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1. Introduction

Differential systems of fractional-order have recently acquired a great reputation and abundant
superiority due to their large applications in numerous fields of science, engineering and the
utilization of real-world models; see, for example, the books [4, 12, 15, 16, 18, 20, 21].

Analogous to the expansion of the theory of fractional-order systems, fractional differential
inclusions were also extensively studied. Numerous contributions concerning the existence,
uniqueness and stability results related to the fractional differential inclusions are available in the
literature. Benchohra et al. [5], studied the following differential inclusion:H

CD
ry(t) ∈ F (t, y(t)) , for a.e. t ∈ [1,∞), 1 < r ≤ 2,

y(1) = y1 ∈ R,
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where H
CD

r is the Caputo-Hadamard fractional derivative and F : [1,∞) × R → P(R) (P(R) is the
family of all nonempty subsets of R) is a multi-valued map. They investigated the existence results
when F has convex or non-convex values using suitable fixed point theorems and a diagonalization
method.

Nyamoradi et al. [17], discussed the existence results of a multi-point BVP for a fractional
differential inclusion of the formDαu(t) + F (t, u(t), u′(t)) 3 0, 0 < t < +∞, 2 < α < 3,

u(0) = u′(0) = 0, Dα−1u(+∞) =
∑m−2

i=1 βiu(ξi),

where Dα is the Riemann-Liouville fractional derivative, 0 < ξ1 < ξ2 < · · · < ξm−2 < +∞, and
F : [0,+∞) × R × R → P(R) is a set-valued map. For more recent papers related to fractional
differential inclusions, see [2, 19, 22] and the references existing therein.

Motivated by the aforesaid papers and looking forward to considering generalized fractional
derivative that encompasses the classical derivatives as special cases, we shall study the following
fractional differential inclusions with generalized proportional fractional derivatives of Caputo type:CD

δ,%
a u(t) ∈ Φ (t, u(t)) , for a.e. t ∈ J := [a,∞), 0 < δ < 1,

u(a) = ua ∈ R,
(1.1)

where % ∈ (0, 1], CD
δ,%
a denotes the δ-order generalized proportional fractional derivatives of Caputo

type, P(R) is the family of all nonempty subsets of R, and Φ : J × R → P(R) is a multi-valued map.
In the main proofs we will use the ideas of [5] but with corrections of the subscripts and the used sets.

Very recently, Jarad et al. [10] introduced a new more general fractional derivative operator so-called
the generalized proportional fractional derivative. The new fractional derivative operator Dδ,%a contains
two parameters and has features, including maintaining the semi-group property and convergence to
the initial function as δ tends to zero. Additionally, it is well behaved and has fundamental features over
the classical derivatives in the sense that it generalizes previously defined derivatives in the literature.
It is useful to note that the authors in [7] proposed an important equivalence between the tempered
and the generalized proportional fractional integrals and derivatives. For some recent papers which
have been detailed within the generalized proportional fractional derivative, see [3, 9, 11, 13] and the
references existing therein. To the best of the authors’ knowledge, there are no studies that dealt with
the fractional differential inclusions with the generalized proportional fractional derivatives.

The main contributions of this note could be summarized as:

- We shall give the concept of a mild solution to the inclusion problem (1.1).

- With the aid of the nonlinear alternative of Leray-Schauder type for multivalued maps, the existence
result is established.

- Due to the proposed inclusion problem is on an infinite interval, a diagonalization technique was
needed to complete the proofs.

- An example is proposed to explain the suitability of the obtained findings.
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2. Preliminaries

We start this section with some definitions and lemmas of the generalized proportional fractional
derivatives and integrals.

Definition 2.1. ( [10, 13]) Let % ∈ (0, 1], δ > 0, and let g ∈ L1[a,∞). The generalized proportional
fractional integral of a function g of order δ is defined by

(Iδ,%a g)(t) =
1

%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1g(s) ds =

1
%δ

e
%−1
% t

(
I
δ
a

(
e−

%−1
% tg(t)

))
,

where Iδa denotes the Riemann-Liouville fractional integral of order δ: (Iδag)(t) = 1
Γ(δ)

∫ t

a
(t−s)δ−1g(s) ds.

Definition 2.2. ( [10, 13]) Let % ∈ (0, 1] and 0 < δ < 1. The generalized proportional fractional
derivative of Caputo type of order δ of a function g ∈ C1[a,∞) is defined by

(C
D
δ,%g)(t) = I1−δ,%

a

(
D

1,%g
)

(t)

=
1

%δΓ(1 − δ)

∫ t

a
e
%−1
% (t−s) (t − s)−δ (D1,%g)(s) ds,

where (D1,%g)(t) = (D%g)(t) ≡ (1 − %)g(t) + %g′(t).

Lemma 2.3. ( [10,13]) Let % ∈ (0, 1] and 0 < δ < 1 and γ > 0. Then we have the following properties:(
I
δ,%
a I

γ,%
a g

)
(t) =

(
I
γ,%
a I

δ,%
a g

)
(t) =

(
I
δ+γ,%
a g

)
(t), with g ∈ L1[a,∞); (2.1)(

C
D
δ,%
a I

δ,%
a g

)
(t) = g(t), with g ∈ L1[a,∞); (2.2)(

I
δ,%
a

C
D
δ,%
a g

)
(t) = g(t) − e

%−1
% (t−a) g(a), with g ∈ C1[a,∞). (2.3)

2.1. Multi-valued maps analysis

Let X be a Banach space. We use the notations

P(X) = {Z ∈ P(X) : Z , ∅},

Pcl(X) = {Z ∈ P(X) : Z is closed},

Pbd(X) = {Z ∈ P(X) : Z is bounded},

Pcp(X) = {Z ∈ P(X) : Z is compact},

Pcvx(X) = {Z ∈ P(X) : Z is convex}.

We will use the following definitions:

- A multi-valued map U : X → P(X) is convex (closed) valued, if U(x) is convex (closed) for all
x ∈ X.

- U is bounded on bounded sets if U(B) = ∪x∈BU(x) is bounded in X for any B ∈ Pbd(X), i.e.
supx∈B{sup{‖y‖ : y ∈ U(x)}} < ∞.
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- U is called upper semi-continuous (u.s.c.) on X if for each xo ∈ X, the set U(xo) is nonempty, closed
subset of X, and if for each open set N of X containing U(xo), there exists an open neighborhood
No of xo such that U(No) ⊂ N.

- U is completely continuous if U(B) is relatively compact for each B ∈ Pbd(X).

- The graph of U will be defined as the set Gr(U) := {(x, y) ∈ X × Y : y ∈ U(x)}.

- We say that x ∈ X is a fixed point of U if x ∈ U(x).

Consider the sequence {bk}
∞
k=1 such that a < b1 < b2 < · · · < bk < · · · and limk→∞ bk = ∞ .

For any k ∈ N we denote Jk := [a, bk] ⊂ J .
Let C(Jk,R) be a Banach space of continuous functions from Jk into R with the norm ‖u‖k =

supt∈Jk
|u(t)|. Let L1(Jk,R) be the Banach space of Lebesgue integrable functions u : Jk → R and

normed by ‖u‖L1,k =
∫
Jk
|y(t)| dt.

Suppose that u ∈ C(Jk,R). We define the set of the selections of Φ by

S
Jk
Φ,u := {v ∈ L1(Jk,R) : v(t) ∈ Φ(t, u(t)) for a.e. t ∈ Jk}.

Definition 2.4. A multi-valued map Φ : J × R→ P(R) is said to be Carathéodory if

(i) t 7→ Φ(t, u) is measurable for each u ∈ R;

(ii) u 7→ Φ(t, u) is upper semi-continuous for almost all t ∈ J .

Remark 2.5. Note if the multi-valued map Φ : J × R → P(R) is Carathéodory then the condition
(ii) is satisfied on Jk, k = 1, 2, . . . and the multi-valued map Φ : Jk × R → P(R) is Carathéodory on
Jk × R.

Lemma 2.6. [6] If U : X→ Pcl(Y) is upper semi-continuous, then Gr(U) is a closed subset of X×Y;
i.e., for every sequence {xn}n∈N ∈ X and {yn}n∈N ∈ Y, if limn→∞ xn = x∗, limn→∞ yn = y∗ and yn ∈ U(xn),
then y∗ ∈ U(x∗). Conversely, if U is completely continuous and has a closed graph, then U is upper
semi-continuous.

Lemma 2.7. [14] Let X be a Banach space. Let Φ : Jk ×X→ P(X) be a multi-valued map satisfying
the Carathèodory conditions with SJk

Φ
, ∅, and let Θ : L1(Jk,X) → C(Jk,X) be a linear continuous

mapping. Then the multi-valued map Θ ◦ S
Jk
Φ

: C(Jk,X)→ P(C(Jk,X)) defined by

(Θ ◦ SJk
Φ

)(u) : C(Jk,X)→ Pbd,cl,cvx(C(Jk,X), u 7→ (Θ ◦ SJk
Φ

)(u) = Θ(SJk
Φ,u),

is a closed graph operator in C(Jk,X) ×C(Jk,X).

Lemma 2.8. [8] Let E be a Banach space and C a nonempty closed convex subset of E. Let U be a
nonempty open subset of C with 0 ∈ U and T : U → Pcp,cvx(C) be an upper semi-continuous compact
map. Then either

(i) T has a fixed points in U,

or

(ii) there is a u ∈ ∂U and ν ∈ (0, 1) with u ∈ νT (u).
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3. Main results

Let us start with giving the concept of the mild solution of the inclusion problem (1.1).

Definition 3.1. A function u ∈ C(J ,R) is said to be a mild solution of the inclusion problem (1.1) if
there exists a function φ ∈ L1(J ,R) with φ(t) ∈ Φ(t, u(t)) for a.e. t ∈ J such that C

aD
δ,%u(t) = φ(t) and

u(a) = ua.

The following lemma plays an essential role in the forthcoming discussions.

Lemma 3.2. ( [13], Lemma 4.1) For any w ∈ C([a, b],R) the solution u of the linear generalized
proportional fractional differential equation

C
aD

δ,%u(t) = w(t), for a.e. t ∈ [a, b], 0 < δ < 1,
u(a) = ua ∈ R,

(3.1)

is given by the following integral equation

u(t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w(s) ds, t ∈ [a, b]. (3.2)

Theorem 3.3. Suppose that for every k ∈ N:

(H1) A multi-valued map Φ : J × R→ Pcp,cvx(R) is Carathèodory;

(H2) There exist p, q ∈ C(J ,R+) such that the nonegative functions P(t) =
∫ t

a
e
%−1
% (t−s)(t − s)δ−1 p(s)ds

and Q(s) =
∫ t

a
e
%−1
% (t−s)(t − s)δ−1q(s)ds are bounded on J , i.e. there exist constants P > 0 and

0 < Q < %δΓ(δ + 1) such that P(t) ≤ P, Q(t) ≤ Q for t ∈ J and

‖Φ(t, u)‖P := sup{|v| : v ∈ Φ(t, u)} ≤ p(t) + q(t)|u| for (t, u) ∈ J × R.

Then the inclusion problem (1.1) possesses at least one solution on J .

Remark 3.4. Note that for a = 0 the function q(t) = e−t satisfies the condition (H2), i.e., for the
nonegative function Q(t) =

∫ t

0
e
%−1
% (t−s)(t − s)δ−1q(s)ds there exists a positive constant Q (depending on

% and δ) such that 0 < Q < %δΓ(δ + 1) and Q(t) ≤ Q for t ∈ [0,∞) ( see Figure 1 for the graphs of Q(t)
and the corresponding boundsA = %δΓ(δ + 1) for various values of δ and %).
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Figure 1. Graphs of Q(t) and A for different values of δ and %.

Proof. We fix k ∈ N and considerC
aD

δ,%u(t) ∈ Φ(t, u(t)), for a.e. t ∈ Jk, 0 < δ < 1,
u(a) = ua.

(3.3)

We shall prove that (3.3) has a solution uk ∈ C(Jk,R) with |uk(t)| ≤ M for each t ∈ Jk, where M > 0
is an arbitrary constant.

Define the multi-valued map Tk : C(Jk,R)→ P(C(Jk,R)) by

Tk(u) =
{
f ∈ C(Jk,R) : f (t) = uae

%−1
% (t−a) + 1

%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w(s) ds, w ∈ SJk

Φ,u

}
.

In the light of Lemma 3.2, one can easily know that the fixed points of Tk are solutions of the
problem (3.3). We shall show that Tk satisfies the assumptions of Lemma 2.8. The proof will be given
in following steps.
Step 1. Tk(u) is convex, for any u ∈ C(Jk,R).

For f1, f2 ∈ Tk(u), there exist w1,w2 ∈ S
Jk
Φ,u such that

fi(t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1wi(s) ds, i = 1, 2.

Let 0 ≤ µ ≤ 1. Then, for t ∈ Jk, one has

(µ f1 + (1 − µ) f2)(t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1(µw1 + (1 − µ)w2)(s).

Since SJk
Φ,u is convex (because Φ has convex values), then µ f1 + (1 − µ) f2 ∈ Tk(u). This implies that

Tk(u) is convex.
Step 2. Tk(u) maps bounded sets (balls) into bounded sets in C(Jk,R).
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For a positive number r, let Ξr := {u ∈ C(Jk,R) : ‖u‖k ≤ r} be a bounded ball in C(Jk,R). For each
u ∈ Ξr , f ∈ Tk(u), there exists w ∈ SJk

Φ,u such that

f (t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w(s) ds.

In view of (H2) and for each t ∈ Jk, one has

| f (t)| ≤ |ua|

∣∣∣∣e %−1
% (t−a)

∣∣∣∣ +
1

%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1|w(s)| ds

≤ |ua| +
1

%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1(p(s) + q(s)|u(s)|) ds

≤ |ua| +
1

%δΓ(δ + 1)
(P + Qr).

Therefore, we get

‖ f ‖ ≤ |ua| +
P + Qr
%δΓ(δ + 1)

.

Step 3. Tk(u) maps bounded sets into equicontinuous sets in C(Jk,R).
Take t1, t2 ∈ Jk, t1 < t2. For each u ∈ Ξr, f ∈ Tk(u), we obtain that

|Tk(u)(t2) − Tk(u)(t1)| ≤ |ua|

∣∣∣∣e %−1
% (t2−a)

− e
%−1
% (t1−a)

∣∣∣∣
+

1
%δΓ(δ)

∫ t1

a

∣∣∣∣e %−1
% (t2−s)(t2 − s)δ−1 − e

%−1
% (t1−s)(t1 − s)δ−1

∣∣∣∣ |w(s)| ds

+
1

%δΓ(δ)

∫ t2

t1
e
%−1
% (t2−s)(t2 − s)δ−1|w(s)| ds

≤ |ua|

∣∣∣∣e %−1
% (t2−a)

− e
%−1
% (t1−a)

∣∣∣∣
+

(‖p‖k + ‖q‖kr)
%δΓ(δ)

∫ t1

a

∣∣∣∣e %−1
% (t2−s)(t2 − s)δ−1 − e

%−1
% (t1−s)(t1 − s)δ−1

∣∣∣∣ ds

+
(‖p‖k + ‖q‖kr)

%δΓ(δ)

∫ t2

t1
e
%−1
% (t2−s)(t2 − s)δ−1 ds.

As t1 → t2, the right-hand side of the above inequality tends to zero. As a consequence of Steps 1–3
together with the Arzelà-Ascoli theorem, we infer that Tk is completely continuous.
Step 4. Tk has a closed graph.

Consider the sequence {un}
∞
n=1 with un ∈ C(Jk,R), limn→∞ un = u∗, fn ∈ Tk(un), and limn→∞ fn = f∗.

We shall show that f∗ ∈ Tk(u∗). Indeed, since fn ∈ Tk(un), there exists wn ∈ S
Jk
Φ,un

in way that for t ∈ Jk,
one has

fn(t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1wn(s) ds, n = 1, 2, . . . .

It must be proving that there exists w∗ ∈ S
Jk
Φ,u∗

in ways that

f∗(t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w∗(s) ds.
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Define the linear operator Θ : L1(Jk,R)→ C(Jk,R) by

w 7→ Θ(w)(t) =
1

%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w(s) ds.

The operator Θ is continuous. Indeed, let {w̃m}
∞
m=1 be a sequence such that w̃m ∈ L1(Jk,R) with

limm→∞ w̃m = w̃∗ ∈ L1(Jk,R). Then for each t ∈ Jk, we get

|Θ(w̃m)(t) − Θ(w̃∗)(t)| ≤
1

%δΓ(δ)

∫ t

a
(t − s)δ−1|w̃m(s) − w̃∗(s)| ds,

which implies that Θ(w̃m)→ Θ(w̃∗) as m→ ∞ in C(Jk,R).
In the light of Lemma 2.7, we infer that Θ ◦ S

Jk
Φ,u is closed graph operator.

Additionally, we have fn(t) − uae
%−1
% (t−a)

∈ S
Jk
Φ,un

. Since limn→∞ un = u∗, it follows that

f∗(t) − uae
%−1
% (t−a) =

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w∗(s) ds,

for some w∗ ∈ S
Jk
Φ,u∗

.
Hence, by virtue of Lemma 2.6, the multi-valued operator Tk is an upper semi-continuous operator

on C(Jk,R).
Step 5. We show there exists an open set U ⊆ C(Jk,R) with u < Tk(u) for any ν ∈ (0, 1) and all u ∈ ∂U.

Let ν ∈ (0, 1) and u ∈ νTk(u). Thus, there exists w ∈ SJk
Φ,u in ways that for each t ∈ Jk, we have

u(t) = νuae
%−1
% (t−a) +

ν

%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w(s) ds.

From (H2) and for each t ∈ Jk, one has

|u(t)| ≤ |ua|

∣∣∣∣e %−1
% (t−a)

∣∣∣∣ +
1

%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1|w(s)| ds

≤ |ua| +
1

%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1(p(s) + q(s)|u(s)|) ds

≤ |ua| +
1

%δΓ(δ + 1)
(P(t) + Q(t)‖u‖) ≤ |ua| +

1
%δΓ(δ + 1)

(P + Q‖u‖).

Therefore, we get
|u(t)|

|ua| +
1

%δΓ(δ+1) (P + Q‖u‖k)
≤ 1.

Note the function h(u) = P + Qu : (0, ,∞)→ (0,∞) is non-decreasing.
In view of assumption (H2) we have 1 − Q

%δΓ(δ+1) > 0 and choose the constant L such that

L >
|ua| +

P

%δΓ(δ+1)

1 − Q

%δΓ(δ+1)

.
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Therefore,
L

|ua| +
P+QL
%δΓ(δ+1)

> 1.

Then ‖u‖k , L. Let us define the set

Uk = {u ∈ C(Jk,R) : ‖u‖k < L}.

The operator Tk : Uk → P(C(Jk,R)) is upper semi-continuous and completely continuous. From
the definition of Uk , there exists no u ∈ ∂Uk such that u ∈ νTk(u) for some ν ∈ (0, 1). As a consequence
of Leray-Schauder nonlinear alternative (Lemma 2.8), it follows thatTk possesses a fixed point uk ∈ Uk,
which is a solution of the problem (3.3).
Step 6. A diagonalization process.

First, we set Nk = N∗ − {k}, i.e. Nk = { j = k + 1, k + 2, . . . }. For any k ∈ N, let

xk(t) =

uk(t); t ∈ [a, bk]
uk(bk); t ∈ [bk,∞),

where uk(t) is the fixed point of Tk , which is a solution of the problem (3.3) and which existence if
proved in Step 5.

Note that Nk+1 ⊂ Nk for any k ∈ N.
Consider N1. Then the sequence {xm(t)}∞m=2 is defined for t ∈ J1. There exists w1,m ∈ S

J1
Φ,u such that

xm(t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w1,m(s) ds,

and |xm(t)| ≤ M for t ∈ J1 = [a, b1].
Thus, for t1, t2 ∈ J1, t1 < t2, one has

|xm(t2) − xm(t1)| ≤ |ua|

∣∣∣∣e %−1
% (t2−a)

− e
%−1
% (t1−a)

∣∣∣∣
+

(‖p‖1 + ‖q‖1M)
%δΓ(δ)

∫ t1

a

∣∣∣∣e %−1
% (t2−s)(t2 − s)δ−1 − e

%−1
% (t1−s)(t1 − s)δ−1

∣∣∣∣ ds

+
(‖p‖1 + ‖q‖1M)

%δΓ(δ)

∫ t2

t1
e
%−1
% (t2−s)(t2 − s)δ−1 ds.

Thanks to the Arzelà-Ascoli theorem, the sequence {xm(t)} has an uniformly convergent
subsequence in J1, so there is a subset N1 = {2, 3, . . . } of N and a function y1 ∈ C(J1,R) in ways that
{xm(t)} → y1(t) uniformly in J1 as m→ ∞ through N1. Additionally, the integral equality

y1(t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w1(s) ds, t ∈ J1,

holds with w1 ∈ S
J1
Φ,u and |y1(t)| ≤ M for t ∈ J1.

Consider N2. Then the sequence {xm(t)}∞m=3 is defined for t ∈ J2. There exists w2,m ∈ S
J2
Φ,u such that

xm(t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w2,m(s) ds,
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and |xm(t)| ≤ M for t ∈ J2 = [a, b2]. Therefore, for t1, t2 ∈ J2, t1 < t2, one obtain that

|xm(t2) − xm(t1)| ≤ |ua|

∣∣∣∣e %−1
% (t2−a)

− e
%−1
% (t1−a)

∣∣∣∣
+

(‖p‖2 + ‖q‖2M)
%δΓ(δ)

∫ t1

a

∣∣∣∣e %−1
% (t2−s)(t2 − s)δ−1 − e

%−1
% (t1−s)(t1 − s)δ−1

∣∣∣∣ ds

+
(‖p‖2 + ‖q‖2M)

%δΓ(δ)

∫ t2

t1
e
%−1
% (t2−s)(t2 − s)δ−1 ds.

Again, by the Arzelà-Ascoli theorem, the sequence {xm(t)} has an uniformly convergent
subsequence, so there is a subset N2 = {3, 4, . . . } of N1 and a function y2 ∈ C(J2,R) in ways that
xm(t)→ y2(t) uniformly on J2 as m→ ∞ through N2. Additionally, the integral equality

y2(t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w2(s) ds, t ∈ J2,

holds with w2 ∈ S
J2
Φ,u and |y2(t)| ≤ M for t ∈ J2.

Note that y1(t) ≡ y2(t) and w1(t) ≡ w2(t) on J1, since N2 ⊂ N1.
Inductively, considering the set Nk for k = 3, 4, . . . and the sequence {xm(t)}∞m=k+1 defined on Jk we

obtain the limit function yk(t) ∈ C(Jk,R) such that xm(t) → yk(t) uniformly on Jk as m → ∞ through
Nk. Also, yk(t) ≡ yk+1(t)and wk(t) ≡ wk+1(t) on Jk, k = 1, 2, . . . . Additionally, the integral equality

yk(t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1wk(s) ds, t ∈ Jk,

holds with wk ∈ S
Jk
Φ,u and |yk(t)| ≤ M for t ∈ Jk.

For any t ∈ [a,∞) we consider the smallest number j ∈ N : t ≤ b j, i.e. t ∈ J j. Then according the
above proved there exists a function y j(t) ∈ C(J j,R) and the integral equality

y j(t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w j(s) ds, t ∈ J j,

holds with w j ∈ S
J j

Φ,u and |y j(t)| ≤ M for t ∈ J j.
For any t ∈ [a,∞) we define the function y ∈ C([a,∞),R) by y(t) = y j(t) and w(s) = w j(s) for

s ∈ [0, t] where j is the smallest number such that t ≤ b j. Then y(a) = ua and the equality

y(t) = uae
%−1
% (t−a) +

1
%δΓ(δ)

∫ t

a
e
%−1
% (t−s)(t − s)δ−1w(s) ds, t ∈ J ,

holds.
Thus,

C
aD

δ,%y(t) ∈ Φ (t, y(t)) , for a.e. t ∈ J , 0 < δ < 1,

for each k ∈ N. This completes the proof of the theorem. �

Example: Consider the following fractional differential inclusions with generalized proportional
fractional derivatives of Caputo type:CD

0.8,%
0 u(t) ∈ Φ (t, u(t)) , for a.e. t ∈ J := [0,∞), 0 < δ < 1,

u(0) = u0 ∈ R,
(3.4)
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where Φ : [0,∞)×R→ P(R) is Carathéodory and such that ||Φ(t, u)||P ≤ t−0.1 + e−t|u| for t ≥ 0, u ∈ R.
In this case p(t) = t−0.1 and q(t) = e−t. The function p(t) satisfies the condition (H2) (see Figure 2
for the the graph of the function P(t) =

∫ t

a
e
%−1
% (t−s)(t − s)δ−1s−0.1ds for δ = 0.8 and different values of

% ). According to Remark 3.4 the function q(t) satisfies the condition (H2). Therefore, according to
Theorem 3.3 the inclusion problem (3.4) possesses at least one solution on [0,∞) for any initial value
u0 ∈ R and any δ ∈ (0, 1).

10 20 30 40 50

1

2

3

4

d=0.8,r=0.3

d=0.8,r=0.5

d=0.8,r=0.7

d=0.8,r=0.9

Figure 2. Graphs of P(t) for δ = 0.8 and different values of %.

4. Conclusions

Through the present work, we investigate the existence theorems of mild solutions for fractional
differential inclusions involving the generalized fractional derivatives of Caputo-type on unbounded
domain. By means of a suitable fixed point theorem for multi-valued maps together with a
diagonlization process, the desired result is obtained. Finally, an example is proposed to explain the
suitability of the obtained findings.
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