, ω1 = 1077444, ω2 = 18955. Let

P607 = v1v2 . . . v607 be a path with 607 vertices, P65 = u1u2 . . . u65 be a path with 66 vertices. Let S 1234

be a (1234)-star centered at v608 and S 236 be a (236)-star centered at u66. Now we obtain T1 by adding
v608 to v607 and we obtain T2 by adding u66 to u65.

Let G = G(T1,T2, 2, v1, u1), G′ = G − {w1}.

AIMS Mathematics Volume 6, Issue 12, 12976–12985.
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W(G) −W(G′) =
∑

u,v∈V(G−{w1}),u,v

(d(u, v|G) − d(u, v|G′)) + tG(w1)

=
∑

u,v∈V(T 1
2 ),u,v

(d(u, v|G) − d(u, v|G′)) +
∑

u,v∈V(G′)−V(T 1
2 ),u,v

(d(u, v|G) − d(u, v|G′))

+
∑

u∈V(T 1
2 ),v∈V(G′)−V(T 1

2 )

(d(u, v|G) − d(u, v|G′)) + tG(w1)

=
∑

u∈V(T 1
2 ),v∈V(G′)−V(T 1

2 )

(d(u, v|G) − d(u, v|G′)) + tG(w1)

= − (n2n1 + 2(1 + (k − 1)(n1 + n2 + 3))n2) + n2 + tT2(v2) + n1 + tT1(v1) + 4 + 1
+ (k − 1)(2n1 + tT1(v1)) + 2(k − 1) + (k − 1)(3n2 + tT2(v2))
+ 3(k − 1) + 4(k − 1)

=0.

(2.7)

Theorem 2. For any k > 0, there are infinitely many graphs G for which W(G) = W(G − {w1}) =

W(G − {w2}) = . . . = W(G − {wk}) for some distinct vertices w1, . . . ,wk ∈ V(G).

Proof. By Remark 1, there exist rational number u = a
b with 0 < 8uk−4u+8k−8−ku2

4k < 1
3 and an integer n2

with n2 (mod 4ka2) ≡ 0 such that 0 < ω2 = λ2n2
2 + λ1n2 + λ0 <

n2(n2−1)
2 , 0 < ω1 =

n2
1

4 < n1(n1−1)
2 where

n1 = un2 − 4, and λ2 = 8uk−4u+8k−8−ku2

4k = 8bka−4ba+8ka2−8a2+kb2

4ka2 , λ1 = −5k+2+u
k = −5ka+2a+b

ak , λ0 = −5. Since
n1, n2, ω1, ω2 all are integers such that 0 < ω2 <

n2(n2−1)
2 and 0 < ω1 <

n1(n1−1)
2 , therefore there exist two

trees T1,T2 with |V(T1)| = n1, tT1(v1) = ω1, |V(T2)| = n2, tT2(v2) = ω2. By Lemma 6, there is a graph
G = G(T1,T2, k, v1, v2) with W(G) = W(G − {w1}) = . . . = W(G − {wk}). Let Gi = G − {wi}. Clearly, we
have tG1(u) = tG2(u) = . . . = tGk(u) and tGi(u) − tG(u) ≥ 1.

Clearly, there is an integer k such that (1+rk)r
2 ≥ tG1(u) − tG(u) for any r. Now by Lemma 5, there

is a tree T with |V(T )| = rk + 1, tT (v) = (tG1(u) − tG(u))k, where v ∈ V(T ) and r = 1. Now we
obtain a graph G2 by identifying u with v from G,T . Let nG = |V(G)|, nT = |V(T )|. Since W(G2) =

W(G)+W(T )+(nG−1)tT (v)+(nT −1)tG(u),W(G2−{wi}) = W(Gi)+W(T )+(nG−2)tT (v)+(nT −1)tGi(u),
then we have:

W(G2) −W(G2 − {wi}) =W(G) + W(T ) + (nG − 1)tT (v) + (nT − 1)tG(u)
− (W(Gi) + W(T ) + (nG − 2)tT (v) + (nT − 1)tGi(u))

=tT (v) + (nT − 1)(tG(u) − tGi(u))
=(tG1(v) − tG(u))k + k(tG(u) − tGi(u))
=(tGi(v) − tG(u))k + k(tG(u) − tGi(u))
=0.

(2.8)

Therefore, W(G2) = W(G2 − {w1}) = . . . = W(G2 − {wk}). Let G2
i = G2 − {wi}, then we have tG2

1
(u) =

tG2
2
(u) = . . . = tG2

k
(u). Let T4 be a tree with |V(T4)| = rk2 + 1, tT (v) = (tG2

1
(u) − tG2(u))k2 where

v ∈ V(T4) and r = 1. Now we obtain a graph G3 by identifying u with v from G2,T4. Similarly, we
have W(G3) = W(G3−{w1}) = . . . = W(G3−{wk}). Similarly, we can obtain G4,G5, . . .. Then the proof
is completed. �
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3. Conclusions

Topological index is a mathematical quantity which is assigned to a graph in order to develop
relationships between a graph (or structure of a molecule) and some properties including biological
activity, physical properties or chemical reactivity. Due to vast applications in several branches of
science, the Wiener index has remained one of the most frequently studied topological index both
in pure and applied mathematics. In this paper, we are able to contribute to this topic by means of
a study related to the Šoltés problem. In particular, we have solved the problem of finding infinite
family of graphs G such that for each G there exist distinct vertices w1, . . . ,wk ∈ V(G) satisfying
W(G) = W(G − {w1}) = W(G − {w2}) = . . . = W(G − {wk}). The problem was posed by Knor et al. [4]
in 2018 during the study related to Šoltés problem. The solution presented in this paper may be a step
forward toward the solution of Šoltés problem and may be used by other mathematicians working in
this area.
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8. M. Knor, R. Škrekovski, A. Tepeh, Mathematical aspects of Wiener Index, Ars Mathematica
Contemporanea, 11 (2016), 327–352.

AIMS Mathematics Volume 6, Issue 12, 12976–12985.



12985

9. C. Liu, A note on domination number in maximal outerplanar graphs, Discrete Applied
Mathematics, 293 (2021), 90-94.

10. J. B. Liu, M. Javaid, H. M. Awais, Computing Zagreb Indices of the Subdivision-Related
Generalized Operations of Graphs, IEEE Access, 7 (2019), 105479–105488.

11. M. Liu, B. Liu, A Survey on Recent Results of Variable Wiener Index, MATCH Commun. Math.
Comput. Chem., 69 (2013), 491–520.

12. J. B. Liu, J. Zhao, S. Wang, M. Javaid, J. Cao, On the topological properties of the certain neural
networks, J. Artif. Intell. Soft, 8 (2018), 257–268.

13. L. Luo, N. Dehgardi, A. Fahad, Lower Bounds on the Entire Zagreb Indices of Trees, Discrete Dyn.
Nat. Soc., 2020 (2020), 1–8.
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