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1. Introduction

Infectious diseases, such as AIDS, Ebola, Zika, influenza, Hepatitis B virus, COVID-19 and so
on, are all public health concerns of the world. It has an important impact on public health, social
and economic development and even human life [5, 6,9, 10]. By the reference of the World Health
Organization (WHO) 1996: Nearly 50000 children, men and women die from infectious diseases
every day [41,42]. For many diseases, there are no drugs or vaccines for treatment or cure. We are
on the verge of a global epidemic crisis. No country can do without them. No country can ignore
their threat any more, the Director-General of WHO says in the WHO report [41]. Thus, in order
to better understand the transmission mechanism of infectious diseases, and obtain good methods to
control the infectious diseases propagation, mathematicians have proposed many mathematical models
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to discuss the dynamic behavior of infectious disease transmission [2, 16, 17,22, 35]. For instance, the
SIS (Susceptible-Infectious-Susceptible) epidemic model [12, 14,27], the SIR (Susceptible-Infected-
Recovered) epidemic model [3, 20, 21], the SIRI (Susceptible-Infected-Recovered-Infected) epidemic
model [33,37,44], the SIRS (Susceptible-Infected-Recovered-Susceptible) epidemic model [25, 32],
SEIR (Susceptible-Expose-Infected-Recovered) epidemic model [30,39,43] and the infectious diseases
model with vaccination [4,28].

In diseases such as influenza and COVID-19, some people can be isolated once they are found to
have been infected with infectious disease in the exposed or infectious state. To portray the character of
the quarantined state and combine with the characteristics of classical epidemic models, Chen et al. [8]
proposed the infectious disease model with quarantined compartment as follows:

BO = A —BSOI(t) — uS () + (1),
dE(r) =BS(OI(t) — (u + €+ 61 +y1)E(@),
dl(t) =eE(t)—(u+a+c+06,+ )1,
dQ(t) = 8,E(t) + 6,1(1) — (u+ a +y3)Q(1),

(1.1)

where S(t), E(t), I(t) and Q(t) represent the number of the susceptible, exposed, infected and
quarantined individuals at any time ¢, respectively. The meanings of the parameters are shown in
Table 1. In [8], many important results, such as the local and global asymptotic stability of the
disease-free equilibrium and the endemic equilibrium of model (1.1), were obtained under certain
conditions, and estimated the domain of attraction for the endemic equilibrium.

Table 1. The meaning of the parameters in model (1.1).

Parameters  Meaning

A The recruitment rate of the population

B The transmission rate that the susceptible people come into the exposed people
u The natural death rate
c
g
o

The rate that the infected people recover and turn into the susceptible people
The rate at which some exposed individuals become infected individuals
The mortality rate of infected and quarantined individuals due to illness

01 The quarantined rate of the exposed individuals
02 The quarantined rate of the infected individuals
Y1 The recovery rate of the exposed individuals
0% The recovery rate of the infected individuals
V3 The recovery rate of the quarantined individuals

As is known to all, the incidence rate of infectious diseases plays a key role in the investigation
of mathematical epidemiology. Most classical infectious disease models employ bilinear incidence
rates, which is based on the homogeneous mixing assumption [2,29,45]. However, experiments [11]
have strongly suggested that the incidence is an increasing function of the parasite dose, and is usually
sigmoidal in shape (see, for example, [36]). As a result, Anderson and May [1] proposed a saturated
incidence 1";{? ; Lv et al. [31] introduced a Beddington-DeAngelis incidence rate ; va - into the HIV
model; Caraballo et al. [7] considered an incidence function (8 — B 2

ST to dlSCllSS the influence of
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media coverage on propagation dynamics. Motivated by the above discussion, we present the following
SEIQ epidemic model with general incidence function:

O — A~ SO (1)) - S (1) + cl(D),

EO = S fU(1) = (u+ &+ 61 +yDE®),

4D = gE(t) — (u+ a +c+ 6+ y)I(),

00 _ 5, E(t) + 6,1(t) — (u +  + ¥3)Q(0),

(1.2)

where the meanings of all parameters in model (1.2) are consistent with that in model (1.1). By a
simple calculation, we obtain a basic reproduction number

B Aef’(0)
Ut e+ S YDA+t +y))

Similar to the proof method in [8], we also show that if Ry < 1, then system (1.2) has a unique free
disease-equilibrium, which is globally asymptotically stable. The disease equilibrium is unique and
also globally asymptotically stable when Ry > 1.

On the other hand, due to the existence of environmental noise, the parameters involved in system
(1.2) are not constants, and they always fluctuate near the average value. Therefore, numerous
researchers considered the influence of random factors in the epidemic models and studied the
dynamic behavior of stochastic epidemic models with general incidence rate [19, 25, 26]. Fan
et al. [15] presented a stochastic delayed SIR epidemic model with generalized incidence rate and
temporary immunity. On the basis of the strong law of large numbers, they established sufficient
conditions for extinction and permanence in the mean. Fatini et al. [13] adopted parameter
perturbation method to investigate the stationary distribution of a generalized SIRS epidemic model.
They considered the parameter § fluctuates near the average value, and showed the extinction of the
disease when R < 1 while the persistence in mean of the disease when R > 1. Liu et al. [24]
considered a stochastic SIRS epidemic model with logistic growth and general nonlinear incidence
rate. By constructing a suitable stochastic Lyapunov function, they obtain sufficient conditions for the
existence and uniqueness of an ergodic stationary distribution of the positive solutions to the
stochastic SIRS epidemic model.

Based on the above concerns, in this paper, we try to do some work in this field, and discuss the
existence of a stationary distribution of solutions of stochastic SEIQ epidemic model. Our method is
similar to that of Wang et al. [40]. Now, we assume the environmental fluctuations are white noise
type, which are directly proportional to S, E, I and Q, and influenced on %’ ‘fi—f, % and ”Z—? in model
(1.1). Then we obtain the following stochastic SEIQ epidemic model corresponding to model (1.2):

dS(1) = [A=SOfU@®) —puS (1) + cl(D]dt + 1S ()dB, (1),
dE@) = [SOfUD) =+ & + 6 + y)ED]dt + o E@ B (1),
dl(t) = [eE(t) — (U + a + ¢ + 0, + y2)I(1)]dt + 031()dB5(1),
dO(1) = [61E() + 621(1) = (a + p + y3)Q(D)]dt + 074 Q()dB4(7),

where B;(t) are mutually independent standard one-dimensional motion of Brownian motions with
B;(0) = 0, 0','2 > (0 mean the intensities of the white noise, i = 1,2, 3, 4. Furthermore, we assume that
the contact between a susceptible individual and a infected individual is given by an incidence function
f(-), which satisfies the following conditions:

Ro

(1.3)
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(A1) f(-) € C(R,,R,) such that f/(I) >0and f(0) =0V I>0;
(A2) @ is monotonically non-increasing on (0, co) and f(I) > If’(I) for all u € R,.

From (A2), one can see that f(I) < If'(0) for all I > 0. These assumptions are biologically
motivated, see [13] in detail. Obviously, it includes the common incidence functions such as the linear
function f(I) = BI and the saturation incidence function f(/) = 1 — [, where 5, a > 0.

As is known to all, in the deterministic epidemic model, the basic reproduction number and
endemic equilibrium are two very important factors. Because the basic reproduction number
represents the threshold of the epidemic spreading, and the endemic equilibrium represents the
prevalence of the disease. However, the influence of environmental noises is taken into account, it is
difficult to determine the threshold of stochastic epidemic model, and most stochastic models have no
the endemic equilibrium. Therefore, the stationary distribution of stochastic models has been widely
concerned. On the other hand, from the perspective of biomathematics, the existence and ergodicity
of stationary distribution illustrates that infectious diseases will exist for a long time and continue to
develop. Therefore, we concentrate on two points: (i) develop a stochastic SEIQ epidemic model with
generalized incidence function S f(I), and on the basis of the properties of f(I), prove the existence
and uniqueness of the global positive solution. (ii) try to give the extinction threshold of the disease
and investigate the stationary distribution of stochastic epidemic model with generalized incidence
function.

The paper is organized as follows. In Section 2, we introduce some basic definitions and related
theories in this paper. In Section 3, we show the existence and uniqueness of the global positive solution
of system (1.3) with any initial value. In Section 4, we give some sufficient conditions for extinction of
the disease. In Section 5, we show the existence of a stationary distribution of solutions to model (1.3)
by using the method of Khasminskii and constructing a suitable Lyapunov function. In the Section
6, some numerical simulations are presented to verify the theoretical results. The main results of this
paper ends with conclusion in Section 7.

2. Preliminaries

Throughout the paper, let (2, .%, P) be a complete probability space with filtration {.#,}» satisfying
the usual conditions (i.e., it is right continuous and increasing while .7, contains all P-avoid set) and
B;(t) are denoted on the complete probability space. Denote [Ri ={x € Ri x> 0,i =1,2,3,44,
aV b =max{a,b} and a A b = min{a, b}, forall a,b € R.

For the four-dimensional stochastic differential equation

dx(t) = g(x(1),HdB(t) + f(x(1),t)dt fort > 0. 2.1

with the initial value x(0) = x, € R*. Let C*!(R* x (0, 0); R,) denote the family of all nonnegative
functions V(x, f) which defined on R* x (0, co) such that they are continuously twice differentiable in x
and once in ¢. Define the differential operator L of (2.1) as follows [34]

2

(9xj

o+ Zf(x N3 Z[g (. 0g(x 0]

i,j=1
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Acting L on V € C*!(R* x (0, ); R,), we have
1
LV(x, 1) = Vi 1)+ Vil 0 f (6, 1) + S tracel Vdx, ng" (x,0g(x, 1],

_ oV _ 0V 9V 9V oV _ [ vV A . 4
where V, = 5, V, = (6_)51’ a5 ox a_x4)’ Ve = (W)4x4' Thus, by the Itd’s formula, if x(¢) € R*, then

dV(x(1),t) = LV(x(¢), )dt + g(x(2), 1)V (x(2), 1)d B(t).
To obtain the stationary distribution of system (1.3), we propose some definitions and known results

in the sequel. Let X(f) be homogeneous Markov process in the d-dimensional Euclidean space R¢,
which satisfies the autonomous equation

d
dX(t) = b(X)dt + Z 8-(X)dB,(2). (2.2)

r=1

It is well-known that the diffusion matrix corresponding to Eq (2.2) has the form

d
AX) = (@;j(x), where ai(x) 1= 3" gl(x)gi(x). (2.3)

r=1
Lemma 2.1. /23] Let U € R? be a bounded open domain with regular boundary T, which has the

following properties:

I
(H1) There exists a constant M > 0; Y, a;j(x)&EE; = MIEP, for all x € U and € € R,
i1

(H2) There is a C*~function V > 0 satisfying LV < 0 for any x € R? — U.

Then the Markov process X(t) admits a unique ergodic stationary distribution nt(-). In this situation,

1 T
P{ lim — f F(X(0)dt = f fom(dx)} =1, forall x € R,
T—co T 0 R4
where f(-) is an integrable function with respect to the measure m.
3. Existence and uniqueness of the global positive solution

In order to investigate dynamics of an SEIQ model, the first concern is whether the solution is global
and positive. In this section, we will construct a suitable Lyapunov function to verify the existence and
uniqueness of global positive solutions of the model (1.3).

Theorem 3.1. For any initial value (S(0), E(0),1(0),0(0)) € IRi, a unique positive solution
(S(0), E(1),1(t), Q1)) of model (1.3) exists on t > 0 and the solution remains in € [Ri with probability
one, namely, the solution (S (1), E(t), [(1), Q(t)) € R? for all t > 0 almost surely.(a.s.)

Proof. Since the coeflicients of model (1.3) satisfy the local Lipschitz condition, for the initial value
(5(0), E(0), 1(0), Q(0)) € R*, model (1.3) exists a unique local solution (S (¢), E(t), I(t), Q(t)) on t €
[0, 7.], where 7, is the explosion time [34]. To prove the solution is global, we need to show 7, = oo
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a.s.. Let ny be large enough such that S (0), E£(0), 1(0) and Q(0) all lie within the interval [%, ng]. For
every n > ny, define the following sequence of stopping time

T, = inf {t €0,7):S0 ¢ [1,11] or E(1) ¢ [l,n] orl(r) ¢ [l,n] or O(t) ¢ [l,n]}, (3.1
n n n n

where set inf () = co(in general, () is as the empty set). Obviously, 7, is increasing as n — oo. Let 7o, =
lim 7,, then 7, < 7, a.s.. If we can verify 7., = oo a.s., then 7, = oo a.s. and (S (1), E(?), I(1), Q(¢)) € IR‘}r

n—oo

a.s. for all # > 0. Namely, to complete the proof, we only need to prove 7., = oo a.s.. If the statement
is violated, then there exists a constant 7 > 0 and € € (0, 1) such that

P{r,<T}>¢€ Vn=ny. 3.2)

Define a non-negative C*—function V: R — R,
S
VS, E Q) = (S —a—aln—)+(E— I-InE)+({{-1-In)+(Q-1-1n0Q), (3.3)
a

where a is a positive constant to be determined later. Applying It6’s formula [34], we get

dV(S,E,1,Q) =LV(S,E,I,Q)dt + o1(S — a)dB(t) + 02(E — 1)dB,(¢)
+ 03(I — 1)dBs(t) + 04(Q — 1)dBy(2). (3.4)

Where

LV(S,E,I, Q) :(1 - %)(A—Sf(l)—uS +cI)+(1 —%) [SF() — (u + &+ 6, +y1)E]

+(1—%)[8E—(/1+(1’+C+52+’)/2)1]+(1—é)[51E+52[—(}1+C¥+73)Q]

aci + 05+ 03 + 05
2 2
=A+(@+3)u+e+d+y1+2a0+c+o0h+yv+y3—uS —(u+yDE-(u+a+y)Il

A I Sfd E 6 E 0,1
—(/J+a+y3)Q+af(I)—a§—ac§—%—87—1?—6

aos + 05+ 05 + 0
2 b
SA+(@+3)u+e+6+yi+2a+c+6+y,+ys+[af (0)— (u+a+y)ll

2 2 2 2
00'1+O'2+0'3+0'4

+
2
Choose a = % such that af’(0) — (u + @ + y,) = 0, then we obtain
U+a+y) acs + o3+ 05+ 05
LV(S,E,1,0) <A+ W+3 ut+e+o+y+2a+c+or+y+y3+ > =K,

where K is a suitable constant. Consequently,

dV(S,E,1,Q) =Kdt + 0(S — a)dB(t) + 02(E — 1)dB,(t) + 03(I — 1)dBs(1)
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+ 04(Q — 1)dBy(1). (3.5

For any n > ny, integrating the both sides of (3.5) from O to 7, A T, and taking the expectation, we have

T AT
EV(S (T AT), E(ty AT), I(t, ANT), Q(t, A T)) < V(S5(0), E(0), 1(0), 0(0)) + [Ef Kdt
0

< V(S(0), E(0),1(0), 0Q(0)) + KT

< 00.

Moreover, we set Q, = {1, < T} for any n > ny, then (3.2) leads to P(€2,) > €. For every w € Q,, at

least one of S(r,,w), E(1,,w), I(t,,w) or Q(t,,w) equals to n or % Thus,

V(S (t,, w), E(t,, w), I(T,, w), O(t,, w)) is no less than either
(n—a—alnﬁ)/\(n— 1 —Inn) or (l—a+aln(na))/\(1 -1 +lnn).
a n n
It follows that
V(S (@, 7,), Ew, 7). [, T,), Q. 7)) = (n—a—aln )/\(n 1-1n n)/\(%—a+aln(na)) (%—1+ln n).
Therefore,
V(§(0), E(0), 1(0), Q(0)) + KT 2E[1g,w) V(S (Tn, ), E(Tp, w), I(Ty, w), O(T,, ))]

>€ (n—a—alng)/\(n—l—lnn)/\(%—a+aln(na))

1
A(Z -1+ lnn)] :
where 1o, means the indicator function of Q,. Let n — oo, we have
oo > V(5(0), E(0),1(0), Q(0)) + KT = oo,
which leads to a contradiction. Therefore, the claim 7, = co a.s. hold. This completes the proof. O

Remark 3.1. Theorem 3.1 illustrates that for any positive initial value, model (1.3) has unique positive
solution with probability one. Here, let N(t) = S(t) + E(t) + I(t) + Q(t), then
dN(@) =[A —pS —(u+y)E - (u+a+y)] - (u+a+7y3)Qldt + 01SdBi (1)
+ 0 EdB,(t) + 031dBs(t) + O'4QdB4(f),
<(A — uN)dt + 01SdB1(t) + 02, EdBy(t) + 031dB5(t) + 04,QdBy(t)

Consider the following system

dX() = (A - ,LlX)dl + 01SdB (1) + 0, EdB,(t) + 031dB5(t) + 040dB,(1),
X(0) = N(0).

By Theorem 3.9 in [34], we have hm X(t) < oo a.s. Then according to the comparison theorem for

stochastic differential equations [38 ] thzs yields lim sup N(t) < oo a.s.

—o0
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4. Extinction of the diseases
One of the main concerns of epidemiology is how we regulate the dynamics of the disease in order

to eliminate it in a long term. In this section, we give some sufficient conditions for the extinction of
the disease in model (1.3). For the convenience, we define

(x(®)); = f x(s)dB(s).

Lemma 4.1. [46] Let (S(t),E(t),I(t), Q(t)) be the solution of model (1.3) with initial value
(5(0), E(0), 1(0), Q(0)) € R*. Then

InS(z In E(t
limsupn ():O, lim spn Ui =0,
t—0o0 1—oo
In I(¢
lim sup - ():0, lim su p&—Oas 4.1)
t— o0 t—oo
Furthermore, if u > % then

[y S=)dBi(s) [ E(s)dBa(s)
lim ——— = lm ——— =

t—oo t t—oo t
Jy 1()dBs(s) |y Q(9)dBy(s)
lim 2——— =0, lim=———=0a.s. (4.2)

Define the parameter as follows:

= 20 () + & + 6, +71)
R; =

57"

2
80’2

[(,u+8+51+)/1)2(p+a+c+52+'y2+ A

Theorem 4.1. Suppose (S (1), E(t),1(t), Q(t)) is the solution of model (1.3) with initial value

(5(0), E(0), 1(0), 0(0)) € R:. If R, < 1 and u > M, then the solution (S (1), E(t), I(1), (1)) of
model (1.3) has

1
lim sup " In[eE + (u + &+ 01 +y1)]
t—o00

22
80’2

0_2
(u+s+61+y1)2(,u+a+c+62+y2+73)/\

< R —1)<0a.s.
- 2u+e+06; +y1)? Ro-D<0as

and
. A
Iim(S (1)), = —, lim Q(¢) =0 a.s.
t—00 /,[ t—00
Proof. For model (1.3), we have
AdS+E+1+Q)=[A—uS —(u+y)E—-(u+a+y)l—(u+a+y3)Q0ldt + 0SdB(t)
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+ 02 EdB,(t) + 031dB;(t) + 04QdBy(t)
SIA=uE+S + Q4+ D]dt +01SdB;(t) + 02 EdB,(t) + 031dB;(1)

+ 04QdB,(1) (4.3)
Integrating the both sides of (4.3) from O to # and combining with Lemma 4.1, we obtain
. A
limsup(S + E+ 1+ Q), < — a.s. 4.4)
t—00 M
Let P(¢) = €E(t) + (u + € + 01 + y1)I(?), by the Ito’s formula [34], we have
E +e+ 0+ 1
dn P(t) = L1n P(H)dt + g dBy(t) + P FEFOFYINL s
eE+Wu+e+06,+y)l eE+Ww+e+ 01 +y)l
where
Lin P LeSFD) - (ute+ Sty tatctS )l E03E + (u+ e+ 6 +y) o3l
B eE+(u+e+6+y)l 20€E + (U + € + 61 + y)I]?
- € Sf(I) WU+e+01 +y) U+ a+c+ 8 +y)I?
Tu+e+o+yr I [eE + (u+ &+ 6 +y)I]?
SZO'%EZ +(u+e+; + y1)20'§12
2[eE + (u + & + 61 + y)I?
G'2 820’2
. o0 (,u+g+61+71)2(u+a+c+5z+y2+73)12+TzEz
< (0) —
Tu+e+o+y A [eE + (u+ &+ 61 +y)I]?
0'2 820'2
c (,u+8+51+y1)2(p+a+c+(52+y2+73)/\ o
< S (0) - (I* + E?)
U+e+06,+y [eE + (u+ &+ 6 +y)I]?
Obviously,

[SE+(u+e+ 6 +yDI> <2[E> + (u+e+6, + 1) 1 <2(u+ e+ 6 +v)°(I* + E?)

Therefore, we have

0'2 820'2
(u+8+(51+’}/1)2(,u+a+c+52+y2+73)/\TZ

E
LInPt) < —— S f'(0) —
n ()_#+8+61+y1 1(0) TEP "

Integrating the both sides of (4.5) from O to 7, together with Lemma 4.1 and ﬁ; < 1, we obtain

8()’2

o2 2.2
In P(1 A&f'(0) (“+6+51+71>2(ﬂ+a+c+62+y2+73)A ;
li < _
lrtri:lp ! uu+e+61+v) 2u+e+06 +y)?

2.2
80’2

(,u+8+61+y1)2(,u+0/+c+62+72+02—§)/\ =2
= R —1)< Oa.s.,
20U+ e+ 6, +y)? Ro=1) a-3

AIMS Mathematics Volume 6, Issue 11, 12359-12378.



12368

which implies that

lim E(¢) = 0, tlim I(t) =0 a.s. (4.6)

—o0

Therefore, from the last equation of model (1.3), we can easily obtain lim Q(¢) = 0 a.s.
t—0o0

fort > T a.s.

On the other hand, for any small £ > O, there exists 7 > 0 such that / < ]% >

Substituting I < % into the first equation of model (1.3), we obtain

dS (1) 2(A = uS(®) = SO fUD))dt + oS (D)d B (1)
2(A = puS @) = SOID)f(0)dt + oS ()dB, (1)
>(A =+ &ESM)dt + oS ()dB (1) a.s. 4.7)

Integrating the both sides of (4.7) from O to ¢ and together with Lemma 4.1, we get

A
lim inf(S ), >
u+é

a.s
t—00
The arbitrariness of &, one has
o A
liminf(S);, > — a.s. 4.8)
—o0 ll

Thus, (4.4), (4.7) and (4.8) imply that
A
lim{S);, = — a.s.
[— o0 lu

This completes the proof. O

Remark 4.1. Theorem 4.1 illustrates that if ﬁg < 1, the disease will go to extinct. Note the express of

Ri, we notice that the larger the intensity of white noises are, the easier the extinction of the disease is.
Thus, we can control the outbreak of disease by adjusting the intensity of environmental noises.

5. Stationary distribution

In studying epidemiological dynamics, we are not only concerned about when the disease will be
extinct in the population, but also about when the disease will persist in the population. For model (1.3),
there is no endemic equilibrium. Therefore, in this section, we use the method of Khasminskii [23] to
focus on the existence of a stationary distribution, which reflects whether the disease is prevalent.

Theorem 5.1. Suppose

2 - Af/©O)e

. —>1, (5.1)
(73

0'2 (o
(/1+7‘)(,u+8+61+y1+72)(;1+a/+c+62+72+7)

then for any initial value (E(0), S (0), Q(0), 1(0)) € R*, model (1.3) has a ergodic stationary distribution
7(-).
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Proof. From (2.3), we know the diffusion matrix of model (1.3) has the form
A(X) := diag(c1S?, o3E?, o3, 03 Q%).

According to Lemma 2.1, we only need to verify the conditions (H1) and (H2). Let

M = min  {07S8?%, 05E?, 0317, 030} > 0, then we have
(S,E.I,Q)eU,cR:

4
D a(éE) = 1S + B + AP + Q%8 > MIED,

ij=1

for all (S,E,I,Q) € U, = [1/n,n]* provided that n € /Z, is sufficiently large. Note that
£ =(&1,6, 8, &) € RY. Hence, the condition (H1) holds.
To verify (H2), we denote

2

3
| 2 Al b
(u+s+61+yl+72)(/J+a+c+62+y2+73)

o)’ A&f'(0) ~ fr%)3

b= —
3(,u+ 5

2 A
Since u + % > 0 and R, > 1, we have b > 0. Now, define the C?>-function V(-) : [Ri — R, by

VS,E,I,Q):=pVi+V,—InS —InE - InQ,

with
Vi:==InS —¢;InE—-c,Inl and V,:=(S +E +1+ Qy"*!,
where
0'2 0'2
ut 5 M+ =
Cc1 = o2 Cy = o2
H+e+to+yi+ 5 pta+c+o+y+35

p and p are positive constants satisfying the conditions:

2

-pb+B<-2, 0<p< ,
0'%V0'§V0'§\/0'42L

1
m::(/1/\(/1+y1)/\(,u+a+yz)/\(/1+a/+73))—Ep(of\/o-%\/o-%vg'i),

and

A= sup {A(P+1)(S +E+1+Q)p—%(p+1)m(S +E+I+Q)p“}<oo,

(S,E.1,Q)ER}

1
B= sup {—E(p+ Dm(SP + P 4 P Yy A+ 3t et aty +ys +

2 2 2
oitoy+0o 4}
(S.E.L,Q)eRY

2

AIMS Mathematics Volume 6, Issue 11, 12359-12378.



12370

Therefore, we can easily check that

lim inf V(S,E,I,Q) = +co,
k—00,(S,E,I,Q)eR* \Uy

where U, = (k,k) X (k,k) X (k,k) X (k,k) Hence, V(S, E, I, Q) is a continuous function and has a

minimum pomt(EO, So, QO, Io) in the interior of [R4 Then, we define the non-negative C>-function
V:R* > R, as follows:

V(S,E,1,0) = V(S,E,1,0) — V(Sy, Eo, 1o, Qp)-

Using Itd’s formula [34], we obtain

A Sfd E 1
LV1:—§—C1 g()—qf +cl(,u+8+61+y1)+cz(,u+a/+c+62+)/2)+f(1)+,u—%
0'%+C10'§+C20'§
2
AN caSf) ceE , o? op
s—(§+ lg + 21 )+f(0)1+,u+71+cl(/,t+8+61+71+72

0.2
+cz(y+a+c+62+y2+73)

1 2
<-3 (Aa@clcz) + FO) +3 (,u + %)

1

2
3
-3|u+—=

o?\?
) 02 | e o
(,u+e+61+y1+72)(,u+a+c+62+y2+73)

Similarly, we have

LV, =(p+1)(S +E+I1+QF[A—puS —(u+yD)E-(+a+y)l—(u+a+ys)0]
+ (p+1)(S +E+1+ QYN (01S? + 03E* + o317 + 030%)
sA(p+1)(S +E+I1+QY —(o+DuAu+yDAw+a+y)Aw+a+y3))](S + E+

1
I+ 0y + 5,o(p + 1)tV a3 Vo3 VoS +E+1+QF!
1
<A-Zlp+ Dm(SPH + EF*H 4 1ot 4 o,

Moreover, we get

2 2
A cl

L <- OV - S 4+ =L

S fd 02

];()+p+s+51+y1+—22,

L(—lnS):—%+f(I)—%I+,u+

L(-InE) =-
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and
SIE 6,1 o;
L(-1 = —-—4uta+y:+—.
Q) =-"5 = "Fruratyts
Therefore, it follows that
%
2 1
0'%3 As@ 0'%‘
LVS—3pu+7 5 5 —,u+7
(,u+£+(51+y1+%)(y+a/+c+62+y2+%3)
) A SfU) 6 E &I o1 o3
(p+Df(o)l_§_fT_IE_é+”+71+'“+8+51+71+72+“+a+73
O-Azt 1 +1 +1 +1 +1
+7+A—§(p+1)m(Sp +EFT 17T+ 0.

Construct the following compact subset

1 1 1 1
Dgl:{(S,E,I,Q)E[Ri:slsSs—, e <I<—, &8 <E<— sfst—},
&1 &1

where ¢ is a sufficiently small constant such that

A
- —+D< -1, (5.2)
€1
—pb+(p+1))f' 0 +B< -1, (5.3)
3 f((zl) +D<-1. (5.4)
&
1
—5—§+Ds—1, (5.5)
€
1 1
— Z(p + l)m(gp+1 +F < -1, (5.6)
1
1 1
i l)méﬂ+1 +G < -1, (5.7)
1
1 1
_ Z(p + 1)m oot H< -1, (5.8)
&
1
_ Z(p + 1)m oot J < -1, (5.9)
E

1
here D F, G, H, J are positive constants, which satisfying
1 +1 +1 +1 +1 / O-?
D= sup —@+DmS*T +EFT + P+ O+ (p+ DO +u+ —
(S,E,I,Q)eR* 2
o3+ 0o
2 2

+tA+2u+e+o+yi+a+ys+ (5.10)
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1 1 o
F= sup {—Z(p + DmS* - E(,o + DmET + P Y+ (p+ DO+ + —

(S,E,1,Q)eR* 2
o3+ 0o
+tA+2u+e+ 0 +yi+a+ys+ > , (5.11)
1 p+1 1 p+1 p+1 +1 / O-%
G= sup ——@+ Dml’" — —(o+ Dm(S*" +EFT + O+ (p+ DO +pu+ —
(S,E,1,Q)eR* 2 2
o3+ 0o
+tA+2u+e+ 0 +yi+a+ys+ > , (5.12)
1 p+1 1 p+1 p+1 +1 / O-%
H= sup ) ——( + I)mE —§(p+1)m(S + 1P+ O )+(p+1)f(0)]+,u+7
(S.E.1,Q)eR}
ol +0?
2 4
+tA+2u+e+o+yi+a+ys+ > } (5.13)
1 +1 1 p+1 p+1 p+1 / O-%
J = sup ) —Z(p+l)me —§(p+l)m(S + EPFT 4+ T )+(p+1)f(0)]+,u+7
(S.E.1,Q)eR]
ol +0?
2 4
+tA+2u+e+o+yi+a+ys+ > } (5.14)
and
1
fen ’
b=3u+ 1\ Aot +0-% 3
- H 7 o2 o2 — MU 7
(,u+8+(51 + v +72)(u+a+c+62+y2+73)

For sufficiently small €, condition (5.3) holds due to —pb+ B < —2. For convenience of calculation,
we divide the set R%\D,, into eight domains,

D, ={(S,E,I,Q)eR!:0<S <&}, D,={(S,E,,Q)e R} : 0<I<g},
D; ={(S,E,1,Q)eR! :S>¢g,I>5,0<E<g&)}, Dy={S,E. ,Q)eR}, :1>£,0<Q<s},
1 1

Ds ={(S,E,I,Q) €R} : S > —}, Ds={(S,E,1,Q)e R : I > —},
&1 €1
1 1
D; ={(S,E.1,Q) R, : E> =}, Dy={(S.E.1,Q) R} : 0> =}
‘ 5

&
1

then we will illustrate LV < —1 on the set R{\D,,.

Case 1. If (S, E, I, Q) € Dy, we obtain

A : o o3 &
LV < —§+(p+l)f(O)I+,u+7+/J+8+51+)/1+7+,u+a'+’y3+7
1
+A-Sp+ Dm(S#* + EP* 4 177!+ o0t
A
<-—+D. (5.15)

€1
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By inequality (5.2), we obtain LV < —1 forall (S, E, I, Q) € D;.
Making use of inequalities (5.3), (5.4) and (5.5), and being similar to the proof of Case 1, we make
the conclusion that LV < —1 for all (S,E,I1,Q) € D,, (S,E,I,Q) € Dy and (S, E,I, Q) € D,.

Case 2. If (S, E, I, Q) € Ds, we have that

1 +1 ’ O-% O-% 0-421
LV < _Z(p+1)m5p +(p+1)f(0)]+u+7+u+8+61+y1+7+,u+a+y3+?+A

1 1
—~ Z(p + DHmSP*! — S+ Dm(EP + P+ 0ot

1 1
<- Z(p+ Dm + F. (5.16)

8p+1
According to inequality (5.6), we achieve that LV < —1 forall (S, E, I, Q) € Ds. Furthermore, being
similar to the proof of Case 2 and combining with (5.7), (5.8) and (5.9), the conclusion LV < —1 can
be obtained for all (S, E,I,Q) € D¢, (S,E,I,Q) € D;and (S, E, I, Q) € Ds.
On the basis of the above discussion, it follows that

LV < -1, Y(S,E,1,Q) e RI\D,,. (5.17)

which illustrates the condition (H2) of Lemma 2.1 is satisfied, and model (1.3) has a unique stationary
distribution and the ergodicity holds. The proof is completed. O

Remark 5.1. Theorem 5.1 reveals that if Ry > 1, model (1.3) has a unique stationary distribution, that
is to say, the disease will persist. Note the express of Ry, we can see that the smaller the intensity of
white noises are, the easier the persistence of the disease is. Especially, when o; = 0,i = 1,2,3,4, 7?0
will degenerate into the basic reproduction number R of the deterministic model (1.2).

6. Numerical simulations

In this section, we use two concrete examples to illustrate the obtained the theoretical results. For
this purpose, we choose f(I) = B with n = 0.15 and use the Milstein method mentioned in [18] with

1+nl
time At = 0.01, the following discretization system is obtained

0_2
Ske1 = Sk + (A= Pt —uSk+ cl)At + 0y S VAT 4 + TS kAT, — 1),

1+nly

o2
Ei=Eq + [ff—fli —(u+e+0, + ’yl)Ek] At + o Ey, \/A_Z‘Tz,k + TZEkAt(Tg’k - 1),

2
Lyy=L+[eE,—(u+a+c+d + )/z)lk]Al + o031} @le + %IkAl(Tgk -1,
a? ’
Qst = Qi+ [61E + 0ol — (u + @ + y3) Qul Al + 074 Oy VAITy . + F QuA1(T3, — 1),

6.1)

where 7;,(i = 1,2, 3,4) are four independent the Gaussian random variables with N(0, 1).

Example 6.1. Let A = 04, 8 = 0.07, u = 0.35, ¢ = 0.25, € = 0.5, 6; = 0.05, y; = 0.05, @ = 0.1,
02 = 0.2, y, = 0.1, y3 = 0.03 and the initial values (S (0), E(0), 1(0), Q(0)) = (%,(), %,O). By a simple
cr'%\/o-%Vo'%V(r?1

calculation, we obtain ﬁ;‘) =095 <1landpu=0.35> 5 = 0.32, so the condition of Theorem
4.1 holds. In other word, the disease will go to extinction exponentially, which is shown in Figure 1.
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Figure 1. Trajectories of the solutions of model (1.3) with oy = 0.1, 0 = 0.8, o3 = 0.3,
o4 = 0.5 and parameters are given in Example 6.1.

Example 6.2. Taking A = 2, = 05, ¢ = 025, ¢ = 025, ¢ = 0.5, ; = 0.125, y; = 0.125,
a = 0.5, 0, =025 y, = 0.25, y3 = 0.5 and the initial values (S (0), E(0), 1(0), 0Q(0)) = (6,0,2,0).
By the condition of Theorem 5.1, we have Ro = 1.3221 > 1. Thus, model (1.3) has a unique ergodic
stationary distribution as shown in Figure 2 and Figure 3, which means that the disease is persistent.

. . .
6.5F 1
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55 w oy
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45 1
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4 . . ; ; 0 .
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t

t

AIMS Mathematics

Figure 2. Trajectories of the solutions of model (1.3) with oy = 0.009,0, = 03 = 04 = 0.1
and parameters are given in Example 6.2.
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Figure 3. The histogram of the probability density function of the solutions of model (1.3)
using the parameter values in Example 6.2.

7. Conclusions

In this paper, we have investigated the dynamic behavior of a novel stochastic SEIQ disease model
with general incidence rate and temporary immunity, which include the bilinear incidence rate (f(I) =
BI) and the saturation incidence rate ( f = 1621)' We set up sufficient conditions for extinction of
the disease. By using the method of Khasminskii and constructing a suitable Lyapunov function, we
prove the existence of a stationary distribution to the model (1.3). From the numerical examples, we
observe the stationary distribution of model (1.3) is governed by Ry, which leads to the persistence of
infectious diseases. In addition, the persistence of infectious diseases is also affected by the intensity

of environmental noises.

Some interesting and open topics deserve further consideration. For one thing, if the system is
affected by other factors, such as time delay or pulse interference, how will the dynamic properties of
the system change. For another, we can propose some realistic but complex models, such as
considering the influence of Markov switching or lévy jump. We leave these problems as our future
work.
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