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1. Introduction

Neural networks is useful for solving numerous complex optimization problems in electromagnetic
theory. Applied physicist B. Bartlett presented unsupervised machine learning model for computing
approximate electromagnetic field solutions [7]. In April 2019, the Event Horizon Telescope (EHT)
collaboration released the first image of the shadow of a black hole with the help of deep learning
algorithms. This image provides direct evidence for the existence of black holes and general theory
of relativity and indirect evidence for the existence of lightlike geometry in the universe [19]. A
statistical manifold is emerging branch of mathematics that generalizes the Riemannian manifold and
is used to model the information; and also uses tools of differential geometry to study statistical
inference, information loss and estimation [9]. Statistical manifolds are applicable to many areas
such as neural networks, machine learning and artificial intelligence. On the other hand, the study
of lightlike manifolds is one of the most important research areas in differential geometry with many
applications in physics and mathematics, such as general relativity, electromagnetism and black hole
theory (Please see [7, 8, 10, 11, 19]).

There exist qualified papers dealing with statistical manifolds and their submanifolds admitting
various differentiable structures. In 1975, Efron [14] was the first researcher who emphasized
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the role of differential geometry in statistics and was further studied with the help of differential
geometrical tools by Amari [1,2]. In 1989, Vos [30] obtained fundamental equations for submanifolds
of statistical manifolds. Takano define a Sasaki-like statistical manifold and he study Sasaki-like
statistical submersion with the property that the curvature tensor with respect to the affine connection
of the total space satisfies the condition [28]. In [29], the authors define the concept of quaternionic
Kahler-like statistical manifold and derive the main properties of quaternionic Kahler-like statistical
submersions, extending in a new setting some previous results obtained by Takano concerning
statistical manifolds endowed with almost complex and almost contact structures. The geometry of
hypersurfaces of statistical manifolds was presented by Furuhata in [15, 16]. Statistical manifolds
admitting contact structures or complex structures and submanifolds of these kinds of manifolds were
investigated in [18, 24]. In degenerate case, lightlike hypersurfaces of statistical manifolds were
introduced by the Bahadir and Tripathi [6]. Also, statistical lightlike hypersurfaces were studied by
Jain, Singh and Kumar in [20]. In addition, many studies have been conducted in relation to these
concepts [3–5, 21, 22, 25, 26].

Motivated by these developments, we dedicate the present study to introduce the lightlike geometry
of an indefinite Sasakian statistical manifold. In Section 2, we present basic definitions and results
about statistical manifolds and lightlike hypersurfaces. In Section 3, we show that the induced
connections on a lightlike hypersurface of a statistical manifold need not be dual and a lightlike
hypersurface need not be a statistical manifold. Moreover, we show that the second fundamental
forms are not degenerate. We conclude the section with an example. In Section 4, we defined
indefinite Sasakian statistical manifolds and obtain the characterization theorem for indefinite Sasakian
statistical manifolds. This section is concluded with two examples. In Section 5, we consider lightlike
hypersurfaces of indefinite Sasakian statistical manifolds. We characterize the parallelness, totaly
geodeticity and integrability of some distributions. In this section we also give two examples. In
Section 6, we prove that an invariant lightlike submanifold of indefinite Sasakian statistical manifold
is an indefinite Sasakian statistical manifold.

2. Preliminaries

Let (M̃, g̃) be an (m + 2)-dimensional semi-Riemannian manifold with index(̃g) = q ≥ 1 and
(M, g) be a hypersurface of (M̃, g̃) with the induced metric g from g̃. If the induced metric g on M
is degenerate, then M is called a lightlike (null or degenerate) hypersurface.

For a lightlike hypersurface (M, g) of (M̃, g̃), there exists a non-zero vector field ξ on M such that

g (ξ, X) = 0, X ∈ Γ (T M) , (2.1)

Here the vector field ξ is called a null vector ( [11–13]). The radical or the null space Rad TxM at each
point x ∈ M is defined as

Rad TxM = {ξ ∈ TxM : gx(ξ, X) = 0, ∀X ∈ Γ(T M)}. (2.2)

The dimension of Rad TxM is called the nullity degree of g. We recall that the nullity degree of g
for a lightlike hypersurface is equal to 1. Since g is degenerate and any null vector being orthogonal to
itself, the normal space TxM⊥ is a null subspace. Also, we have

Rad TxM = TxM⊥. (2.3)
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The complementary vector bundle S(T M) of Rad T M in T M is called the screen bundle of M. We
note that any screen bundle is non-degenerate. Therefore we can write the following decomposition:

T M = Rad T M ⊥ S(T M). (2.4)

Here ⊥ denotes the orthogonal-direct sum. The complementary vector bundle S(T M)⊥ of S(T M) in
T M̃ is called the screen transversal bundle. Since Rad T M is a lightlike subbundle of S(T M)⊥, there
exists a unique local section N of S(T M)⊥ such that we have

g̃(N,N) = 0, g̃(ξ,N) = 1. (2.5)

Note that N is transversal to M and {ξ,N} is a local frame field of S(T M)⊥ and there exists a line
subbundle ltr(T M) of T M̃. This set is called the lightlike transversal bundle, locally spanned by N.
Hence we have the following decomposition:

T M̃ = T M ⊕ ltr(T M) = S (T M)⊥Rad T M ⊕ ltr(T M), (2.6)

where ⊕ is the direct sum but not orthogonal ( [11, 12]).
For details of lightlike submanifolds, we may refer to [8, 11–13].

Definition 1. [28] A statistical manifold is a triple (M̃, g̃, D̃) formed of a semi-Riemannian manifold
and a torsion free connection D̃ subject to the following identity

(D̃Xg̃)(Y,Z) = (D̃Y g̃)(X,Z), for all X,Y,Z ∈ Γ(T M̃).

Given statistical manifold (M̃, g̃, D̃) the g̃− dual of D̃, D̃∗ is defined by the following identity

g̃(X, D̃∗ZY) = Zg̃(X,Y) − g̃(D̃ZX,Y). (2.7)

It is easy to check that D̃∗ is torsion free and (M̃, g̃, D̃∗) is a statistical manifold. Also, an equivalent
of Definition 1 according to definition D∗ is as follows:

Definition 2. A statistical manifold is a quadruple (M̃, g̃, D̃, D̃∗) formed of a semi-Riemannian
manifold (M̃, g̃) and a pair of torsion free connection (D̃, D̃∗) subject the following identity

Zg̃(X,Y) = g̃(X, D̃∗ZY) + g̃(D̃ZX,Y), for all X,Y,Z ∈ Γ(T M̃).
A statistical manifold will be represented by (M̃, g̃, D̃, D̃∗).

If D̃0 is Levi-Civita connection of g̃, then we have

D̃0 =
1
2

(D̃ + D̃∗). (2.8)

If we choose D̃∗ = D̃ in the Eq (2.8), then Levi-Civita connection is obtained.

Lemma 2.1. For statistical manifold (M̃, g̃, D̃, D̃∗), if we set

K = D̃ − D̃0. (2.9)

Then we have
K(X,Y) = K(Y, X), g̃(K(X,Y),Z) = g̃(K(X,Z),Y), (2.10)

for any X,Y,Z ∈ Γ(T M).
Conversely, for a Riemannian metric g, if K satisfies (2.10), the pair (D̃ = ∇̃ + K, g̃) is a statistical

structure on M̃ [18].
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3. Lightlike hypersurface of a statistical manifold

Let (M, g) be a lightlike hypersurface of a statistical manifold (M̃, g̃, D̃, D̃∗). Then, Gauss and
Weingarten formulas with respect to dual connections are given as follows:

D̃XY = DXY + B(X,Y)N, (3.1)

D̃XN = −AN X + τ(X)N (3.2)

D̃∗XY = D∗XY + B∗(X,Y)N, (3.3)

D̃∗XN = −A∗N X + τ∗(X)N, (3.4)

for all X,Y ∈ Γ(T M), N ∈ Γ(ltrT M), where DXY , D∗XY , AN X, A∗N X ∈ Γ(T M) and

B(X,Y) = g̃(D̃XY, ξ), τ(X) = g̃(D̃XN, ξ),

B∗(X,Y) = g̃(D̃∗XY, ξ), τ∗(X) = g̃(D̃∗XN, ξ).

Here, D, D∗, B, B∗, AN and A∗N are called the induced connections on M, the second fundamental forms
and the Weingarten mappings with respect to D̃ and D̃∗, respectively ( [6, 15]). Using Gauss formulas
and the Eq (2.8), we obtain

Xg(Y,Z) = g(D̃XY,Z) + g(Y, D̃∗XZ),
= g(DXY,Z) + g(Y,D∗XZ) + B(X,Y)η(Z) + B∗(X,Z)η(Y). (3.5)

From the Eq (3.5), we have the following result.

Theorem 3.1. [6] Let (M, g) be a lightlike hypersurface of a statistical manifold (M̃, g̃, D̃, D̃∗). Then
we have the following expressions:

(i) Induced connections D and D∗ need not be dual.
(ii) A lightlike hypersurface of a statistical manifold need not be a statistical manifold with respect to

the dual connections.

Using Gauss and Weingarten formulas in (3.5), we get

(DXg)(Y,Z) + (D∗Xg)(Y,Z) = B(X,Y)η(Z) + B(X,Z)η(Y)
+B∗(X,Y)η(Z) + B∗(X,Z)η(Y). (3.6)

Proposition 3.2. [6] Let (M, g) be a lightlike hypersurface of a statistical manifold (M̃, g̃, D̃, D̃∗).
Then the following assertions are true:

(i) Induced connections D and D∗ are symmetric connection.
(ii) The second fundamental forms B and B∗ are symmetric.
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Let P denote the projection morphism of Γ(T M) on Γ(S (T M)) with respect to the
decomposition (2.4). For all X,Y ∈ Γ(T M) and ξ ∈ Γ(RadT M), we have

DXPY = ∇XPY + h(X, PY), (3.7)

DXξ = −AξX + ∇
t
Xξ, (3.8)

where ∇XPY and AξX belong to Γ(S (T M)). Also we can say that ∇ and ∇
t

are linear connections on
Γ(S (T M)) and Γ(RadT M), respectively. Here, h and A are called screen second fundamental form and
screen shape operator of S (T M), respectively. If we define

C(X, PY) = g(h(X, PY),N), (3.9)

ε(X) = g(∇
t
Xξ,N), ∀X,Y ∈ Γ(T M). (3.10)

One can show that
ε(X) = −τ(X).

Therefore, we have
DXPY = ∇XPY +C(X, PY)ξ, (3.11)

DXξ = −AξX − τ(X)ξ, ∀X,Y ∈ Γ(T M). (3.12)

Here C(X, PY) is called the local screen fundamental form of S (T M).

Similarly, the relations of induced dual objects on S (T M) are given by

D∗XPY = ∇∗XPY +C∗(X, PY)ξ, (3.13)

D∗Xξ = −A
∗

ξX − τ
∗(X)ξ, ∀X,Y ∈ Γ(T M). (3.14)

Using (3.5), (3.11), (3.13) and Gauss-Weingarten formulas, the relationship between induced
geometric objects are given by

B(X, ξ) + B∗(X, ξ) = 0, g(AN X + A∗N X,N) = 0, (3.15)

C(X, PY) = g(A∗N X, PY), C∗(X, PY) = g(AN X, PY). (3.16)

Now, using the Eq (3.15), we can state the following result.

Proposition 3.3. [6] Let (M, g) be a lightlike hypersurface of a statistical manifold (M̃, g̃, D̃, D̃∗).
Then second fundamental forms B and B∗ are not degenerate.

Additionally, due to D̃ and D̃∗ are dual connections, we obtain

B(X,Y) = g(A
∗

ξX,Y) + B∗(X, ξ)η(Y), (3.17)

B∗(X,Y) = g(AξX,Y) + B(X, ξ)η(Y). (3.18)

Using (3.17) and (3.18) we get
A
∗

ξξ + Aξξ = 0.

AIMS Mathematics Volume 6, Issue 11, 12845–12862.



12850

Example 1. Let (R4
2, g̃) be a 4-dimensional semi-Euclidean space with signature (−,−,+,+) of the

canonical basis (∂0, . . . , ∂3). Consider a hypersurface M of R4
2 given by

x0 = x1 +
√

2
√

x2
2 + x2

3.

For simplicity, we set f =
√

x2
2 + x2

3. It is easy to check that M is a lightlike hypersurface whose radical
distribution RadT M is spanned by

ξ = f (∂0 − ∂1) +
√

2(x2∂2 + x3∂3).

Then the lightlike transversal vector bundle is given by

ltr(T M) = S pan
{

N =
1

4 f 2

{
f (−∂0 + ∂1) +

√
2(x2∂2 + x3∂3)

}}
.

It follows that the corresponding screen distribution S (T M) is spanned by

{W1 = ∂0 + ∂1, W2 = −x3∂2 + x2∂3}.

Then, by direct calculations we obtain

∇̃XW1 = ∇̃W1 X = 0,

∇̃W2W2 = −x2∂2 − x3∂3,

∇̃ξξ =
√

2ξ, ∇̃W2ξ = ∇̃ξW2 =
√

2W2,

for any X ∈ Γ(T M) (see [13], Example 2, pp. 48–49).
We define an affine connection D̃ as follows:

D̃XW1 = D̃W1 X = 0, D̃W2W2 = −2x2∂2

D̃ξξ =
√

2ξ, (3.19)

D̃W2ξ = D̃ξW2 =
√

2W2.

Then we obtain

D̃∗XW1 = D̃∗W1
X = 0, D̃∗W2

W2 = −2x3∂3,

D̃∗ξξ =
√

2ξ, (3.20)

D̃∗W2
ξ = D̃∗ξW2 =

√
2W2.

Then D̃ and D̃∗ are dual connections. Here, one can easily see that T D̃ = 0 and D̃g̃ = 0. Thus, we can
easily see that (R4

2, g̃, D̃, D̃
∗) is a statistical manifold.
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4. Indefinite Sasakian statistical manifolds

In order to call a differentiable semi-Riemannian manifold (M̃, g̃) of dimension n = 2m + 1 as
practically contact metric one, a (1, 1) tensor field φ̃, a contravariant vector field ν, a 1− form η and a
Riemannian metric g̃ should be admitted, which satisfy

φ̃ν = 0, η(φ̃X) = 0, η(ν) = ϵ, (4.1)
φ̃2(X) = −X + η(X)ν, g̃(X, ν) = ϵη(X), (4.2)

g̃(φ̃X, φ̃Y) = g̃(X,Y) − ϵη(X)η(Y), ϵ = ∓1, (4.3)

for all the vector fields X, Y on M̃. When a practically contact metric manifold performs

(∇̃Xφ̃)Y = g̃(X,Y)ν − ϵη(Y)X, (4.4)
∇̃Xν = −φ̃X, (4.5)

M̃ is regarded as an indefinite Sasakian manifold. In this study, we assume that the vector field ν is
spacelike.

Definition 3. Let (̃g, φ̃, ν) be an indefinite Sasakian structure on M̃. A quadruplet (D̃ = ∇̃ + K, g̃, φ̃, ν)
is called a indefinite Sasakian statistical structure on M̃ if (D̃, g̃) is a statistical structure on M̃ and the
formula

K(X, φ̃Y) = −φ̃K(X,Y) (4.6)

holds for any X,Y ∈ Γ(T M̃). Then (M̃, D̃, g̃, φ̃, ν) is said to an indefinite Sasakian statistical manifold.

An indefinite Sasakian statistical manifold will be represented by (M̃, D̃, g̃, φ̃, ν). We remark that if
(M̃, D̃, g̃, φ̃, ν) is an indefinite Sasakian statistical manifold, so is (M̃, D̃∗, g̃, φ, ν) [17, 18].

Theorem 4.1. Let (M̃, D̃, g̃) be a statistical manifold and (̃g, φ̃, ν) an almost contact metric structure
on M̃. (D̃, g̃, φ̃, ν) is an indefinite Sasakian statistical struture if and only if the following conditions
hold:

D̃XφY − φ̃D̃∗XY = g̃(Y, X)ν − g̃(Y, ν)X, (4.7)
D̃Xν = −φ̃X + g(D̃Xν, ν)ν, (4.8)

for all the vector fields X, Y on M̃.
Proof. Using (2.9) we get

D̃Xφ̃Y − φ̃D̃∗XY = (∇̃Xφ̃)Y + K(X, φ̃Y) + φ̃K(X,Y), (4.9)

for all the vector fields X, Y on M̃. If we consider Definition 3 and the Eq (4.4), we have the
formula (4.7). If we write D̃∗ instead of D̃ in (4.7), we have

D̃∗Xφ̃Y − φ̃D̃XY = g̃(Y, X)ν − g̃(Y, ν)X, (4.10)

Substituting ν for Y in (4.10), we have the Eq (4.8).
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Conversely using (4.7), we obtain

φ̃{D̃Xφ̃
2Y − φ̃D̃∗Xφ̃Y} = 0.

Assume (4.2) and (4.8) as well, we get

0 = −φ̃D̃XY + g̃(Y, ν)X − g̃(X, ν)̃g(Y, ν)ν + D̃∗Xφ̃Y − g̃(φ̃X, φ̃Y)ν,

From (4.3), we have the Eq (4.10).
Now, using (4.7) and (4.10), respectively, we have the following equations:

(∇̃Xφ̃)Y − g̃(Y, X)ν + g̃(Y, ν)X = K(X, φ̃Y) + φ̃K(X,Y),

and
(∇̃Xφ̃)Y − g̃(Y, X)ν + g̃(Y, ν)X = −K(X, φ̃Y) − φ̃K(X,Y).

This last two equations verifies (4.4) and (4.6).

Example 2. Let M̃ = (R5
2, g̃) be a semi-Euclidean space, where g̃ is of the signature (−,+,−,+,+) with

respect to canonical basis { ∂
∂x1
, ∂
∂x2
, ∂
∂y1
, ∂
∂y2
, ∂
∂z }. Defining

η = dz, ν =
∂

∂z
,

φ̃

(
∂

∂xi

)
= −
∂

∂yi
, φ̃

(
∂

∂yi

)
=
∂

∂xi
, φ̃

(
∂

∂z

)
= 0,

where i = 1, 2. It can easily see that (φ̃, ν, η, g̃) is an indefinite Sasakian structure on R5
2. If we choose

K(X,Y) = g̃(Y, ν)̃g(X, ν)ν, then (D̃ = ∇̃ + K, g̃, φ̃, ν) is an indefinite Sasakian statistical structure on M̃.

Example 3. In a 5− dimensional real number space M̃ = R5, let {xi, yi, z}1≤i≤2 be cartesian coordinates
on M̃ and { ∂

∂xi
, ∂
∂yi
, ∂
∂z }1≤i≤2 be the natural field of frames. If we define 1− form η, a vector field ν and a

tensor field φ̃ as follows:

η = dz − y1dx1 − x1dy1, ν =
∂

∂z
,

φ̃(
∂

∂x1
) = −

∂

∂x2
, φ̃(

∂

∂x2
) =

∂

∂x1
+ y1

∂

∂z
, φ̃(

∂

∂y1
) = −

∂

∂y2
,

φ̃(
∂

∂y2
) =

∂

∂y1
+ x1

∂

∂z
, φ̃(
∂

∂z
) = 0.

It is easy to check (4.1) and (4.2). Then, (φ̃, ν, η) is an almost contact structure on R5. Now, we define
metric g̃ on R5 by

g̃ = (y2
1 − 1)dx2

1 − dx2
2 + (x2

1 + 1)dy2
1 + dy2

2 + dz2 − y1dx1 ⊗ dz − y1dz ⊗ dx1

+ x1y1dx1 ⊗ dy1 + x1y1dy1 ⊗ dx1 − x1dy1 ⊗ dz − x1dz ⊗ dy1,

with respect to the natural field of frames. Then we can easily see that (φ̃, ν, η, g̃) is an indefinite
Sasakian structure on R5. We set the difference tensor field K as

K(X,Y) = λg̃(Y, ν)̃g(X, ν)ν,

where λ ∈ C∞(M̃). Then, (D̃ = ∇̃ + K, g̃, φ̃, ν) is an indefinite Sasakian statistical structure on M̃.
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5. Lightlike hypersurfaces of indefinite Sasakian statistical manifolds

Definition 4. Let (M, g,D,D∗) be a hypersurface of indefinite Sasakian statistical manifold
(M̃, D̃, g̃, φ̃, ν). The quadruplet (M, g,D,D∗) is called lightlike hypersurface of indefinite Sasakian
statistical manifold (M̃, D̃, g̃, φ̃, ν) if the induced metric g is degenerate.

Let (M̃, D̃, g̃, φ̃, ν) be a (2m+1)− dimensional Sasakian statistical manifold and (M, g) be a lightlike
hypersurface of M̃, such that the structure vector field ν is tangent to M. For any ξ ∈ Γ(RadT M) and
N ∈ Γ(ltrT M), in view of (4.1)–(4.3), we have

g̃(ξ, ν) = 0, g̃(N, ν) = 0, (5.1)
φ̃2ξ = −ξ, φ̃2N = −N. (5.2)

Also using (3.1) and (4.8) we obtain

B(ξ, ν) = 0, B(ν, ν) = 0, (5.3)
B∗(ξ, ν) = 0, B∗(ν, ν) = 0. (5.4)

Proposition 5.1. Let (M̃, D̃, g̃, φ̃, ν) be a (2m + 1)− dimensional Sasakian statistical manifold and
(M, g,D,D∗) be its lightlike hypersurface such that the structure vector field ν is tangent to M. Then
we have

g(φ̃ξ, ξ) = 0, (5.5)
g(φ̃ξ,N) = −g(ξ, φ̃N) = −g(A∗Nξ, ν), (5.6)

g(φ̃ξ, φ̃N) = 1, (5.7)

where ξ is a local section of RadT M and N is a local section of ltrT M.
Proof. Using (4.8) and (3.1), we have

g(φ̃ξ, ξ) = g(−D̃ξν + g(D̃ξν, ν)ν, ξ)
= g(−Dξν − B(ξ, ν)N, ξ),
= 0

and

g(φ̃ξ,N) = g(−D̃ξν + g(D̃ξν, ν)ν,N)
= g(ν, D̃∗ξN),
= −g(A∗Nξ, ν).

From (4.3) and (5.1), we have (5.7).

Proposition 5.1 makes it possible to make the following decompositions:

S (T M) = {φ̃RadT M ⊕ φ̃ltr(T M)}⊥L0⊥⟨ν⟩, (5.8)
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where L0 is non-degenerate and φ̃− invariant distribution of rank 2m − 4 on M. If we denote the
following distributions on M

L = RadT M⊥φ̃RadT M⊥L0, L
′

= φ̃ltr(T M), (5.9)

then L is invariant and L
′

is anti-invariant distributions under φ̃. Also we have

T M = L ⊕ L
′

⊥⟨ν⟩. (5.10)

Now, we consider two null vector field U and W and their 1− forms u and w as follows:

U = −φ̃N, u(X) = g̃(X,W), (5.11)
W = −φ̃ξ, w(X) = g̃(X,U). (5.12)

Then, for any X ∈ Γ(T M̃), we have

X = S X + u(X)U, (5.13)

where S projection morphism of T M̃ on the distribution L. Applying φ̃ to last equation, we obtain

φ̃X = φ̃S X + u(X)φ̃U,

φ̃X = φX + u(X)N, (5.14)

where φ is a tensor field of type (1, 1) defined on M by φX = φ̃S X.
Again, we apply φ̃ to (5.14) and using (4.1)–(4.3) we have

φ̃2X = φ̃φX + u(X)φ̃N,

−X + g(X, ν)ν = φ2X − u(X)U.

which means that

φ2X = −X + g(X, ν)ν + u(X)U. (5.15)

Now applying φ to the Eq (5.15) and since φU = 0, we have φ3 + φ = 0 which gives that φ is an
f –structure.

Definition 5. Let (M, g,D,D∗) be a hypersurface of indefinite Sasakian statistical manifold
(M̃, D̃, g̃, φ̃, ν). The quadruplet (M, g,D,D∗) is called screen semi-invariant lightlike hypersurface of
indefinite Sasakian statistical manifold (M̃, D̃, g̃, φ̃, ν) if

φ̃(ltrT M) ⊂ S (T M),
φ̃(RadT M) ⊂ S (T M).

We remark that a hypersurface of indefinite Sasakian statistical manifold is screen semi-invariant
lightlike hypersurface.
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Example 4. Let us recall the Example 2. Suppose that M is a hypersurface of R5
2 defined by

x1 = y2,

Then RadT M and ltr(T M) are spanned by ξ = ∂
∂x1
+ ∂
∂y2

and N = 1
2 {−

∂
∂x1
+ ∂
∂y2
}, respectively. Applying

φ̃ to this vector fields, we have

φ̃ξ =
∂

∂x2
−
∂

∂y1
, φ̃N =

1
2

{
∂

∂x2
+
∂

∂y1

}
.

Thus M is a screen semi-invariant lightlike hyperfurface of indefinite Sasakian statistical manifold R5
2.

Example 5. Let M be a hypersurface of (φ̃, ν, η, g̃) on M̃ = R5 in Example 3. Suppose that M is a
hypersurface of R5

2 defined by

x2 = y2,

Then the tangent space T M is spanned by {Ui}1≤i≤4, where U1 =
∂
∂x1

, U2 =
∂
∂x2
+ ∂
∂y2

, U3 =
∂
∂y1

, U4 = ν.
RadT M and ltr(T M) are spanned by ξ = U2 and N = 1

2 {−
∂
∂x2
+ ∂
∂y2
}, respectively. Applying φ̃ to this

vector fields, we have

φ̃ξ = U1 + U3 + (x1 + y1)U4, φ̃N =
1
2
{−U1 + U3 + (x1 − y1)U4} .

Thus M is a screen semi-invariant lightlike hyperfurface of indefinite Sasakian statistical manifold M̃.

In view of (5.11) and (5.12), we have

g̃(U,W) = 1.

Thus ⟨U⟩ ⊕ ⟨W⟩ is non-degenerate vector budle of S (T M) with rank 2. If we consider (5.8) and (5.9),
we get

S (T M) = {U ⊕W}⊥L0⊥⟨ν⟩, (5.16)

and

L = RadT M⊥⟨W⟩⊥L0, L
′

= ⟨U⟩. (5.17)

Thus, for any X ∈ Γ(T M), we can write

X = PX + QX + g(X, ν)ν, (5.18)

where P and Q are projections of T M into L and L
′

. Thus, we can write QX = u(X)U. Using (4.1)–
(4.3), (5.14) and (5.18), we have

φ2X = −X + g(X, ν)ν + u(X)U,

where φ̃PX = φX. We can easily see that

g(φX, φY) = g(X,Y) − g(X, ν)g(Y, ν) − u(X)w(Y) − u(Y)w(X), (5.19)
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for any X,Y ∈ Γ(T M). Also we have the following identities:

g(φX,Y) = g(X, φY) − u(X)η(Y) − u(Y)η(X), (5.20)
φν = 0, g(φX, ν) = 0. (5.21)

Thus, we have the following proposition.

Proposition 5.2. Let (M, g,D,D∗) be a lightlike hypersurface of indefinite Sasakian statistical manifold
(M̃, D̃, g̃, φ̃, ν). Then φ need not be an almost contact structure.

Lemma 5.3. Let (M, g,D,D∗) be a lightlike hypersurface of indefinite Sasakian statistical manifold
(M̃, D̃, g̃, φ̃, ν). For any X,Y ∈ Γ(T M), we have the following identities:

DXφY − φD∗XY = u(Y)AN X − B∗(X,Y)U + g(X,Y)ν − g(ν,Y)X, (5.22)

DX(u(Y)) − u(D∗XY) = −B(X, φY) − u(Y)τ(X) (5.23)

Proof. Using Gauss and Weingarten formulas in (4.7) we obtain

DXφY + B(X, φ̃Y) + DX(u(Y))N − u(Y)AN X + u(Y)τ(X)N − φ∇∗XY + B∗(X,Y)U

= g(X,Y)ν − g(ν,Y)X. (5.24)

If we take tangential and transversal parts of this last equation, we have (5.22) and (5.23).

Similarly, we have the following lemma.

Lemma 5.4. Let (M, g,D,D∗) be a lightlike hypersurface of indefinite Sasakian statistical manifold
(M̃, D̃, g̃, φ̃, ν). For any X,Y ∈ Γ(T M), we have the following identities:

D∗XφY − φDXY = u(Y)A∗N X − B(X,Y)U + g(X,Y)ν − g(ν,Y)X, (5.25)
D∗X(u(Y)) − u(DXY) = −B∗(X, φY) − u(Y)τ∗(X). (5.26)

Lemma 5.3 and Lemma 5.4 are give us the following theorem.

Theorem 5.5. A lightlike hypersurface M of an indefinite Sasakian statistical manifold M̃ need not be
a statistical manifold.

Proposition 5.6. Let (M, g,D,D∗) be a lightlike hypersurface of indefinite Sasakian statistical manifold
(M̃, D̃, g̃, φ̃, ν). For any X,Y ∈ Γ(T M), we have the following expressions:
(i) If the vector field U is parallel with respect to ∇∗, then we have

AN X = u(AN X)U + τ(AN X)ν. τ(X) = 0. (5.27)

(ii) If the vector field U is parallel with respect to ∇, then we have

A∗N X = u(A∗N X)U + τ(A∗N X)ν. τ∗(X) = 0. (5.28)

Proof. Replacing Y in (5.22) by U, we obtain

−φD∗XY = AN X − B∗(X,U)U + g(X,U)ν.
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Applying φ to this equation and using (5.15), we get

D∗XU − g(D∗XU, ν)ν − u(D∗XU)U = φAN X.

If U is parallel with respect to ∇∗ then φAN X = 0. From (5.14), we have φ̃(AN X) = u(AN X)N. If φ̃ is
applied to the last equation and using (4.2), we obtain AN X = u(AN X)U + τ(AN X)ν. Also, if we write
U instead of Y in the Eq (5.23), we have τ(X) = 0.

We can easily obtain the Eq (5.28) with a similar method.

Proposition 5.7. Let (M, g,D,D∗) be a lightlike hypersurface of indefinite Sasakian statistical manifold
(M̃, D̃, g̃, φ̃, ν). For any X,Y ∈ Γ(T M), we have the following expressions:
(i) If the vector field W is parallel with respect to ∇∗, then we have

A
∗

ξX = g(A
∗

ξX, ν)ν + u(A
∗

ξX)U, τ∗(X) = 0. (5.29)

(ii) If the vector field W is parallel with respect to ∇, then we have

AξX = g(AξX, ν)ν + u(AξX)U, τ(X) = 0. (5.30)

Proof. If we write ξ instead of Y in the Eq (5.22), we obtain

DXφξ − φD∗Xξ = −B∗(X, ξ)U.

If W is parallel with respect to D, using (3.14) and (5.12) in this equation, we obtain

φA
∗

ξX − τ
∗(X)W = −B∗(X, ξ)U.

Applying φ̃ this and using (5.15) we have

−A
∗

ξX + g(A
∗

ξX, ν)ν + u(A
∗

ξX)U = τ∗(X)ξ.

If we take screen and radical parts of this last equation, we have (5.29).
Similarly, we can easily obtain the Eq (5.30).

Definition 6. ( [17, 23]) Let (M, g) be a hypersurface of a statistical manifold (M̃, g̃, D̃, D̃∗).

(i) M is called totally geodesic with respect to D̃ if B = 0.
(ii) M is called totally geodesic with respect to D̃∗ if B∗ = 0.

Theorem 5.8. Let (M, g,D,D∗) be a lightlike hypersurface of indefinite Sasakian statistical manifold
(M̃, D̃, g̃, φ̃, ν).
(i) M is totally geodesic with respect to D̃ if and only if

DXφY − φD∗XY = g(X,Y)ν, ∀X ∈ Γ(T M), Y ∈ Γ(L), (5.31)
AN X = −φD∗XU − g(X,U)ν, ∀X ∈ Γ(T M). (5.32)

(ii) M is totally geodesic with respect to D̃∗ if and only if

D∗XφY − φDXY = g(X,Y)ν, ∀X ∈ Γ(T M), Y ∈ Γ(L), (5.33)
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A∗N X = −φDXU − g(X,U)ν, ∀X ∈ Γ(T M). (5.34)

Proof. For any Y ∈ Γ(L) we know that u(Y) = 0. Then the Eqs (5.22) and (5.25) are reduced to the
equations, respectively

DXφY − φD∗XY = −B∗(X,Y)U + g(X,Y)ν, (5.35)
D∗XφY − φDXY = −B(X,Y)U + g(X,Y)ν. (5.36)

On the other hand, replacing Y by U in (5.22) and (5.25), respectively, we also have

AN X = −φD∗XU + B∗(X,U)U − g(X,U)ν, (5.37)
A∗N X = −φDXU + B(X,U)U − g(X,U)ν. (5.38)

If taking into account (5.35)–(5.38), we can easily obtain our assertion.

The following two theorems give a characterization of the integrability of distributions L⊥⟨ν⟩ and
L
′

⊥⟨ν⟩, respectively.

Theorem 5.9. Let (M, g,D,D∗) be a screen semi-invariant hypersurface of indefinite Sasakian
statistical manifold (M̃, D̃, g̃, φ̃, ν). The following assertions are equivalent:
(i) The distribution L⊥⟨ν⟩ is integrable.
(ii) B∗(X, φY) = B∗(φX,Y), for all X,Y ∈ Γ(L⊥⟨ν⟩),
(iii) B(X, φY) = B(φX,Y), for all X,Y ∈ Γ(L⊥⟨ν⟩).
Proof. We know that X ∈ Γ(L⊥⟨ν⟩) if and only if u(X) = g̃(X,W) = 0. For any X,Y ∈ Γ(L⊥⟨ν⟩),
using (3.1) and (5.14), we obtain

u[X,Y] = −u(DXY) + u(DY X).

From (5.23), we have
u[X,Y] = B∗(Y, φX) − B∗(φY, X).

This gives the equivalence between (i) and (ii). Similarly we can easily see that the relation (i) and (iii).

Theorem 5.10. Let (M, g,D,D∗) be a screen semi-invariant hypersurface of indefinite Sasakian
statistical manifold (M̃, D̃, g̃, φ̃, ν). The following assertions are equivalent:
(i) The distribution L

′

⊥⟨ν⟩ is integrable.
(ii) A∗

φ̃XY − A∗
φ̃Y X = g(X, ν)Y − g(Y, ν)X, for all X,Y ∈ Γ(L

′

⊥⟨ν⟩).
(ii)Aφ̃XY − Aφ̃Y X = g(X, ν)Y − g(Y, ν)X, for all X,Y ∈ Γ(L

′

⊥⟨ν⟩).
Proof. X ∈ Γ(L

′

⊥⟨ν⟩) if and only if φX = 0. For any X,Y ∈ Γ(L⊥⟨ν⟩), using (3.2), (3.3) and (5.14)
in (4.7), we have

φD∗XY = −g(X,Y)ν + g̃(Y, ν)X − Aφ̃Y X + B∗(X,Y)U.

Therefore, we can get
φ[X,Y] = −Aφ̃Y X + Aφ̃XY + g̃(Y, ν)X − g̃(X, ν)Y.

This gives the equivalence between (i) and (ii). Similarly, the relationship between (i) and (iii) is easily
seen.
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6. Invariant submanifolds

Let (M, g,D,D∗) be a lightlike submanifold of an indefinite Sasakian statistical manifold
(M̃, D̃, g̃, φ̃, ν). if M is tangent to the structure vector field ν, then ν belongs to S (T M) (see [13]).
Using this, we say that M is an invariant lightlike submanifold of M̃ if M is tangent to the structure
vector field ν and

φ̃(S (T M)) = S (T M), φ̃(RadT M) = RadT M. (6.1)

Proposition 6.1. Let (M, g,D,D∗) be an invariant lightlike submanifold of indefinite Sasakian
statistical manifold (M̃, D̃, g̃, φ̃, ν). For any X,Y ∈ Γ(T M), we have the following identities:

DXφY − φD∗XY = g(X,Y)ν − g(ν,Y)X, (6.2)
h(X, φ̃Y) = φ̃h∗(X,Y), (6.3)

where h and h∗ are second fundemental forms for affine dual connections D̃ and D̃∗, respectively.
Proof. Using (5.14) and Gauss formula in (4.7), we obtain

DXφY + h(X, φ̃Y) − φD∗XY − φ̃h∗(X,Y) = g(X,Y)ν − g(ν,Y)X.

If we take tangential and transversal parts of this last equation, our claim is proven.

Similarly to the above proposition, the following proposition is given for dual connection D∗.

Proposition 6.2. Let (M, g,D,D∗) be an invariant lightlike submanifold of indefinite Sasakian
statistical manifold (M̃, D̃, g̃, φ̃, ν). For any X,Y ∈ Γ(T M), we have the following identities:

D∗XφY − φDXY = g(X,Y)ν − g(ν,Y)X, (6.4)
h∗(X, φ̃Y) = φ̃h(X,Y), (6.5)

where h and h∗ are second fundemental forms for affine dual connections D̃ and D̃∗, respectively.

From the Eqs (6.3) and (6.5), we have

h(X, ν) = 0, h∗(X, ν) = 0. (6.6)

A lightlike submanifold may not be an indefinite Sasakian statistical manifold. The following
theorem gives a situation where this can happen.

Theorem 6.3. An invariant lightlike submanifold of indefinite Sasakian statistical manifold is an
indefinite Sasakian statistical manifold.
Proof. In a invariant lightlike submanifold, u(X) = 0, for any X ∈ Γ(T M). Then from (5.14) we have

φ2X = −X + g(X, ν)ν.

Since φ̃X = φX, using (4.1)–(4.3), we obtain

φν = 0, η(φX) = 0, (6.7)
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g̃(φX, φY) = g(X,Y) − η(X)η(Y). (6.8)

Then (g, φ, ν) is an almost contact metric structure.
Using (3.5), we get

Xg(φY, φZ) = g(DXφY, φZ) + g(φY,D∗XφZ). (6.9)

This equation says that D and D∗ are dual connections. Moreover torsion tensor of the connection D
is equal zero. Then, the Eqs (3.5) and (3.6) tell us that (D, g) is a statistical structure.

If we consider Gauss formula and (4.8) we obtain

DXν = −φX + g(DXν, ν)ν. (6.10)

If we consider (6.2) and (6.10) in the theorem 4.1, our assertion are proven.

Example 6. Let M̃ =
(
R7

2, g̃, ϕ̃, ν
)

be the manifold endowed with the usual Sasakian structure (see, for
example, [ [13], p. 321] for such a structure), in which g̃ has signature (−,+,+,−,+,+,+), with respect
to the canonical basis

{
∂x1, ∂x2, ∂x3, ∂y1, ∂y2, ∂y3, ∂z

}
. By choosing the difference tensor K(X,Y) =

g̃(Y, ν)̃g(X, ν)ν, we can easily see that (D̃ = ∇̃ + K, g̃, φ̃, ν) is an indefinite Sasakian statistical structure
on M̃. Now, we recall the example in [27] as follows:

Suppose that M is a submanifold of M̃ given by

x1 = v1 cos hθ, y1 = v2 cos hθ, x2 = v1 sin hθ − v2,

y2 = v1 + v2 sin hθ, x3 = sin v3 sin hv4, y3 = cos v3 cos hv4, z = v5.

It is easy to see that the vector fields ξ1, ξ2, ν,Z1,Z2, and given by

ξ1 = cos hθ∂x1 + sin hθ∂x2 + ∂y2 +
(
y1 cos hθ + y2 sin hθ

)
∂z,

ξ2 = −∂x2 + cos hθ∂y1 + sin hθ∂y2 − y2∂z, ν = 2∂z,
Z1 = cos v3 sin h4∂x3 − sin v3 cos hv4∂y3 + y3 cos v3 sin hv4∂z,

Z2 = sin v3 cos hv4∂x3 + cos v3 sin hv4∂y3 + y3 sin v3 cos hv4∂z,

spans T M. Moreover, one can see that Rad T M = Span {ξ1, ξ2} and S (T M) = Span {Z1,Z2, ν}.
Furthermore, we note that ϕ̃ξ2 = ξ1 and ϕ̃Z2 = Z1. It follows that Rad T M and S (T M) are invariant
under ϕ̃. On the other hand, l tr(T M) is spanned by N1 and N2, where

N1 = 2
{
− cos hθ∂x1 − sin hθ∂x2 + ∂y2 −

(
y1 cos hθ + y2 sin hθ

)
∂z

}
N2 = 2

{
−∂x2 − cosh θ∂y1 − sin hθ∂y2 − y2∂z

}
Note that ϕ̃N2 = N1; hence, l lr(T M) is invariant under ϕ̃. Therefore, M is a five-dimensional invariant
lightlike submanifold of indefinite Sasakian statistical manifold M̃ and M is an indefinite Sasakian
statistical manifold.
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7. Conclusions and future work

In this paper, we expanded the Sasakian statistical manifold concept to indefinite Sasakian statistical
manifolds and introduced lightlike hypersurfaces of an indefinite Sasakian statistical manifold.
Some relations among induced geometrical objects with respect to dual connections in a lightlike
hypersurface of an indefinite statistical manifold are obtained. We also give some original examples
in this context.. We hope that, this introductory study will bring a new perspective for researchers and
researchers will further work on it focusing on new results not available so far on lightlike geometry
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24. İ. Erken, C. Murathan, A. Yazla, Almost cosympletic statistical manifolds, Quaest. Math., 43
(2020), 265–282.

25. F. Massamba, Lightlike hypersurfaces of indefinite Sasakian manifolds with parallel symmetric
bilinear forms, Differ. Geom. Dyn. Syst., 10 (2008), 226–234.

26. F. Massamba, Killing and geodesic lightlike hypersurfaces of indefinite Sasakian manifolds,
Turkish J. Math., 32 (2008), 325–347.

27. S. Ssekajja, Some remarks on invariant lightlike submanifolds of indefinite Sasakian manifold,
Arab J. Math. Sci., 2021. DOI: 10.1108/AJMS-10-2020-0097.

28. K. Takano, Statistical manifolds with almost contact structures and its statistical submersions, J.
Geom., 85 (2006), 171–187.

29. A. D. Vilcu, G. E. Vilcu, Statistical manifolds with almost quaternionic structures and quaternionic
Kahler-like statistical submersions, Entropy, 17 (2015), 6213–6228.

30. P. W. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett
correction, Ann. Inst. Statist. Math., 41 (1989), 429–450.

© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 11, 12845–12862.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Lightlike hypersurface of a statistical manifold
	Indefinite Sasakian statistical manifolds
	Lightlike hypersurfaces of indefinite Sasakian statistical manifolds
	Invariant submanifolds
	Conclusions and future work

