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Abstract: This paper proposes a local semi-analytical meshless method for simulating heat conduction 

in nonlinear functionally graded materials. The governing equation of heat conduction problem in 

nonlinear functionally graded material is first transformed to an anisotropic modified Helmholtz 

equation by using the Kirchhoff transformation. Then, the local knot method (LKM) is employed to 

approximate the solution of the transformed equation. After that, the solution of the original nonlinear 

equation can be obtained by the inverse Kirchhoff transformation. The LKM is a recently proposed 

meshless approach. As a local semi-analytical meshless approach, it uses the non-singular general 

solution as the basis function and has the merits of simplicity, high accuracy, and easy-to-program. 

Compared with the traditional boundary knot method, the present scheme avoids an ill-conditioned 

system of equations, and is more suitable for large-scale simulations associated with complicated 

structures. Three benchmark numerical examples are provided to confirm the accuracy and validity of 

the proposed approach. 
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1. Introduction 

The functionally graded material is a composite with continuously varying microstructure and 

mechanical properties and is often applied to reduce the thermal stress or residual stress in dissimilar 

material joints. With this regard, it is very important to analyze the heat transfer characteristics of 

functionally graded materials. Generally, it is not easy work to derive an exact expression of 

temperature distribution in nonlinear functionally graded materials. Therefore, the numerical 

simulation has become one of the main methods for addressing such problems. 

Over the past few decades, various numerical methods have been developed for the analysis of heat 

transfer in functionally graded materials. The main methods include the finite element method (FEM) [1–4], 

the boundary element method (BEM) [5–7], and the finite difference method (FDM) [8–10]. Among them, 

the FEM occupies dominant position due to its mature theory system and good stability. These traditional 

mesh-type methods have their advantages, but at the same time they have many deficiencies, such as the 

complexity of preprocessing, especially for complex structures. 

In order to reduce the time-consuming task of grid partition, numerous meshless/meshfree methods 

and coupled finite element-meshfree methods [11,12] have been proposed in recent years. At present, the 

common meshless methods include the meshless local Petrov-Galerkin method (MLPG) [13–15], the 

generalized finite difference method (GFDM) [16–19], the singular boundary method (SBM) [20–24], the 

boundary knot method (BKM) [25–28] and the method of fundamental solution (MFS) [29–32], etc. The 

successful application of these approaches shows their development prospect. Meanwhile, these methods 

also have some limitations. For example, as the semi-analytical and boundary-type meshless schemes, the 

BKM and MFS encounter the challenge of simulating large-scale and/or high-dimensional problems. With 

these reasons in mind, the localized method of fundamental solution (LMFS) [33] and the localized 

boundary knot method (LBKM) [34] have been proposed and successfully applied to large-scale 

acoustics [35,36], elastic mechanics [37], inverse problems [38], steady-state heat transfers [39,40] 

and other mechanics problems [41–43]. 

The LBKM is a domain-type meshfree approach using the non-singular general solution as the 

basis function. In fact, it can be regarded as a localized version of traditional boundary-type BKM. 

When this method was first proposed, the artificial boundaries and boundary nodes on it are required 

for every local subdomain. Later, the LBKM is modified into the local knot method (LKM) without 

designing the artificial boundaries. Like the local radial basis function collocation method and the 

element-free Galerkin method [44–46], the LKM is a typical localized domain-type meshless method. 

Unlike them, the LKM is a semi-analytical and strong-form approach, in which the nonsingular general 

solution is taken as the basis function. Compared with the local radial basis function collocation 

method, the LKM avoids the issue of selecting shape parameters, and has a higher numerical accuracy. 

Recently, the LKM has been successfully applied to solving convection-diffusion-reaction equations [47] 

and acoustic problems [48], and has demonstrated the advantages of truly meshless, high-accuracy, and 

large-scale calculation. 

In view of its above merits, this study makes a first attempt to employ the LKM in conjunction 

with the Kirchhoff transformation to solve the heat conduction problems of two-dimensional non-

linear functionally graded materials. In the calculation, the Kirchhoff transformation is applied to 

transform the nonlinear heat conduction equation into a linear equation. The transformed equation is a 

modified Helmholtz equation whose non-singular general solution is available. The LKM can be 

directly used to approximate the solution of the modified Helmholtz equation. The solution of the 
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original problem can be acquired by using the inverse Kirchhoff transformation. 

The general outline of this paper is as follows. The heat conduction problem of functionally 

graded nonlinear material is introduced in Section 2. Section 3 describes the procedures of solving the 

anisotropic modified Helmholtz equation via the LKM. In Section 4, three benchmark numerical 

examples are presented to demonstrate the feasibility and accuracy of the proposed methodology. 

Finally, some conclusions are drawn in Section 5. 

2. Problem statement 

Consider the steady-state heat conduction problem in a two-dimensional nonlinear functionally 

graded material with the domain 
2Ω R   and boundary Γ  , the governing equation can be 

represented as 

 
2

, 1

( )
( ( , ) ) 0,    ,ij

i j i j

T
K T Ω

x x=

 
= 

 


x
x x  (1) 

with the following boundary conditions: 

 ( ) ,    ,DT T Γ= x x  (2) 

 
2

, 1

( ) ( )
( ) ,    ,ij i N

i j j

T T
K n q Γ

x=

 
= − = 

 


x

x x
x x

n
 (3) 

 
( )

( ( ) ),    ,e f R

T
h T T Γ


= − 


x

x
x x

n
 (4) 

where ( )T x  represents the temperature at the point x ,  
1 , 2

( , )ij i j
K K T

 
= x  the heat conduction 

coefficient matrix satisfying positive definite 12 21 11 22( det( ) 0)K K K K K K = = −    and symmetry 

21 12( )K K=   conditions, xn   the unit outer normal vector at the boundary point x  , eh   the 

conductivity factor, 
fT   the ambient temperature. DΓ  , NΓ   and RΓ   denote boundary segments 

according to Dirichlet, Neumann and Robin boundaries, and D N RΓ Γ Γ Γ= + + . 

In this study, we focus on the exponentially functionally graded material whose heat conductivity 

matrix could be represented as follows 
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where ( ) 0a T  , 1  and 2  are the material parameters,  
1 , 2ij i j
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=K  is a symmetric positive 

definite matrix. 

By using the Kirchhoff transformation 
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Equations (1)–(4) can be converted to 
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 ( ) ( ),    ,T DΦ T = x x  (8) 
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where ( ) ( ( ))TΦ T=x x . 

Let 
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formula can degenerate into an anisotropic modified Helmholtz equation. Employing the following 

transformation 
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with 
11 22 12 21det( ) 0

K
K K K K K = = −  , an isotropic modified Helmholtz equation will be obtained, 

namely, 
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The non-singular general solution of Eq (13) is available [49], and thus the non-singular general 

solution of Eq (11) can be derived by using the inverse transformation of Eq (12), 
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where 
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= =
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collocation node and source point, and 0I  indicates the zero-order modified Bessel function of first 

kind. Using the transform 
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3. Local knot method 

This section will introduce the implementation of the LKM in solving Eq (7), with the help of the 

non-singular general solution (15). According to the basic theory of the LKM, ( )
1

N

i i=
x are discretized 

inside the domain Ω   and along its boundary Γ  , here 
1 2 3p b b bN n n n n= + + +  , the numbers of 

boundary nodes satisfying the Dirichlet, Neumann and Robin boundary conditions are 1bn , 2bn  and 

3bn , respectively. 
pn  represents the number of interior nodes. Figure 1 shows the schematic diagram 

of the LKM, which indicates the distribution of the central node 
(0)

x  and its m supporting points 

( ( ) , 1, 2,...,p p m=x ) in a corresponding supporting domain sΩ . For the 1m+  local nodes inside the 

supporting domain sΩ , we can express the unknown at the center node using a linear combination of 

the non-singular general solutions 

 ( ) ( )

0

( ) ( ),    ,    0,1,..., ,
m

p p

q pq s

q

Φ G R Ω p m
=

=  =x x  (16) 

or for brevity 

 ( ) ( ) ,p pΦ =G α  (17) 

where 0( )m

q q =  are the unknown coefficients, ( )pqG R  is the non-singular general solution given in 

Eq (15). 

 

Figure 1. Two-dimensional schematic diagram of the LKM. 

Based on the essential ideas of moving least squares (MLS) approximation, in each local 

subdomain, the residual function can be defined as follows 

 
2

( ) ( ) ( )

0

( ) ,
m

p p p

p

B Φ Φ 
=

 = −  G α  (18) 

where 
( )p  is the weight function, many kinds of weight functions can be adopted. We use the spline 

weight function [50] in the present study. 
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where 
pd  is the distance between the central node 

(0) x  and the pth supporting node 
( ) p

x , 
maxd  

is denotes the maximum value of distances between 
(0) x   and m supporting nodes, i.e., 

max
1,2,...,

max ( )p
p m

d d
=

= . 

On the basis of the MLS theory, the undetermined coefficients 
0 1( , ,..., )T

m  =α   could be 

decided by minimizing the functional ( )B Φ , namely, 
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From Eq (20), the following linear system can be consisted 
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The unknown vector b  in Eq (22) could be recast as 
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In accordance with Eqs (21)–(23), the coefficient vector 
0 1( , ,..., )T

m  =α  can be repressed as 
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Substituting Eq (24) into Eq (17) as 0,p =  the temperature at central node 
(0) x  is expressed as 
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In addition, the normal heat flux at the boundary node can be calculated by 
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or for brevity 
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= = x x A B  If the central node 
(0)

x  is a boundary node with Robin boundary 

condition, we have 
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Substituting Eq (29) into Eq (30) yields 
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For the interior nodes, the temperature distribution should satisfy Eq (26), namely, 
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where the subscript p of 
( )q

pf  is a coefficient used to differentiate the different internal nodes. For the 
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boundary nodes satisfying Dirichlet boundary conditions, the following equation should be satisfied 

 
( ) ( )

1, 1, 2,..., .p p

p p p bΦ Φ p n n n n= = + + +  (33) 

For the boundary nodes with Neumann conditions, we have 
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For the boundary nodes with Robin conditions, we have 
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In Eqs (34) and (35), the subscript “p” (indicates the node number) is used to distinguish the different 

boundary nodes. 

By using given boundary data and combining Eqs (32)–(35), the following sparse system of linear 

equations is obtained 

 ,T =AΦ b  (36) 

in which N NA  is the matrix of coefficient, (1) (2) ( ), ,...,
T

N
T Φ Φ Φ=   Φ  represents the unascertained 

vector of variables at all nodes, and 1Nb  denotes the known vector. After obtaining the solution TΦ  

of Eq (36), the solution of the original problem (Eq (1)) can be acquired by using the inverse Kirchhoff 

transformation 

 1( ) ( ( )).TT Φ−=x x  (37) 

To summarize and to make clearer the procedure of the developed method for solving the heat 

conduction problem in nonlinear functionally graded material, a computational flow chart is given in 

Figure 2. 
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Nonlinear partial differential equation with known geometry 

model and boundary conditions  (Eqs. (1-4))

Start

Heat conduction in nonlinear functionally graded material

Transforming the nonlinear boundary value problem into an 

anisotropic boundary value problem (Eqs. (7-10)) by using 

Kirchhoff transformation

Solving the anisotropic boundary value problem via the local 

knot method with nonsingular general solution (Eq. 15) 

Obtaining the temperature field in nonlinear functionally 

graded material via the inverse Kirchhoff transformation

End
 

Figure 2. Computational flow chart. 

4. Numerical examples 

In this section, three typical numerical examples are provided to verify the applicability and 

accuracy of the proposed method for solving the heat conduction problem of two-dimensional 

nonlinear functionally graded materials. In order to estimate the accuracy, the measured errors are 

defined as 

 ( ) ( )
2 2

1 1

Global error ,
W W

k k k

n e e

k k

u u u
= =

= −   (38) 

  Max error max ,k k

n eu u= −  (39) 

where W is the number of all test points, k

nu  and k

eu  are numerical and analytical solutions at test 

points, respectively. Remarkably, all the calculations were done on a laptop (Intel® CoreTMi5-9300H 

CPU at 2.40 GHz, 8G RAM) by using the MATLAB program. 

4.1. Example 1 

The typical heat transfer problem of exponential heterogeneous gradient materials is considered. 
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In a high-temperature environment, the coefficient of heat conduction is defined as ( ) Ta T e= . We can 

acquire T

TΦ = e , 1( ) ln( )T TT Φ Φ−= =  by the Kirchhoff transformation. Here, we consider a square 

domain    1,1 1,1Ω= −  −  of orthotropic material with 
2   0

0   1
K

 
=  
 

 and 
1=0 , 

2 =1 . The lower 

and right boundaries of the structure respectively satisfy the Dirichlet and Neumann boundary 

conditions, and the other boundaries satisfy the Robin boundary condition. The analytical solution is 

 
1 /

( ) ln( sinh( ) ),
2

TyTx Tr
T x Tr e

Tr

−−
=  (40) 

where 1 2 1Tx x= − , 2Ty x= , and 2 2Tr Tx Ty= + . 

For the sake of investigating the influence of the total number of nodes on the calculation results, 2300 

regular and irregular nodes are used in the calculation (as shown in Figure 3). Irregular nodes are derived 

by jiggling the regular nodes, i.e., assigning a perturbation on regular nodes along the x and y directions. 

The temperature distribution in the domain can be calculated with different numbers of supporting 

node (10 40m  ). Figure 4 shows the error curves as the number of supporting node increases, under 

regular/irregular nodal distributions. As can be seen from Figure 4, although the errors show fluctuation 

for some specific numbers of supporting node, it can still be seen that the global errors and the 

maximum errors generally have a decreasing trend with the increase of supporting nodes. In this 

example, 35m =  is a relatively optimal value to achieve the highest accuracy. This indicates that the 

number of supporting nodes has a certain influence on the calculation results, but a relatively ideal 

numerical result can be obtained in a larger range. 

 

Figure 3. Distributions of nodes: (a) Regular nodes; (b) Irregular nodes. 
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Figure 4. Error curves of the LKM with respect to the number of supporting nodes, under 

regular and irregular distributions of nodes. 

In fact, the number of supporting nodes ( m ) is related to the node spacing 

(
11

max min i j
j Ni N

h
  

 = −x x ). In order to numerically analyze the relationship between m  and h , we 

investigate the global errors under different values of m  and h . Figure 5 displays the 3D error 

surface and the 2D error plane. The red dots in Figure 5(b) indicate the positions of 
3Global error 10−= . Using the curve fitting method, we can obtain an estimation formula that ensures 

the global error is almost equal to 10-3, (-1.885)0.02297m h =   , where     denotes the round up 

operation. Furthermore, the positions corresponding to the relatively optimal value of m  are plotted 

by white squares. In the same way, the relatively optimal value of m  can be formulated by 

 (-1.213)0.6387m h =   . (41) 

According to Eq (41), we can easily estimate the number of supported nodes according to the node 

spacing. This example uses 2300 nodes, and thus h  is about 0.038. It can be observed from Figure 5(b) 

that 
3Global error 10−  when 10 40m  . 

 

Figure 5. Distributions of global errors under different values of m and h . 
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Figure 6 shows the variations of errors with the increase of the total number of nodes under the 

regular and irregular nodes, where 30m = . We can observe that both the maximum errors and global 

errors are less than 
25.621 10− , and both decrease with the augment of the total number of nodes, 

indicating that the LKM has the good accuracy and convergence in dealing with the heat transfer 

problem of nonlinear functionally graded materials. It can also be obtained from Figure 6 that the 

calculation precision with regular node distribution is higher than that with irregular node distribution, 

which verifies that the proposed method, as a local meshless method, can simulate the heat conduction 

problem with arbitrary node distribution, and the calculation accuracy with regular node distribution 

is slightly better. 

 

Figure 6. Error curves of the LKM with respect to the total number of nodes, under regular 

and irregular distributions of nodes. 

In the case of regular nodes, Figure 7 displays the distributions of the exact solution and absolute 

error in the calculation domain. From Figure 7, we can clearly observe that the LKM can reach a higher 

precision, and the absolute error is less than 
31.104 10− . 

 

Figure 7. Comparison of numerical results in the calculation domain: (a) Exact solution; 

(b) Absolute error. 
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To validate the accuracy and condition number of the developed method, we compared the LKM 

with the BKM. Table 1 lists the errors and the condition numbers of the above two methods with 

increasing number of boundary nodes. It is worth noting that the BKM is a boundary meshless method, 

while the LKM is a local meshless method. In the BKM, the number of boundary nodes (NB) is set to 

the same value as the LKM to ensure the fairness of comparison. From Table 1, it is observed that the 

numerical veracity of the LKM is marginally better than that of the BKM for various values of NB. 

Moreover, the condition number of the LKM is obviously less than that of the BKM. It could be 

carefully concluded that the presented LKM is accurate and stable for solving two-dimensional 

nonlinear heat conduction problems. 

Table 1. Comparison of numerical results acquired by the LKM and the BKM under 

different numbers of boundary nodes. 

NB 

BKM LKM 

Max Error Global Error Cond(A) Max Error Global Error Cond(A) 

116 1.78310-3 1.06910-3 1.575e+19 1.06310-3 1.58910-4 2.958e+03 

216 2.01110-3 1.25710-3 2.039e+20 1.36610-3 2.06410-4 2.458e+04 

320 1.90010-3 1.23210-3 1.229e+20 1.84010-3 1.97010-4 2.908e+05 

404 1.87610-3 1.13110-3 1.043e+20 1.58310-3 1.35310-4 1.977e+07 

4.2. Example 2 

The second example considers a heat transfer problem on a square functionally graded material 

plate with four circular holes of the same size, as shown in Figure 8(a). The temperatures are assumed 

to be known on the boundaries a and b, the heat fluxes are given on the boundaries c and d, and the 

boundaries of four circular holes are adiabatic. The relevant parameters are set as: 1.0L = , 1 0.3L = , 

2 0.2L =  , 0.1r =  . In fact, the thermal conductivity can be expressed as a linear relationship with 

temperature. 

The exact solution is indicated as 

 
1 1 2 ( )

( ) .T x
T x





− + + 
=  (42) 

Using the Kirchhoff transformation, we can get 
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Under 1226N =  (as shown in Figure 8(b)) and 60m = , Figure 9 illustrates the comparison of 

numerical results on the computational domain. It can be found from the figure that the numerical 

results obtained by the LKM are extremely in agreement with the analytical solutions. Furthermore, 



12612 

AIMS Mathematics  Volume 6, Issue 11, 12599–12618. 

the absolute errors are less than 
58.306 10− , and the maximum error appears at the boundary d. It can 

be seen from Table 2, both global errors and maximum errors decrease with increasing number of 

supporting node, showing a convergence trend. As can be expected, the CPU times gradually increase 

with increasing number of supporting nodes, but not too much even for the relatively larger value 

60m = . 

 

Figure 8. A geometric model and nodal distribution of a plate. 

 

Figure 9. Profiles of temperature and error on the plate: (a) Exact solution; (b) LKM; (c) 

Absolute error. 
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Table 2. Global errors, Max errors and CPU times with the increase of the number of 

supporting nodes, where 1266N = . 

m 20 30 40 50 60 

Global errors 2.643e-03 1.661e-04 1.407e-04 6.967e-05 2.381e-05 

Max errors 7.528e-03 9.004e-04 6.408e-04 2.620e-04 8.306e-05 

CPU times (s) 1.134 1.412 2.052 2.868 3.659 

Finally, we set 60m = , Figure 10 depicts the absolute errors of the LKM under different numbers 

( 960,  1890,  2620N = ) of total nodes. Noted that the error becomes smaller and smaller as the number 

of total nodes increases, indicating a convergence trend. The above numerical experiment with 

complicated geometries and mixed boundary conditions confirms the capacity, accuracy, and 

convergence of the developed methodology in solving the 2D heat conduction in nonlinear functionally 

graded material. 

 

Figure 10. Comparison of numerical results on the computational domain, under different 

numbers of total nodes: (a) 960N = ; (b) 1890N = ; (c) 2620N = . 

4.3. Example 3 

In the last example, the LKM is applied to a nonlinear heat conduction problem in an irregular 
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domain. Figure 11 shows the geometry model of the problem. In this case, we use the same analytical 

solution and parameters as for example 2. 

 

Figure 11. Nodal distribution in an amoeba-like domain. 

To investigate the influence of the number of supporting nodes on the computational accuracy, 

we set N to be 1228 (irregular nodes) and plot the relative errors of the temperatures at all points in 

Figure 12, when m is equal to 30, 40, and 50. It is noticed that the error gradually decreases with 

increasing number of supporting nodes. 

 

Figure 12. Relative errors of the temperatures at all nodes, under different numbers of 

supporting nodes: (a) 30m = ; (b) 40m = ; (c) 50m = . 

To investigate the convergence of the LKM for nonlinear heat conduction problem in an irregular 

structure, Figure 13 shows the variations of global errors and maximum errors as the increase of node 

number. Numerical results in the figure demonstrate the good convergence properties of the proposed 

scheme. Furthermore, even if the number of nodes exceeds 100000, the numerical simulation work is 

still performed on a regular laptop. A great number of numerical tests indicate that the proposed 

methodology in this paper is accurate, stable and convergent, and is suitable for large-scale simulations 

in an arbitrary domain. 
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Figure 13. Error curves of the LKM with respect to the number of total nodes. 

5. Conclusions 

This paper firstly presented a novel local semi-analytical meshless method, the local knot method (LKM) 

in conjunction with the Kirchhoff transformation, to numerically simulate heat conduction problems of 

nonlinear functionally graded materials. As a local semi-analytical meshless algorithm, the LKM uses 

the non-singular general solution as the basis function. Compared with the traditional BKM, this 

method not only retains the simplicity and high accuracy, but also avoids an ill-conditioned system of 

equations, and is more appropriate for large-scale simulations associated with complex structures. 

Numerical experiments including simply/multi-connected and regular/irregular domains shown 

that the proposed method is accurate, stable, and convergent. Furthermore, the resultant matrix is well-

conditioned and has a smaller condition number than the traditional BKM. Compared with the existing 

methods for solving the heat conduction problem of nonlinear functionally graded materials, the 

present scheme could be regarded as a highly competitive one. 
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