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Abstract: Let f be a meromorphic function, R be a nonconstant rational function and k be a positive
integer. In this paper, we consider the Schwarzian differential equation of the form f ′′′

f ′
−

3
2

(
f ′′

f ′

)2k

= R(z).

We investigate the uniqueness of meromorphic solutions of the above Schwarzian differential equation
if the meromorphic solution f shares three values with any other meromorphic function.
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1. Introduction and main results

In this paper, we use the basic notions of Nevanlinna’s theory, see, e.g., [3, 5, 10]. In addition, we
use the notation

ρ( f ) = lim sup
r→∞

log T (r, f )
log r

.

to denote the order of growth of the meromorphic function f . Let S (r, f ) denote any quantity satisfying
S (r, f ) = o (T (r, f )) for all r outside of a set with finite logarithmic measure.

Let f and g be two meromorphic functions, a be a small function relative to both f and g. We say
that f and g share a CM if f − a and g − a have the same zeros with the same multiplicities. f and
g share a IM if f − a and g − a have the same zeros ignoring multiplicities. Nevanlinna’s four values
theorem (see [8,9]) says that if two nonconstant meromorphic functions f and g share four values CM,
then f = g or f is a Möbius transformation of g. The condition “ f and g share four values CM” has
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been weakened to “ f and g share two values CM and two values IM” by Gundersen [1, 2], as well as
by Mues [7].

For Schwarzian differential equation f ′′′

f ′
−

3
2

(
f ′′

f ′

)2k

= R(z, f ). (1.1)

Ishizaki [4, Theorem 1] showed that if the Schwarzian Eq (1.1) possesses an admissible solution, then

d + 2k
l∑

j=1
δ(α j, f ) ≤ 4k , where α j are distinct complex constants, and d = deg R(z, f ). In particular,

when R(z, f ) is independent of z, it is shown that if (1.1) possesses an admissible solution f , then by
some Möbius transformation w = (a f + b)/(c f + d)(ad − bc , 0), R(z, f ) can be reduced to some
special forms, see [4, Theorem 3]. Liao and Ye [6] considered differential equation, which is a simple
type of the Schwarzian differential equation, and gave the order of meromorphic solutions as follows.

Theorem 1. [6, Theorem 3] Let P and Q be polynomials with deg P = m and deg Q = n and let
R(z) = P(z)/Q(z) and k be a positive integer. If f is a transcendental meromorphic solution of the
equation  f ′′′

f ′
−

3
2

(
f ′′

f ′

)2k

= R(z), (1.2)

then m − n + 2k > 0 and the order ρ( f ) = (m − n + 2k)/2k.

In the follows, we apply the Nevanlinna theory and uniqueness of meromorphic functions to the
Schwarzian differential Eq (1.2), and investigate the uniqueness of meromorphic solutions if the
meromorphic solution f shares three values with any other meromorphic function. we obtain

Theorem 2. Let R be a nonconstant rational function and k be a positive integer. Suppose that f is a
transcendental meromorphic solution of the differential Eq (1.2) without single poles. If a meromorphic
function g shares a, b,∞ CM with f , then f ≡ g.

2. Lemmas

We now give some preparations.

Lemma 1. [9, Theorem 1.51] Suppose that n ≥ 2 and let f1, · · · , fn be meromorphic functions and
g1, · · · , gn be entire functions such that

(i)
∑n

j=1 f j exp{g j} = 0;
(ii) when 1 ≤ j < k ≤ n, g j − gk is not constant;

(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, f j) = o
{
T

(
r, exp{gh − gk}

)}
(r → ∞, r < E),

where E ⊂ (1,∞) has finite linear measure or logarithmic measure. Then f j ≡ 0 ( j = 1, · · · , n).
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Lemma 2. Let f be a meromorphic solution of Eq (1.2), then f ′ is a meromorphic solution of equation

W ′ = QW,

where Q is a nonconstant rational function.

Proof. Set

Q =
f ′′

f ′
. (2.1)

We then prove that Q is a nonconstant rational function.
Since f is of finite order by Theorem 1, (2.1) shows Q is also of finite order and{

f ′′ = Q f ′,
f ′′′ = Q′ f ′ + Q2 f ′ = (Q′ + Q2) f ′.

(2.2)

We see from (1.2) that

f ′′′

f ′
−

3
2

(
f ′′

f ′

)2

= R1, (2.3)

where R1 is some nonconstant rational function. Thus (2.2) and (2.3) show that

f ′(Q′ + Q2)
f ′

−
3
2

(
Q f ′

f ′

)2

= R1,

that is,

Q′ −
1
2

Q2 = R1. (2.4)

Since R1 is a nonconstant rational function, we deduce from (2.4) that Q cannot be a constant. We then
prove Q cannot be transcendental.

By comparing the poles of the both sides of (1.2), we get that f
′

has only finitely many zeros and
poles under the assumption that f without single poles. Thus Q has only finitely many single poles. If
Q is transcendental, then

T
(
r,Q′ −

1
2

Q2
)

= T (r,Q) + O(log r),

contradicting to (2.4). Hence, Q is a nonconstant rational function. �

Lemma 3. Let a, b be two distinct constants, β, γ be nonconstant polynomials with deg β , deg γ, and

f = a + (b − a)
eβ − 1
eγ − 1

. (2.5)

Then f cannot be a meromorphic solution of Eq (1.2).
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Proof. Assume that f is a meromorphic solution of Eq (1.2). Lemma 2 shows

f ′′ = Q f ′. (2.6)

Without loss of generality, we assume Q is a nonconstant polynomial. Otherwise, we just multiply the
dominator of Q to both sides of (2.6). We now divide our proof into two cases.
Case 2.1. deg β > deg γ. Rewriting (2.5) as

f = a01eβ + a00, (2.7)

where

a01 =
b − a
eγ − 1

, a00 = a −
b − a
eγ − 1

. (2.8)

Obviously,

ρ(a01) = ρ(a00) = deg γ < deg β. (2.9)

Since eβ is of regular growth order deg β, we see a01, a00 are small functions of eβ. We conclude
from (2.7) that

f ′ = a11eβ + a10, (2.10)

where {
a11 = a′01 + a01β

′,

a10 = a′00,
(2.11)

and

f ′′ = a21eβ + a20, (2.12)

where {
a21 = a′11 + a11β

′,

a20 = a′10.
(2.13)

We deduce from (2.9), (2.11) and ρ(a′01) = ρ(a01), ρ(a′00) = ρ(a00) that{
ρ(a11) ≤ max{ρ(a′01), ρ(a01), ρ(β′)} ≤ ρ(a01) < deg β;
ρ(a10) = ρ(a′00) = ρ(a00) < deg β.

(2.14)

We assert that a11 . 0. Otherwise, (2.11) shows

a′01 + a01β
′ = 0. (2.15)

Applying the method of separating variables to Eq (2.15), we have a01 = ce−β , thus ρ(a01) = deg β,
contradicting to (2.9). Similarly, we also get

ρ(a21) < deg β, ρ(a20) < deg β (2.16)
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and a21 . 0. Substituting (2.10), (2.12) into (2.6), we obtain

A11eβ + A10 = 0, (2.17)

where {
A11 = a21 − Qa11,

A10 = a20 − Qa10.
(2.18)

By (2.14), (2.16), (2.18) , we have{
ρ(A11) ≤ max{ρ(a21), ρ(a11)} < deg β,
ρ(A10) ≤ max{ρ(a20), ρ(a10)} < deg β.

(2.19)

Thus, ρ(A1 j) < deg β ( j = 0, 1). Since eβ is of regular growth order deg β, we obtain

T (r, A1 j) = o{T (r, eβ)}, j = 0, 1.

Applying Lemma 1 to (2.17), we have

A11 ≡ 0, A10 ≡ 0.

Thus, we obtain from (2.13), (2.18) that

a′11 + a11β
′ − Qa11 = 0, a′10 − Qa10 = 0.

Applying the method of separating variables to the above equations, we have

a11 = c1e−β+
∫

Qdz, a10 = c2e
∫

Qdz,

that is

a11 = ce−βa10. (2.20)

By (2.7), we also have

a′01 = (b − a)
−γ′eγ

(eγ − 1)2 , a′00 = (b − a)
γ′eγ

(eγ − 1)2 . (2.21)

Substituting (2.11), (2.21) into (2.20), we obtain

(β′ − γ′ − β′e−γ)eβ − cγ′ = 0.

Applying Lemma 1 and deg β > deg γ, we have −cγ′ ≡ 0, then c = 0 , thus a11 = 0, a contradiction.
Case 2.2. deg β < deg γ. Rewriting (2.5) as

f = a +
b00

eγ − 1
, (2.22)
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where

b00 = (b − a)(eβ − 1). (2.23)

Obviously,

ρ(b00) = deg β < deg γ. (2.24)

Thus, we conclude from (2.22) that

f ′ =
b11eγ + b10

(eγ − 1)2 , (2.25)

where {
b11 = b′00 − b00γ

′,

b10 = −b′00,
(2.26)

and

f ′′ =
b22e2γ + b21eγ + b20

(eγ − 1)3 , (2.27)

where 
b22 = b′11 − b11γ

′,

b21 = b′10 − 2γ′b10 − b′11 − b′11γ
′,

b20 = −b′10.

(2.28)

We deduce from (2.24), (2.26) that{
ρ(b11) ≤ max{ρ(b′00), ρ(b00), ρ(γ′)} ≤ ρ(b00) < deg γ,
ρ(b10) = ρ(b′00) = ρ(b00) < deg γ.

(2.29)

We assert that b11 . 0. Otherwise, (2.26) shows

b′00 − b00γ
′(z) = 0. (2.30)

Applying the method of separating variables to Eq (2.30), we have b00 = ceγ, and ρ(b00) = deg γ.
contradicting to (2.24). Similarly, we also get

ρ(b22) < deg γ, ρ(b21) < deg γ, ρ(b20) < deg γ, (2.31)

and b22 . 0.
Substituting (2.25), (2.27) into (2.6), we obtain

A22e2γ + A21eγ + A20 = 0, (2.32)

where 
A22 = b22 − Qb11,

A21 = b21 + Qb11 − Qb10,

A20 = b20 + Qb10.

(2.33)
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By (2.29), (2.31) , we have
ρ(A22) ≤ max{ρ(b22), ρ(b11)} < deg γ,
ρ(A21) ≤ max{ρ(b21), ρ(b11), ρ(b10)} < deg γ,
ρ(A20) ≤ max{ρ(b20), ρ(b10)} < deg γ.

(2.34)

Thus, ρ(A2 j) < deg γ ( j = 0, 1, 2). Since eγ is of regular growth order deg γ, we obtain

T (r, A2 j) = o{T (r, e2γ)} = o{T (r, eγ)}, j = 0, 1, 2.

Applying Lemma 1 to (2.32), we have

A22 ≡ 0, A21 ≡ 0, A20 ≡ 0.

Thus, we obtain from (2.28), (2.33) that

b′11 − b11γ
′ − Qa11 = 0, − b′10 + Qb10 = 0.

Applying the method of separating variables to equation ,we have

b11 = c1eγ−
∫

Qdz, b10 = c2e
∫

Qdz,

that is

b11 = ceγb10. (2.35)

By (2.23), we have

b′00 = (b − a)β′eβ. (2.36)

Substituting (2.26), (2.36) into (2.35), we obtain

cβ′eγ + (β′ − γ′β′)e0 = 0.

Applying Lemma 1 and deg β < deg γ , we have cβ′ ≡ 0, then c = 0, thus b11 = 0, a contradiction. In
conclusion, f of the form (2.5) cannot be a meromorphic solution of Eq (1.2).

�

3. Proof of Theorem 2

Proof. Since f and g share a, b,∞ CM, we can get

N
(
r,

1
f − a

)
= N

(
r,

1
g − a

)
, N

(
r,

1
f − b

)
= N

(
r,

1
g − b

)
, N(r, f ) = N(r, g).

By applying the second fundamental theorem to function g, we obtain

T (r, g) ≤ N(r, g) + N(r,
1

g − a
) + N(r,

1
g − b

) + S (r, g)
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= N(r, f ) + N(r,
1

f − a
) + N(r,

1
f − b

) + S (r, g)

≤ 3T (r, f ) + S (r, g).

Similarly, we can get T (r, f ) ≤ 3T (r, g) + S (r, f ), so T (r, g) = O(T (r, f ) + S (r, f )), and then ρ(g) =

ρ( f ) < ∞ by Theorem 1.
Furthermore, there exist polynomials α and β such that

g − a
f − a

= eα, (3.1)

and

g − b
f − b

= eβ. (3.2)

Assume, to the contrary, that f . g. Then from (3.1) and (3.2), we obtain

eα . 1, eβ . 1, eα . eβ, α . β.

Again by (3.1) and (3.2), we get

f = a + (b − a)
eβ − 1

eβ−α − 1
, (3.3)

or

f = a + (b − a)
eβ − 1
eγ − 1

, (3.4)

where γ = β − α is a nonzero polynomial.
We now suppose that α and β are not all constants. Otherwise, we easily obtain a contradiction

by (3.3). Thus, we split our proofs into two cases.
Case 1. α is a constant and β is non-constant polynomial.

Denote e−α = B(, 0). then B . 1, (3.3) shows

f = a + (b − a)
eβ − 1

Beβ − 1
, (3.5)

which yields

f ′ = (b − a)(1 − B)
−β′eβ

(Beβ − 1)2 , (3.6)

f ′′ = (b − a)(1 − B)
B(β′2 − β′′)e2β + (β′′ + β′2)eβ

(Beβ − 1)3 . (3.7)

Substituting (3.6), (3.7) into Eq (2.6), we conclude that

A31e2β + A30eβ = 0, (3.8)
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where {
A31 = B(1 − B)(β′2 − β′′) + QB(1 − B)β′,
A30 = (1 − B)β′′ + (1 − B)β′2 − (1 − B)Qβ′.

(3.9)

By (3.9), we have

ρ(A31) < deg β, ρ(A30) < deg β.

Thus, ρ(A3 j) < deg γ( j = 0, 1). Since eβ is of regular growth order deg β, we obtain

T (r, A3 j) = o{T (r, e2γ)} = o{T (r, eγ)}, j = 0, 1, 2.

Applying Lemma 1 to (3.8), we have

A31 ≡ 0, A30 ≡ 0.

By A30 ≡ 0, we obtain

β′′ + β′2 − β′Q = 0.

Applying the method of separating variables to equation, we have

β′ = c3e−β+
∫

Qdz. (3.10)

By (2.6), we have

f ′ = c4e
∫

Qdz. (3.11)

Substituting (3.6), (3.11) into Eq (3.10), we conclude that

(Beβ − 1)2 = c. (3.12)

Thus, we have β is a constant, a contradiction.
Case 2. β is a constant and α is non-constant polynomial. Similar to the proof of Case 1, we also get a
contradiction. We deduce from (3.4) and Lemma 3 that deg β = deg γ, and

f ′ = (b − a)
(β′ − γ′)eβ+γ − β′eβ + γ′eγ

(eγ − 1)2 ,

f ′′ = (b − a)
(β′′ − γ′′ + (β′ − γ′)2)eβ+2γ

(eγ − 1)3

+ (b − a)
(−2β′′ − 2β′2 + γ′′ + γ′2 + 2β′γ′)eβ+γ

(eγ − 1)3

+ (b − a)
(γ′′ − γ′2)e2γ + (β′′ + β′2)eβ

(eγ − 1)3

− (b − a)
(γ′′ + γ′2)eγ

(eγ − 1)3 . (3.13)
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Substituting (3.13) into Eq (2.6), we conclude that

A44eβ+2γ + A43eβ+γ + A42e2γ + A41eβ + A40eγ = 0, (3.14)

where 

A44 = β′′ − γ′′ + (β′ − γ′)2 − Q(β′ − γ′),
A43 = −2β′′ + γ′′ − 2β′2 + γ′2 + 2β′γ′ + Q(2β′ − γ′),
A42 = γ′′ − γ′2 − Qγ′,
A41 = β′′ + β′2 − Qβ′,
A40 = −γ′′ − γ′2 + Qγ′.

(3.15)

Obviously, we obtain that 

ρ(A44) < deg β = deg γ,
ρ(A43) < deg β = deg γ,
ρ(A42) < deg β = deg γ,
ρ(A41) < deg β = deg γ,
ρ(A40) < deg β = deg γ.

Thus,

ρ(A4 j) < deg β = deg γ( j = 0, 1, 2, 3, 4). (3.16)

Therefore, Eq (3.14) can be rewritten as

A44eβ+γ + A43eβ + A42eγ + A41eβ−γ + A40 = 0. (3.17)

In the following, we divide our proof into four cases.
Case A. deg(β+γ) < deg γ.Combining this with deg β = deg γ,we get deg(β−γ) = deg γ, deg(β−2γ) =

deg γ. Thus, eβ, eγ, eβ−γ, eβ−2γ are of regular growth order deg γ. Equation (3.17) shows that

A43eβ + A42eγ + A41eβ−γ + B00 = 0, (3.18)

where

B00 = A44eβ+γ + A40.

By this and (3.16), we obtain ρ(B00) ≤ max{ρ(A44), ρ(A40), deg(β + γ)} < deg γ = deg β. Then

{
T (r, A4 j) = o{T (r, eβ)} = o{T (r, eγ)} = o{T (r, eβ−γ)} = o{T (r, eβ−2γ)} ( j = 0, 1, 2, 3),
T (r, B00) = o{T (r, eβ)} = o{T (r, eγ)} = o{T (r, eβ−γ)} = o{T (r, eβ−2γ)}.

Together with (3.18) and Lemma 1, we have

B00 ≡ 0, A4 j ≡ 0 ( j = 1, 2, 3).

By A42 ≡ 0 and (3.15), we have

AIMS Mathematics Volume 6, Issue 11, 12619–12631.
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γ′′ − γ′2 − Qγ′ = 0. (3.19)

In Case A, we again split two subcases.
Subcase A.1. If deg γ ≥ 2. Applying the method of separating variables to equation, we have

γ′ = c5eγ+
∫

Qdz. (3.20)

Substituting (3.11), (3.13) into Eq (3.20), we conclude that

c(β′ − γ′)eβ+2γ + (c − 1)γ′e2γ + 2γ′eγ − (γ′ + cβ′eβ+γ)e0 = 0. (3.21)

By (3.21), deg(β+γ) < deg γ and Lemma 1, we obtain γ′(z) ≡ 0, thus γ(z) is a constant , a contradiction.
Subcase A.2. If deg γ = 1. Let γ(z) = mz + n1, where m , 0, n1 are constants. Hence, γ′ = m, γ′′ = 0.
Substituting these into Eq (3.19), we get

−m2 − Qm = 0,

that is Q = −m, a contradiction.
Case B. deg(β − γ) < deg γ. Equation (3.17) shows that

A44eβ−γe2γ + (A43eβ−γ + A42)eγ + (A41eβ−γ + A40)e0 = 0. (3.22)

Together with (3.16), (3.22), deg(β − γ) < deg γ and Lemma 1, we have

A44eβ−γ ≡ 0, A43eβ−γ + A42 ≡ 0, A41eβ−γ + A40 ≡ 0.

Substituting (3.15) and β = α + γ into the last equality A41eβ−γ + A40 ≡ 0, we have

(β′′ + β′2 − Qβ′)eα + (−γ′′ − γ′2 + Qγ′)e0 = 0. (3.23)

Together with (3.23) and Lemma 1, we have

−γ′′ − γ′2 + Qγ′ ≡ 0. (3.24)

In Case B, we again split two subcases.
Subcase B.1. If deg γ ≥ 2. Applying the method of separating variables to equation , we have

γ′ = c6e−γ+
∫

Qdz. (3.25)

Substituting (3.11), (3.13) into Eq (3.25), we conclude that

γ′e2γ − (2γ′ − c(β′ − γ′)eβ−γ)eγ + (cβ′eβ−γ + (1 − c)γ′)e0 = 0. (3.26)

By (3.26), deg(β − γ) < deg γ and Lemma 1, we obtain γ′ ≡ 0, a contradiction.
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Subcase B.2. If deg γ = 1. Let γ = mz + n1, where m , 0, n1 are constants. Hence, γ′ = m, γ′′ = 0.
Substituting these into Eq (3.24), we get

m2 − Qm = 0,

that is Q = m, a contradiction.
Case C. deg(β − 2γ) < deg γ. Equation (3.17) shows that

A44eβ + A43eβ−γ + A40e−γ + (A42 + A41eβ−2γ) = 0. (3.27)

By deg β = deg γ and deg(β−2γ) < deg γ, we have deg(β−γ) = deg(β+γ) = deg γ. By this and (3.16),
we have {

T (r, A4 j) = o{T (r, eβ)} = o{T (r, eγ)} = o{T (r, eβ−γ)} = o{T (r, eβ+γ)} ( j = 0, 3, 4),
T (r, A42 + A41eβ−2γ) = o{T (r, eβ)} = o{T (r, eγ)} = o{T (r, eβ−γ)} = o{T (r, eβ+γ)}.

Together with (3.27) and Lemma 1, we have

A44 ≡ 0, A43 ≡ 0, A40 ≡ 0.

By A40 ≡ 0 and (3.15), we also have (3.24). Using the same method as the above Subcase B, we get a
contradiction.
Case D. deg(β + γ) = deg(β − γ) = deg(β − 2γ) = deg γ. By this and (3.15), for j = 0, 1, 2, 3, 4, we
have

T (r, A4 j) = o{T (r, eβ)} = o{T (r, eγ)} = o{T (r, eβ−γ)} = o{T (r, eβ+γ)} = o{T (r, eβ−2γ)}.

Combining this with Lemma 1, we have

A4 j ≡ 0, j = 1, 2, 3, 4.

By A40 ≡ 0 and (3.15), we also have (3.24). Using the same method as the above Subcase B, we get a
contradiction. �

4. Conclusions

Together with the Nevanlinna theory and uniqueness of meromorphic functions, this paper considers
the certain type of Schwarzian differential equation, and investigate the uniqueness of meromorphic
solutions if the meromorphic solution f shares three values with any other meromorphic function.
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