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1. Introduction

In [1,2], Carlitz initiated study of the degenerate Bernoulli and Euler polynomials and obtained
some arithmetic and combinatorial results on them. In recent years, many mathematicians have drawn
their attention to various degenerate versions of some old and new polynomials and numbers, namely
some degenerate versions of Bernoulli numbers and polynomials of the second kind, Changhee
numbers of the second kind, Daehee numbers of the second kind, Bernstein polynomials, central Bell
numbers and polynomials, central factorial numbers of the second kind, Cauchy numbers, Eulerian
numbers and polynomials, Fubini polynomials, Stirling numbers of the first kind, Stirling
polynomials of the second kind, central complete Bell polynomials, Bell numbers and polynomials,
type 2 Bernoulli numbers and polynomials, type 2 Bernoulli polynomials of the second kind,
poly-Bernoulli numbers and polynomials, poly-Cauchy polynomials, and of Frobenius-Euler
polynomials, to name a few [3,14,16-18] and the references therein. They have studied those
polynomials and numbers with their interest not only in combinatorial and arithmetic properties but
also in differential equations and certain symmetric identities [4,5] and references therein, and found
many interesting results related to them [12,19-28]. It is remarkable that studying degenerate versions
is not only limited to polynomials but also extended to transcendental functions.

The Bernoulli polynomials of the second are defined by as follows (see [9,13])

1og(1+z)(1+Z) —Zb (x) (1.1)

When x = 0, b,(0) = b, are called the Bernoulli numbers of the second kind.
The degenerate exponential function e)(z) is defined by (see [6-19])

ei(2) = (1 + 1)1, ey2) = (1 + A2)7, A € C\{O}. (1.2)
We note that
ei(2) = Z(x)qﬁ , (see [4,21]), (1.3)
where (X),, = x(x =) - (x— (g — 1)/1), (g=1), (x)o=1.
Note that .
q
lime)(z) = qu% =e"

The degenerate Bernoulli polynomials which are defined by Carlitz’s as follows (see [1,2])

)= ———(1+ )i = bl 1.4
ERE (1+/1z)a—1(+Z) Zﬁ"(x) .

At the point x = 0, 8,(1) = ,(0; A) are called the degenerate Bernoulli numbers.
Note that

Ali_m}()ﬁq(x; A) = By(x).
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The polylogarithm function is defined by

[0

Xq
Li = — (keZ, 1), 7). 1.5
ik () ;qk (keZ, |xl|<1),(see[7]) (15)
Note that
Li = — = —log(1l — x). 1.6
(0 = ), = ~log(1 - (1.6)

g=1

The poly-Bernoulli polynomials of the second are defined by (see [13])

Liy(1 — e ©
ST (1+2) = ;b (x) (1.7)

In the case when x = 0, b(qk) = b(qk)(O) are called the poly-Bernoulli numbers of the second kind.
The modified degenerate polyexponential function is defined by (see [14])

1
Bij 1(x) = Z (q(_)f;, X, (1.8)

It is noteworthy to mention that
. ( )q/l q
Eij 1(x) = Z N = ey(x) — L.
g=1 q'

The degenerate poly-Genocchi polynomials which are defined by Kim et al. as follows (see [14])

2Ei; 4 (log,(1 + 7))
e/l(z) +1

ei(z) = Z G% (x)— (k € Z). (1.9)

q=0

When x = 0, G;k) G(k) 7(0) are called the degenerate poly-Genocchi numbers.
For A4 € R, Kim-Kim deﬁned the degenerate version of the logarithm function, denoted by log,(1+7)
as follows (see [11])

(o)

_ el
log,(1+2) = Z/lﬁ 1(1)q,1/aa, (1.10)

q=1

being the inverse of the degenerate version of the exponential function e,(z) as has been shown below

e (log,(z)) = log,(ea(2)) = z.

It is noteworthy to mention that

hmlogﬂ(1+z)—2( s lq = log(1 +2).

g=1
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The degenerate Dachee polynomials are defined by (see [15])

[ee)

log,(1
%ﬂ) =y M(x)—. (1.11)

q=0

In the case when x = 0, D, = D, ;(0) denotes the degenerate Dachee numbers.
The degenerate Bernoulli polynomials of the second kind which are defined by Kim et al. as follows
(see [9])

(1+2)" = quﬁ(x)—. (1.12)

logd(l +2) =

When x =0, b, , = b, ,(0) are called the degenerate Bernoulli numbers of the second kind.
Note here that lim,_,g b, 1(x) = b,(x), (g > 0).
The degenerate Stirling numbers of the first kind are defined by

(1ogﬁ(1 +2)f = ZSu(q,k)— (k > 0), (see [11,12]). (1.13)

q=k

It is noticed that
lim$,.4(q, k) = S1(g, k),

are the Stirling numbers of the first kind presented by

1
1 log(1 + 2" = ZSl(q,k)— (k > 0), (see [7, 17]).

q=k

The degenerate Stirling numbers of the second kind are defined by (see [8])

1
(@@= = Z S2.4(9, k)— (k> 0). (1.14)

q=k

It is clear that
}11_1‘)1(1) SQ’A(q, k) = SZ(Qa k),

are the Stirling numbers of the second kind specified by

1

had q
(e -1 = > 8a(q, k)% (k > 0), (see [1-28]).
q=k )

Motivated by the works of Kim et al. [11,14], in this paper, we study the type 2 degenerate poly-
Bernoulli polynomials of the second kind arising from modified degenerate polyexponential function
and obtain some related identities and explicit expressions. Also, we establish the type 2 degenerate
unipoly-Bernoulli polynomials of the second kind attached to an arithmetic function by using modified
degenerate polyexponential function and discuss some properties of them.
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2. Type 2 degenerate poly-Bernoulli polynomials of the second kind

Here, the type 2 degenerate poly-Bernoulli polynomials of the second kind are defined by using
the modified degenerate polyexponential function which is called the degenerate poly-Bernoulli
polynomials of the second kind as

Ei;a (log,(1 + z))
log,(1 +2)

Z Pb (x)— (k € 7). 2.1)

When x = 0, Pb(k) b(k)(O) are called the type 2 degenerate poly-Bernoulli numbers of the second
kind.
Note that
Eir1 (log, (1 + 2))

-0 log,(1 +2)

> 7/
N
=0 '

_ Ei; (log(1 +2))
~ log(l +z2)

1 X:me?") Z—j,k 7), 2.2
(1+2) ,Z; V@ keD) (2.2)

where Pb;k)(x) are called the type 2 poly-Bernoulli polynomials of the second kind (see [9]).

First, we note that

o 1 1 q
Bita (logy(1 +2)) = ) : )qyﬂ((qo_gi()!q: 2)

g=1

_ i (Dg+1,2(log (1 + 2)™"!

(g + Dq!
o (Dgria 1
= (log,(1 +2))
;wl)k '(q +1)' !
- 1)q+l/l
=y R Z Sia(r g + 1)— (2.3)
q=0 r=q+1

By making use of (2.1) and (2.3), we see that

Z
— = (1+2)"Ei;, (log,(1
oz (1 +Z)( + 2)"Ei, (log,(1 + 2))

Z - (Dg+1.2 = Siar+1l,g+1)z7
(1+2)° ’ : —
qz_(; (g Z‘

" log,(1+2) T T 4 r+ 1 !
- (Dgs1.a Siar+1l,g+ D
}/l( )
Zo Z(q+1)k12 r+1 r
o0 J N\ T
(Dg+1.0 Siar+1, +1) zf
=Y D)2 T D, | 4
=\ = g+1D r+1 Jl
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Therefore, by (2.3) and (2.4), we obtain the following theorem.
Theorem 2.1. For k € Z and j > 0, we have

Jj N T
(Dgs1a Siar+1,g+1)
PO (x) = J g+ld D1, 0,
e Z;‘(r % RNV B

Corollary 2.1. Putting k£ = 1 in Theorem 2.1 yields

LN & (DS l,g+1
ij,ﬂ(x):Z(i)Z( Vgr1.a8 12(r +1,g + )bj—r,,l(x)-

o pory r+1

Let 1 < k € Z. For s € C, the function y; ,(s) is given as

Xea(s) = Eix, (log,(1 + 2)) dz. (2.5)

1 f 751
I'(s) Jo log,(1+2)
From Eq (2.5), we have

s—1

1 Z )
Xia(s) = o) fo oz, (1 +Z)E1k,/l (log,(1 +2))dz

) F(S) f log/l(l + Z)Eikaﬂ (log,(1 +2))dz

T f 10gﬂ(1 " )Elk,A (log,(1 +2)) dz. 2.6)

For any s € C, the second integral is absolutely convergent and thus, the second term on the r.h.s.
vanishes at non-positive integers. That is,

1 -1 1
%fl oz, (1+2) =T =" @7

On the other hand, the first integral in Eq (2.7), for R(s) > 0 can be written as

F(s)z s+r

which defines an entire function of s. Thus, we may include that y; ,(s) can be continued to an entire
function of s.
Further, from (2.6) and (2.7), we obtain

Ei;, (log,(1 + 2)) dz

S—>—m

Xia(—m) = Eij, (log,(1 +2))dz

. 1 f Z !
1m
s=-m I(s) Jo log,(1 +2)

) r 00 Pb(k)

<. Pb"z
=1 ! “dz = lim ——
S_I’H}"F(S)f Z ¢= sirr;nl“(s)zs+rr!
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11 PB),
=--+0+---4+0+ lim +0+0+-
s—>-m I (s)s+m m!

I'(1-s)sinns (k) (k)
Ld=9sinzs) py, Pb
( " ) "4~ T(1 + m) cos(nm)—":’l
m!

= lim
s>-m S+ m m!

_ m py, (k)
= (-1"Pp®,.

In view of (2.8), we obtain the following theorem.
Theorem 2.2. Let k > 1 and m € N[ J{0}, s € C, we have

Xea(=m) = (=1)"PbY..

Using (1.8), we observe that

Z (1);a(log, (1 + x))/

d
L Eip, (log,(1 + 1) =
ax e (ol 0) = 0 2 =5

j=

(40t i (1);2(log, (1 + x))/ (I + 0!
ClogyI+x) &4 fG-DY ogy(1+x)

Thus, by (2.9), for k > 2, we get

X (1 _l_Z)/l—l
o log(l+72)

X (1+Z)/l—1 4 (1 +Z)/1—1 4 (1+Z)/1—1

Eia(log,(1 + x)) = Eij_1,1(log,(1 + 2))dz

= _ dz
o log,(1+2)Jo log,(1 +z) Jo log,(1+2)
(k-2)-times
XEil,,l(IOg/l(l +2)dz---dz
X (1 + Z)/l—l 4 (1 + Z)/I—l Z (1 + Z)/l—l
—_— Y Zdz DRy dZ.
o log,(1+2)Jo log,(1 +z2) Jy log,(1+2)
(k-2)-times
From (2.1) and (2.10), we get
Z'O:P (k)x _ Eir 1 (log, (1 + x)) _ 1
‘= 41 log,(1 + x) log,(1 + x)
X (1 + Z)/l—l Z (1 + Z)/l—l Z (1 + Z)/l—l
——7dz- - dz.
o log,(1+2)Jy log,(1+72) o log,(1+2)
(k-2)-times

q
log1(1+x)Z Z (6]1,"' ’Qk—l)

q=0 q1++qk-1=9

Eik_u(log/l(l + )C))

(2.8)

(2.9)

(2.10)

(2.11)
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Xb(h,/?(/l - l)qu,/l(/l - 1) o ka—l,/l(/l — 1) ﬁ
G+l qg+qp+l g+ + g+ 14!

© g . q
;;( ) 1+.%;_]:q(%,'“ ,Qk—l)bj_q’/l

qul,/l(/l - l)qu,/l(/1 -1 . bqk-l,/l(/1 -1) x_J (2.12)
G+l q+qp+l g+ g+ 1)

Therefore, by (2.12), we obtain the following theorem.
Theorem 2.3. For j € N and k € Z, we have

i .
P = Z(J) Z ( q )b »
" ... -4,
q=0 q q1+-+qr-1=q qi, > k-1

Load=Dbpa@=1) by a@=1)
G+l qg+qp+l g+ +qa+ 1

Corollary 2.2. Taking k = 2 in Theorem 2.3 yields

J .
@ _ J bq,A(/l -1
= Sl

q=0

Replacing z by e,;(z) — 1 in (2.1), we get

Z PHO (ea(z) Do _ Eik,; @,

N (x)MZ (Dre1a2" o [ (A Drs1a(0)jra | 27
jzz(; Z (r+ Dfr! Z [Z (}’) (r + DE ) i (2.13)
On the other hand,
Z b (x (6’1(2) Z Pb) (X)Z e q)_
J=q
&) J .
= Z( PBO S 240/, q)] = (2.14)
=0 \q=0

In view of (2.13) and (2.14), we get the following theorem.
Theorem 2.4. For k € Z and j > 0, we have

N D) rr1,4(%) jra

j J
; Pb(0)S 240, q) = Z{; (r)w

r=

AIMS Mathematics Volume 6, Issue 11, 12680-12697.
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By using (2.1), we get

o Eiy., (log, (1 Eiy., (log, (1
P+ 1) - Po )]Z—, _ Blia(log, (1 +2) (oo Bikalog,d +2)
=1

log,(1 +z) log,(1 +2) (

_ ZEik,/l (lOg/l(l + Z)) . ; i ‘
B log,(1 + 2) (1+2)7" = (IOgﬁ(l " Z)(1 +2) )(Elk,/l (log,(1 + 2)))

_ N Z_J O (Dgallog,(1 +2))7
= ]Z(; bj,/l(x)j! ; - D
N 7[5 (1) gaog,(1 + 2))?
= bi(x)=
JZ:(; m(x)].! ; - DI
S w3 Dt
= Z; M(x)ﬁ ZZ 1a(r, 61)
J= r=
:Z[Z()Z( )qﬂSM(I’ q)b/ rl(_X)]
j=1 \r=1 r q=1 q

+2)*

(2.15)

Therefore, by comparing the coefficients on both sides of (2.15), we obtain the following theorem.

Theorem 2.5. For j > 0, we have

Ph)(x + 1) — Ph(x) = Z (r) > (q)‘”sl A7 @b ().

r=1 gq=1
By making use of (1.3) and (2.1), we have

® 7/ Elkﬁ(log1(1+z)) -
ZPb (x + ) g (1 +3) (1 + )"

_ Eiga(log,(1 +2)

X (k)
log,(1 +2) I+ +2)" = [Z Pbia () )[Z(U)q v)
= Z (Z( )Pb“‘) A(x)(n»]

Jj=0 \¢=0

Therefore, by Eq (2.16), we obtain the following theorem.
Theorem 2.6. For j > 0, we have

J
Pt = 3 (2, oo,

q=0
By using (2.1), we have

Biy1 (log,(1+2)) _ i b(k)z
log,(1 +2) = M

AIMS Mathematics
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Eiy 1 (log,(1 + 2)) = log,(1 + 2) Z pph

A
P Js J‘
Eir1 (log,(1 +2)) _ log,(1+2) © Z b(k)zl
4 z oM
- ZD[ME [Z PbMﬂJ
q=0 Jj=0
(D (A o 7
- Z Z( )Pia]_MD(M =
=0 \g=0 V1 I

On the other hand,

Fica (0g,(1 +9) _ 1 (Dyatlog,(1+ 9

Z z (q - D¢

g=1

- Z (Dg+1,20og, (1 + 2))7*!
) (g + 1)

- 12 i (log, (1 + )"
25 (

g+ 1" 1(q+1)'

j=0

Z (Dg+1a Sia(j+1,g+1) z
(

p g+ 1! j+1 jl

Thus, by equations (2.17) and (2.18), we get the following theorem.
Theorem 2.7. For j > 0, we have

= j+1

From (2.1), we have

J J
*) _ (Dgr1a Sia(G+ 1,9+ 1)
2 (aftapes= 2

S Pl = Braload +2)
a7
log,(1 +z2)

_ Eik,/l (logﬁ(l + Z))
log,(1 +2)

=3p b(k)(x)— Z(x)qﬁ Z S 1a(r, q)—

j=0

=y Pb(k)(x) Z Z(x)q S 17, q)—

j=0 " r=0 ¢=0

(I+2)°

e (log,(1 +2))

8

8

AIMS Mathematics
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co Jj i
- Z (Z( )Pbﬁk)u(x)q,ab’ 1a(r, q)) % (2.19)

Jj=0 \r=0

Therefore, by comparing the coefficients on both sides of (2.19), we obtain the following theorem.
Theorem 2.8. For j > 0, we have

I
Pb.(i]fﬂ)(x) = Z (}JF)PbF/]i)r,)(x)q,ﬂS 1a(r, ).

r=0

3. The degenerate unipoly-Bernoulli polynomials of the second kind

Let p be any arithmetic real or complex valued function defined on N. Kim-Kim [7] presented the
unipoly function attached to polynomials p(x) as

u(lp) = —p](,]{)x”,(kEZ). 3.1)
=1
Moreover,
)= = = Lig(x), (see [10,14]), 32
0 (x|1) ;;ﬁ ix(x), (see [10,14]) (3.2)

represent the known ordinary polylogarithm function.
Dolgy and Khan [3] introduced the degenerate unipoly function attached to polynomials p(x) are
considered as follows

had 1) ,x/
el = 3 p() (3.3)
=1
We see that .
Uk (XII:) = Eig1(x), (see[14]) (3.4)

is the modified degenerate polyexponential function.
Now, we introduce the degenerate unipoly-Bernoulli polynomials of the second kind attached to
polynomials p(x) as

g, (log, (1 + Z)Ip) ® Z
: -\ pp . 35
oe 170 +2)" = Z e (3.5)

When x = 0, Pbﬁp = Pbyj’p(O) are called the degenerate unipoly-Bernoulli numbers of the second
kind attached to p.
If we take p(j) = ==. Then, we have

N 1 1
E P ————(1 + 2w 1 |log,(1 + 2)|=
2. b 1() 7 Tog,(1 + o +o uk,ﬂ(ogﬁ( +z)lr)

42y Z (Dg.a(log, (1 + z))‘f.

3.6
q'(q— 1) G0

logl(l + z)

AIMS Mathematics Volume 6, Issue 11, 12680-12697.
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For k = 1, we have

1 1 1 q
ZP(%D‘()Jz 1ogl<1+) >Z()“(Ogi( 2l 1+

log/l(l +2)

Thus, we have

Pb), (x) = bja(x), (j 2 0).
By making use of (1.12) and (3.3), we note that

qk

N 1),..(log,(1 q
(o, (14 2lp) = 3 (o o0&l
=1

i (@) (1), a(loga(l +2)%¢q!
g=1 q!

i p(q)(l)q 29! (log,(1 + 2))?
q!
g=1

w0 . at
Z P(Q)( )q/lq ZSu(r q)—

=1

[ee)

| r
Z( p(q)( )m _ q)) %
g=1 )

r=1

Thus, we have the required result.
Lemma 3.1. For k € Z, we have

[Se] 1 r
. (log,(1 + p) = Y {Z P(q)(qﬂsm q)]

r=1 \¢=1
Recalling from (3.5), we have

= 1
Z Pb (x )—. g g+ loz (1 +2)lp)

= (1
(1+2" ) %(logd(l +2))?

~log,(1+72) poy

o (Dgerap(g+1) o
I+ ) =y towd + o

" log,(1+2)

(o)

D Sung+ 1)—

r=q+1

_ 0 Dgr1aplg + D(g + D!
- 10g1(1+z)(1+Z) ; (g+ 1)k

(3.7)

(3.8)

AIMS Mathematics Volume 6, Issue 11, 12680-12697.
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(o)

e i (Dg+14p(q + D(g + 1)! Z Sialr+1,g+ 1)z

pr (g + 1) — r+1 r!

N (Dgr1ap(g+ DG+ D! S (r+1,g+1) | 2
_jZ j/l( )_Z[Z (q+1)k r+1 ];

0

2 (< (Dge1ap(q + D@+ DS 1a0r+1.g + 1) 7
- Z [Z Z (r) - (g + 1) P bjra(x) F (3.9)

Therefore, by comparing the coefficients on both sides of (3.9), we obtain the following theorem.
Theorem 3.1. For j > 0 and k € Z. Then

Jj r K
® NDgr1aplg+ Dlg+ DS (r+1,q+1)
P = 202 [ TR
r=0 ¢=0
Moreover,
Jj r K
Pb(-k)l('x):Z J\ bj—ra(x) Su(r"'lCI"‘l)
JAE r] (g + 1)k r+1

Using (3.5), we have

S ot 2 1 N
Z ij,/l,p(x)j! “log, (012 Z)uk,/l(l()g/l(l +2)|p) +2)

e (log,(1 +2)lp) <, | 7
B log,(1 +2) Z(X)'i7

(9]

_ <k)Z
=) Pbl, Z(».
i=0 ©j=0

w (J
_ Z(Z( )bekjp( X)) )Z—' (3.10)

J=0

Upon comparing the coefficients on both sides of Eq (3.10), we get the following theorem.
Theorem 3.2. For j > 0 and k € Z. Then

Pb,

J
© () = Z( )Pbgkgp(x),_,..

i=0
By making use of (1.11), (1.12) and (3.5), we have

(o8]

/ 1
pp 2oL s
; PP Togy(l +2) e (log,(1 +2)p)

AIMS Mathematics Volume 6, Issue 11, 12680-12697.
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(1)qap(fJ)
10g1(1+z)z (log, (1 + 2))?
— (Dgap(g+1) .
=2 gr iy ten
q=0
B z  logy(1+72) i (Dg+1.4p(q + Dg! (log, (1 + 2))?
Clog I+ oz & (g+1f g!
B - 7 o (Dgs1a0(g + Dg! &
" 2P 20 qz 4+ ZS”(W)
N < o (Dge1ap(g + D! 7
Z:(; Z(; ZOZO G+ 1IF Su(”ﬁl)ﬁ

0 j K
J = (1)ge1.4p(q + 1)q! Z
Z Z (z) - b= f rz(; 2 TES S1alr, Q)r_!

j=0 i=0 0
00 j roj-r )
J=r (Dg+1.ap(g + Dg! 7

Z(Z Z( )( ) j-i—rabi ali % S1a(ng) | —- (3.11)
j=0 \r=0 ¢=0 i=0 (q+ ) A

Thus, by comparing the coefficients on both sides of (3.11), we obtain the following theorem.
Theorem 3.3. For j > 0 and k € Z. Then

Jj— g+, + 1)q!
bikjp ZZZ( r)( ) Jj— t—r,/lbi,/l( )q z(/]ll:-((i)k )q Sl,/l(r’ Q)

4. Numerical computations

In this section, certain numerical computations are done to calculate certain zeros of the degenerate
poly-Bernoulli polynomials of the second kind and show some graphical representations. The first five
members of Pb( )(x) are calculated and given as:

Pb(x) =1,
1 1 log 81
Pb(k) = = - - H
A0 = 2” 8log3  8log3
Pb(k)(x) 10 I x  log8l x10g81,
2 81(10g 3)2 8log3 4log3 8log3 4log3
1 322 5 10 10x
PHY(x) = —~ +2x— — + X' - —~ +
A0 =g+ 2= 16(log3)*  27(log3?  27(log 3)?
1 3x 3x? log81  3x?log8l

- + - + — ,
4log3 4log3 8log3 16log3 8log3
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1 176 15 S5x
POa(x) = 5 —6x+85 — 42 +x'+ 125(0g3)* © 8(log3) _ 4(log3)
N 110 20x N 20x? N 3 lx
81(log3)> 9(log3)> 27(log3)? 4log3 4log3
9x? X log81 3x’log81 x’log8l

+ - + .
4log3 2log3 8log3 4log3 2log3

To show the behavior of Pb;’fj(x), we display the graph Pbyj(x) for k = 4 and A = 3, this graph is
presented in Figure 1.

4% 107! i ‘

2x10?' - \

pbl'1 ()

-2x10?! |- e

-400 -200 0 200 400

X

Figure 1. Graph of Pb;’fﬂ)(x).

Next, the approximate solutions of Pbyj(x) = 0 when k = 4 and A = 3, are calculated and listed in
Table 1.

The zeros of Pb;’j(x) for A € C, j = 12 are plotted in Figure 2.

Im(x)
(=)
T
1

| . . . . | . . . . |
0 5 10

Re(x)

. (k)
Figure 2. Zeros of Pbu, 1.
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Table 1. Approximate solutions of sz‘/)l(x) =0.

J Real zeros Complex zeros

1 0.11378 -

2 0.212959, 1.0146 -

3 0.468628, 0.788431, 2.08428 -

4 2.27482, 3.00114 0.589582 — 0.515659 i,0.589582 + 0.515659 i

5 4.09322 0.470967 — 0.872952 i, 0.470967 + 0.872952 i,
2.76687 — 0.464588 i, 2.76687 + 0.464588 i

6 447754, 4.94352 0.270509 — 1.2071 i, 0.270509 + 1.2071 i

2.8603 — 1.06554 i, 2.8603 + 1.06554 i
7 6.12953 —-0.00407237 — 1.52417 i, —0.00407237 + 1.52417 i,

2.8544 - 1.67974 i, 2.8544 + 1.67974 i
4.98314 - 0.749479 i, 4.98314 + 0.749479 i
8 - —0.344872 - 1.82511 i, —0.344872 + 1.82511 i,
2.7537 - 2.30093 i, 2.7537 + 2.30093 i,
5.21262 - 1.46596 i, 5.21262 + 1.46596 i,
6.83367 — 0.248836 i, 6.83367 + 0.248836 i

The stacking structure of approximate zeros of Pb;’fj(x) =0ford=4,j=1,2,..,12 is given in
Figure 3.

Figure 3. Stacking structure of zeros Pb;’j(x).

5. Conclusions

In this article, we introduced the type 2 degenerate poly-Bernoulli polynomials of the second kind
and derived many related interesting properties. Furthermore, we defined the degenerate unipoly
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Bernoulli polynomials of the second kind and established some considerable results. Finally, certain
related beautiful zeros and graphs are shown.
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