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1. Introduction

For modelling the dynamics of some biological populations, various logistic type differential
systems have been proposed and studied in the past several years, see ( [1–11]). The classical
nonautonomous logistic differential system can be described by

N′(t) = N(t)r(t)
[
1 −

N(t)
K(t)

]
, (1.1)

where N is the density of population at time t; r and K admit positive upper and lower bounds which
models the growth rate and the environmental carrying capacity or saturation level at time t,
respectively. Since most populations are affected by the outside environment, it is necessary to study
the models of the population dynamics with harvesting, and the following system and its various
generalized forms are considered

N′(t) = N(t)r(t)
[
1 −

N(t)
K(t)

]
− E(t,N(t)), (1.2)

where function E is a harvesting strategy for the population. In 1959, Holling ( [12]) proposed three
basic types of the harvesting term:
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• Type I (linear): E(t,N(t)) = α(t)N + β(t),

• Type II (cyrtoid): E(t,N(t)) =
α(t)N

N + β(t)
,

• Type III (sigmoid): E(t,N(t)) =
α(t)N2

γ2(t) + β(t)N2 ,

where α, β and γ are some scalar functions with positive upper and lower bounds. We refer to the
monographs ( [13–15]) for the discussions of three types harvesting. In general, population models
(1.1) or models (1.2) with the above three basic types harvesting can be uniformly described by the
following differential system

N′(t) = N(t) f (t,N(t)), (1.3)

where f is a scalar function of t and N.
Recently, many research works have paid much attention to the population models with jumps

which includes impulsive harvesting and planting, since the discontinuous models governed by
impulsive differential systems are more feasible and beneficial than the continuous ones at times, see
( [16–29]). For instance, it is often the case that planting and harvesting of the species are intermittent
or occur irregularly. Besides, continuous changes such as temperature or rainfall in environment
parameters can create some discontinuous outbreaks in biological populations. For fishery
management it is unreasonable to assume that fisherman to fish the whole day, and in fact they only
fish for some time, and moreover, the seasons and weather variations will also affect the fishing. It has
been shown ( [17, 29]) that the continuous harvesting policy is superior to the impulsive harvesting
policy, however, the latter is more beneficial in realistic operation. Hence, it is significant to consider
jumps in the investigation of population models.

Motivated by the above discussions, the main objective of this paper is to study the logistic system
(1.3) with jumps

 N′(t) = N(t) f (t,N(t)), t , tk,

∆N|t=tk = N(tk) − N(t−k ) = Ik(N(t−k )), k ∈ Z+.
(1.4)

It shows that there exist jumps when human activities are considered continuously on population
model. Especially, it reflects the combination of continuous harvesting and impulsive harvesting.
Based on impulsive control theory, we shall investigate the effects of impulsive harvesting and
stocking, and establish conditions for the persistence and existence of a unique globally attractive
positive periodic solution of system (1.4). The development results are different from the existing
ones in the literature and the relation between dynamics of population models and jumps will be
emphasized in this paper.

The remainder of this paper is organized as follows. In Section 2, some necessary definitions and
preliminary results are presented. In Section 3, some new criteria for persistence and periodicity are
presented. In Section 4, simulations are given to illustrate the effectiveness of the main results. Finally,
conclusions are drawn in Section 5.
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2. Preliminaries

Notations. Let R denote the set of real numbers, R+ the set of nonnegative real numbers, R− the set of
nonpositive real numbers and Z+ the set of positive integers. For any interval J ⊆ R, set S ⊆ Rk(1 ≤
k ≤ N),C(J, S ) = {ϕ : J → S is continuous} and PC(J, S ) = {ϕ : J → S is continuous everywhere
except at finite number of points t, at which ϕ(t+), ϕ(t−) exist and ϕ(t+) = ϕ(t)}. Σ+ = {c(t) : c ∈
PC(R+,R+) and for any interval (α, β) ⊆ R+, c(t) . 0. }. Σ− = {c(t) : c ∈ PC(R+,R−) and for any
interval (α, β) ⊆ R+, c(t) . 0. }. Given a continuous function f which is defined on Λ ⊆ R, we set
f I � inf s∈Λ f (s), f S � sups∈Λ f (s). The jump times tk, k ∈ Z+, satisfy 0 ≤ t0 < t1 < . . . < tk → +∞ as
k → +∞.

System (1.4) may be rewritten as:
x′(t) = x f (t, x), t ≥ t0, t , tk,

∆x|t=tk = x(tk) − x(t−k ) = Ik(x(t−k )), k ∈ Z+,

x(t0) = x0,

(2.1)

where x0 ∈ R+, f ∈ PC([t0,∞)×R+,R). The numbers x(t−k ) and x(tk) denote the population densities of
the species before and after jumps at the moments tk, respectively. Ik ∈ C(R+,R), which characterize the
magnitude of the jumps on the species at the moments tk and satisfy Ik(s)+ s > 0 for any s ∈ R+, k ∈ Z+;
In particular, when Ik > 0, the perturbation stands for planting of the species, while Ik < 0 stands for
harvesting. We assume that system (2.1) satisfies some fundamental conditions which guarantee the
global existence and uniqueness of the solutions on [t0,∞), see ( [17, 30]). In the following, denote by
x(t) = x(t, t0, x0) the solution of system (2.1) with initial value (t0, x0).
Definition 2.1. (see [17]) System (2.1) is said to be persistent, if there exist constants M > 0 and m > 0
such that each positive solution x(t) = x(t, t0, x0) of system (2.1) satisfies

m ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M.

Definition 2.2. (see [17]) A map x : R+ → R+ is said to be a ω-periodic solution of system (2.1), if
(i) x(t) is a piecewise continuous map with first-class discontinuity points and satisfies (2.1);
(ii) x(t) satisfies x(t + ω) = x(t), t , tk and x(tk + ω+) = x(t+

k ), k ∈ Z+.

Definition 2.3. (see [17]) Assume that x?(t) = x?(t, t0, x?0 ) be a positive periodic solution of system
(2.1). Then x? is said to be globally attractive, if for any positive solution x(t) = x(t, t0, x0) of system
(2.1), it holds that

lim
t→+∞

‖x(t) − x?(t)‖ = 0.

3. Main results

Lemma 3.1. The set R+ is the positively invariant set of system (2.1).
Proof. Note that Ik(s) + s > 0 for any s ∈ R+, k ∈ Z+. The proof of Lemma 3.1 is obvious.
Theorem 3.1. Assume that there exist constants q > 1, λ > 1 and M > m > 0 such that

(i)
1 − q

q
≤

Ik(s)
s
≤ λ − 1, s > 0;
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(ii) f (t,M) ∈ Σ− and sup
k∈Z+

∫ tk

tk−1

f (s,M)ds < − ln λ;

(iii) f (t,m) ∈ Σ+ and inf
k∈Z+

∫ tk

tk−1

f (s,m)ds > ln q;

(iv) [ f (t, x) − f (t, y)]sgn(x − y) ≤ 0, (t, x, y) ∈ R+ × R+ × R+.

Then the set
∆ = {x ∈ R+ :

m
q3 ≤ x ≤ Mλ3}

is the ultimately bounded set of system (2.1), that is, system (2.1) is persistent.
Proof. Let x(t) = x(t, t0, x0) be the solution of system (2.1) with initial value (t0, x0), where (t0, x0) ∈
R+ ×R+. First, we show that there exists t∗ ≥ t0 such that x(t∗) ≤ M. If x0 ∈ (0,M], then the conclusion
is obvious. Or else, assume that x(t) > M for all t ≥ t0. Then it follows from (iv) and system (2.1) that
x′(t) = x f (t, x) ≤ x f (t,M), t ∈ [tk−1, tk), k ∈ Z+, which, together with (i) and (ii), yields

x(tk+1) ≤ λx(t−k+1) ≤ λk+1x(t0) exp
( ∫ tk+1

t0
f (s,M)ds

)
= x(t0) exp

(
(k + 1) ln λ +

∫ tk+1

t0
f (s,M)ds

)
≤ x(t0) exp

(
(k + 1)[ln λ + µ]

)
→ 0, as k → ∞,

where µ � sup
k∈Z+

∫ tk

tk−1

f (s,M)ds. This is a contradiction with the above assumption that x(t) > M for all

t ≥ t0 and thus there exists t∗ ≥ t0 such that x(t∗) ≤ M.
Now we show that x(t) ≤ Mλ3, t ≥ t∗. Suppose not, then there exists t > t∗ such that x(t+) ≥ Mλ3

and x(t−) ≤ Mλ3. Since x(t∗) ≤ M, there exists t ∈ [t∗, t] such that x(t+) ≥ M and x(t−) ≤ M.
Moreover, t < t. In fact, if t = t, then λM ≥ λx(t−) ≥ x(t+) ≥ Mλ3, which contradicts λ > 1. Thus
we get M ≤ x(t) ≤ Mλ3, t ∈ [t, t]. Then there are three cases: (a) If there is no jump on [t, t], then
x′(t) = x f (t, x) ≤ x f (t,M) ≤ 0, t ∈ [t, t], which implies that Mλ2 ≤ x(t−) ≤ x(t+) ≤ λM. This is a
contradiction. (b) If there exists a jump on [t, t], assume that t < tσ < t, where σ ∈ Z+. Then it follows
from f (t,M) ∈ Σ− that

Mλ2 ≤ x(t−) ≤ λx(t+) exp
( ∫ t

t
f (s,M)ds

)
≤ λ2M exp

( ∫ t

t
f (s,M)ds

)
< λ2M,

which is also a contradiction. (c) If there exist some jumps on [t, t], assume that t < tσ < tσ+1 < · · · <

tσ+l < t, where σ, l ∈ Z+. Then it can be deduced that

x(t−σ+l) ≤ λlx(t+) exp
( ∫ tσ+l

t
f (s,M)ds

)
,

which lead to

Mλ2 ≤ x(t−) ≤ x(t+
σ+l) exp

( ∫ t

tσ+l

f (s,M)ds
)
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≤ λl+2M exp
( ∫ t

t
f (s,M)ds

)
≤ λ2M exp

(
l ln λ +

∫ tσ+l

tσ
f (s,M)ds

)
≤ λ2M exp

(
l[ln λ + µ]

)
< λ2M.

Obviously, this is also a contradiction and thus all cases (a-c) are impossible. Hence, it holds that
x(t) ≤ Mλ3, t ≥ t∗.

Next we show that there exists t? ≥ t∗ such that x(t?) > m. Suppose not, then x(t) ≤ m, t ≥ t∗. It
follows from (iv) and (2.1) that x′(t) = x f (t, x) ≥ x f (t,m), t ∈ [tk−1, tk) ∩ [t∗,∞), k ∈ Z+. Assume that
t∗ ∈ [tl−1,tl), for some l ∈ Z+, then it can be deduced from (i) and (iii) that

x(tl+k) ≥
1
q

x(t−l+k) ≥
1

qk+1 x(t∗) exp
( ∫ tl+k

t∗
f (s,m)ds

)
≥

1
q

x(t∗) exp
(
− k ln q +

∫ tl+k

tl
f (s,m)ds

)
≥

1
q

x(t∗) exp
(
k[η − ln q]

)
→ ∞, as k → ∞,

where η � inf
k∈Z+

∫ tk

tk−1

f (s,m)ds. This is a contradiction with x(t) ≤ m, t ≥ t∗ and thus there exists t? ≥ t∗

such that x(t?) > m.
Furthermore, we show that x(t) ≥ m

q3 , t ≥ t?. Suppose not, then there exists t̂ ≥ t? such that x(t̂+) ≤ m
q3

and x(t̂−) ≥ m
q3 . Note that x(t?) > m and q > 1, there exists t̃ ∈ [t?, t̂) such that x(t̃+) ≤ m and x(t̃−) ≥ m.

Thus we get that m
q3 ≤ x(t) ≤ m, t ∈ [t̃, t̂]. Then there are also three cases: (d) If there is no jump on

[t̃, t̂], then x′(t) = x f (t, x) ≥ x f (t,m) ≥ 0, t ∈ [t̃, t̂], which implies that m
q ≤ x(t̃+) ≤ x(t̂−) ≤ m

q2 . This is a
contradiction. (e) If there exists a jump on [t̃, t̂], assume that t̃ < tρ < t̂, where ρ ∈ Z+. Then it follows
from f (t,m) ∈ Σ+ that

m
q2 ≥ x(t̂−) ≥

1
q

x(t̃+) exp
( ∫ t̂

t̃
f (s,m)ds

)
≥

m
q2 exp

( ∫ t̂

t̃
f (s,m)ds

)
>

m
q2 ,

which is a contradiction. (f) If there exist some jumps on [t̃, t̂], assume that t̃ < tρ < tρ+1 < · · · < tρ+s < t̂,
where ρ, s ∈ Z+. Then it can be deduced that

x(t−ρ+s) ≥
1
qs x(t̃+) exp

( ∫ tρ+s

t̃
f (s,m)ds

)
,

which lead to

m
q2 ≥ x(t̂−) ≥ x(t+

ρ+s) exp
( ∫ t̂

tρ+s

f (s,m)ds
)
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≥
1

qs+1 x(t̃+) exp
( ∫ t̂

t̃
f (s,m)ds

)
≥

1
q

x(t̃+) exp
(
− s ln q +

∫ t̂

t̃
f (s,m)ds

)
≥

m
q2 exp

(
s[η − ln q]

)
>

m
q2 .

Obviously, it is also a contradiction and thus all cases (d-f) are impossible. The proof of Theorem 3.1
is there completed.
Remark 3.1. Note that condition (iv) in Theorem 3.1 can be replaced by the following stronger one:
∂ f (t, x)
∂x

≤ 0, (t, x) ∈ R+ × R+, which can be checked more easily in practical problems. In addition,
from Theorem 3.1 one may note that it is possible that Ik ≥ 0 or Ik ≤ 0. Thus the development results
can be applied to logistic systems with impulsive planting or/and impulsive harvesting. In particular,
when there is no jump, we have the following two Corollaries.
Corollary 3.1. Assume that there exist constants M > m > 0 such that
(i) f (t,M) ≤ 0, t ≥ t0, and

∫ +∞

t0
f (s,M)ds→ −∞;

(ii) f (t,m) ≥ 0, t ≥ t0, and
∫ +∞

t0
f (s,m)ds→ +∞;

(iii) [ f (t, x) − f (t, y)]sgn(x − y) ≤ 0, (t, x, y) ∈ R+ × R+ × R+.

Then the set ∆ = {x ∈ R+ : m ≤ x ≤ M} is the ultimately bounded set of system (2.1) without jumps,
that is, system (2.1) without jumps is persistent.
Corollary 3.2. Assume that there exist constants M > m > 0 such that f (t,M) ≤ 0 and f (t,m) ≥ 0, t ≥
t0, then ∆ = {x ∈ R+ : m ≤ x ≤ M} is the invariant set of system (2.1) without jumps.
Remark 3.2. Corollaries 3.1 and 3.2 can be easily derived by the proof process of Theorem 3.1.

Consider the following logistic differential system with jumps
x′(t) = x(t)[r(t) − a(t)x(t)], t ≥ t0, t , tk,

∆x|t=tk = x(tk) − x(t−k ) = Ik(x(t−k )), k ∈ Z+,

x(t0) = x0,

(3.1)

where x0 ∈ R+, r, a ∈ PC(R+,R+) and admit positive upper and lower bounds which are natural for
biological meanings.
Corollary 3.3. Suppose that there exist constants q > 1, λ > 1 and M > m > 0 such that

(i)
1 − q

q
≤

Ik(s)
s
≤ λ − 1, s > 0;

(ii) m <
rI

aS and M >
rS

aI ;

(iii) inf
k∈Z+

{tk − tk−1} > max
{ ln q
rI − aS m

,
ln λ

aI M − rS

}
.

Then the set
∆ = {x ∈ R+ :

m
q3 ≤ x ≤ Mλ3}

is the ultimately bounded set of system (3.1).
Corollary 3.4. Suppose that there exist constants q > 1, λ > 1 such that

(i)
1 − q

q
≤

Ik(s)
s
≤ λ − 1, s > 0;
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(ii) inf
k∈Z+

{tk − tk−1} >
ln q
rI .

Then system (3.1) is persistent.
Consider the following logistic differential system with jumps and cyrtoid type harvesting

x′(t) = x(t)[r(t) − a(t)x(t)] −
α(t)x(t)

x(t) + β(t)
, t ≥ t0, t , tk,

∆x|t=tk = x(tk) − x(t−k ) = Ik(x(t−k )), k ∈ Z+,

x(t0) = x0,

(3.2)

where x0 ∈ R+, r, a, α, β ∈ PC(R+,R+) and admit positive upper and lower bounds which are natural
for biological meanings.
Corollary 3.5. Suppose that rIβI > αS and aI(βI)2 > αS . Moreover, there exist constants q > 1, λ > 1
and M > m > 0 such that
(i)

1 − q
q
≤

Ik(s)
s
≤ λ − 1, s > 0;

(ii) rS − aI M −
αI

M + βS < 0;

(iii) rI − aS m −
αS

m + βI > 0;

(iii) inf
k∈Z+

{tk − tk−1} > max
{ ln q

rI − aS m − αS

m+βI

,
ln λ

aI M + αI

M+βS − rS

}
.

Then the set
∆ = {x ∈ R+ :

m
q3 ≤ x ≤ Mλ3}

is the ultimately bounded set of system (3.2).
Corollary 3.6. Suppose that rIβI > αS and aI(βI)2 > αS . Moreover, there exist constants q > 1, λ > 1
such that
(i)

1 − q
q
≤

Ik(s)
s
≤ λ − 1, s > 0;

(ii) inf
k∈Z+

{tk − tk−1} >
ln q

rI − αS

βI

.

Then system (3.2) is persistent.
Remark 3.3. Corollaries 3.3 and 3.5 can be directly derived by Theorem 3.1. For Corollaries 3.4 and
3.6, one only needs choose small enough m > 0 and large enough M > 0 such that (ii) and (iii) in the
corresponding Corollary hold.

In the following, we shall investigate the periodic solution problem of system (2.1).
Theorem 3.2. Assume that there exist constants q > 1,m > 0, ω > 0 and θ ∈ Z+ such that

(i) Ik(s) = (ρk − 1)s, s ∈ R+, where ρk ≥
1
q
, k ∈ Z+;

(ii) f (t,m) ∈ Σ+ and inf
k∈Z+

∫ tk

tk−1

f (s,m)ds > ln q;

(iii) f (t + ω, •) = f (t, •), tk + ω = tk+θ and ρk+θ = ρk, k ∈ Z+;

(iv)
f (t, x) − f (t, y)

x − y
≤ −p(t), where p ∈ PC(R+,R+) and satisfies

∫ ∞

t0
p(s)ds = +∞.

Then system (2.1) has a unique positive ω-periodic solution, which is globally attractive.
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Proof. Let y(t) = ln x(t), then system (2.1) may be rewritten as
y′(t) = f (t, ey(t)), t ≥ t0, t , tk,

y(tk) − y(t−k ) = ln ρk, k ∈ Z+,

y(t0) = ln x0 ∈ R.

(3.3)

Obviously, the investigation of the positive periodic solution problem for (2.1) is equal to investigate
the periodic solution problem for system (3.3).

First, by condition (iii) it is easy to show that system (3.3) has an ω-periodic solution if there exists
a y0 ∈ R such that y(t0 + ω, t0, y0) = y0, where y(t, t0, y0) is the solution of system (3.3) through (t0, y0).
In fact, one may establish a solution as follows:

ỹ(t) =

{
y(t), t ∈ [t0, t0 + ω],
y(t − nω), t ∈ [t0 + nω, t0 + (n + 1)ω].

Obviously, ỹ is ω-periodic. Next we show that ỹ is a solution of system (3.3). For any t ∈ [t0+

nω, t0 + (n + 1)ω], if t , tk, k ∈ Z+, then

ỹ′(t) = y′(t − nω) = f (t − nω, ey(t−nω)) = f (t, ey(t−nω)) = f (t, eỹ(t));

if t = tm for some m ∈ Z+, then it follows from (iii) that tm − nω = tm−nθ, which yields that

ỹ(tm) = y(tm−nθ) = y(t−m−nθ) + ln ρm−nθ = y(t−m − nω) + ln ρm = ỹ(t−m) + ln ρm.

By the above discussion, ỹ is a solution of system (3.3). Moreover, by the existence-uniqueness
theorem, ỹ ≡ y, t ≥ t0. That is, y is an ω-periodic solution of system (3.3).

Let z(t) = z(t, t0, z0) and h(t) = h(t, t0, h0) be two solutions of system (3.3) through (t0, z0) and (t0, h0),
respectively, where z0 , h0. Define Γ(t) = |h(t) − z(t)|, t ≥ t0. Then

Γ(tk) = |h(tk) − z(tk)| = |h(t−k ) − z(t−k )| = Γ(t−k ), k ∈ Z+. (3.4)

In addition, it can be deduced that

Γ′(t) =
[
f (t, eh(t)) − f (t, ez(t))

]
sgn(h − z)

=
f (t, eh(t)) − f (t, ez(t))

eh(t) − ez(t) |eh(t) − ez(t)|

≤ −p(t)eξ(t)Γ(t), t ≥ t0,

where ξ(t) is a real value between h(t) and z(t). By conditions (i), (ii) and Theorem 3.1, we know that
there exists T0 ≥ t0 such that eξ(t) ≥ m

q3 , t ≥ T0, which yields that

Γ′(t) ≤ −p(t)
m
q3 Γ(t), t ≥ T0. (3.5)

For given T0 ≥ t0, define

G(T0) �
|h(T0) − z(T0)|
|h(t0) − z(t0)|

. (3.6)
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Considering (3.4), (3.5) and (3.6), we have

Γ(t) = |h(t) − z(t)| ≤ G(T0)|h(t0) − z(t0)| exp
(
−

m
q3

∫ t

T0

p(s)ds
)
, t ≥ T0, (3.7)

which implies that there exists T1 ≥ T0 such that

|h(t) − z(t)| ≤
1
2
|h(t0) − z(t0)|, t ≥ T1. (3.8)

Define an operator

F : r0 → r(t0 + ω, t0, r0),

where r(t, t0, r0) is the solution of system (3.3) through (t0, r0). Obviously, operator F maps the set R
into itself. Moreover,

F k(r0) = r(t0 + kω, t0, r0), k ∈ Z+.

Let k large enough such that t0 + kω ≥ T1, then it follows from (3.8) that

|F k(r0) −F k(s0)| ≤
1
2
|r0 − s0|,

where s0 ∈ R. Thus, operator F is a contraction mapping in Banach space. Using Banach fixed point
theorem, there exists a unique r∗0 ∈ R such that F (r∗0) = r∗0. Hence, system (3.3) has a ω-periodic
solution r∗(t) = r∗(t, t0, r∗0). That is, system (2.1) has a positive ω-periodic solution x∗(t) = er∗(t).

Next we show that r∗(t) = r∗(t, t0, r∗0) is the unique ω-periodic solution of system (3.3) and all other
solutions converge to it. Suppose that r(t) = r(t, t0, r0) is any another solution of system (3.3) through
(t0, r0), then it follows from (3.7) that

|r∗(t) − r(t)| ≤ G(T0)|r∗0 − r0| exp
(
−

m
q3

∫ t

T0

p(s)ds
)
, t ≥ T0,

where

G(T0) �
|r∗(T0) − r(T0)|
|r∗0 − r0|

.

It is obvious that |r∗(t) − r(t)| → 0, as t → ∞, which implies that system (2.1) has a unique positive
ω-periodic solution, which is globally attractive. The proof of Theorem 3.1 is completed.
Remark 3.4. One may observe from Theorem 3.2 that, to investigate the periodic problem of system
(2.1), there is no any restriction on the upper bound of jump constant ρk, that is, ρk may be large
enough if it satisfies the periodic condition ρk+θ = ρk. Moreover, condition ρk ≥

1
q in Theorem 3.2 can

be replaced by min1≤i≤θ ρi ≥
1
q .

For system (3.1) and (3.2), we have
Corollary 3.7. Suppose that there exist constants q > 1, ω > 0 and θ ∈ Z+ such that

(i) Ik(s) = (ρk − 1)s, s ∈ R+, where min
1≤i≤θ

ρi ≥
1
q

;
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(ii) min
1≤i≤θ
{ti − ti−1} >

ln q
rI ;

(iii) r(t + ω) = r(t), a(t + ω) = a(t), tk + ω = tk+θ and ρk+θ = ρk, k ∈ Z+.

Then system (3.1) has a unique positive ω-periodic solution, which is globally attractive.
Corollary 3.8. Suppose that rIβI > αS and aI(βI)2 > αS . Moreover, there exist constants q > 1, ω > 0
and θ ∈ Z+ such that

(i) Ik(s) = (ρk − 1)s, s ∈ R+, where min
1≤i≤θ

ρi ≥
1
q

;

(ii) min
1≤i≤θ
{ti − ti−1} >

ln q

rI − αS

βI

;

(iii) r(t + ω) = r(t), a(t + ω) = a(t), tk + ω = tk+θ and ρk+θ = ρk, k ∈ Z+.

Then system (3.2) has a unique positive ω-periodic solution, which is globally attractive.
Remark 3.5. The research thought in the paper is completely new and can be extended to the
investigation of jump for delay logistic differential system.

4. Applications

In this section, two examples and their simulations are presented to show the effectiveness of our
obtained results.
Example 4.1. Consider the logistic type differential equations with jumps:

x′(t) = x
[

ln
(
7 +

2t
1 + t2

)
−

1 + t2

1 + t + t2 ln(1 + x2)
]
, t ≥ 0, t , tk,

x(t+
k ) = γx(tk), k ∈ Z+,

x(0) = x0 ∈ R+,

(4.1)

where γ > 0 is a given constant. For system (4.1), we have
Property 4.1. Case γ < 1. System (4.1) is persistent, if inf

k∈Z+

{tk − tk−1} > − logγ7 .

Proof. Let

f (t, x) = ln
(
7 +

2t
1 + t2

)
−

1 + t2

1 + t + t2 ln(1 + x2), (t, x) ∈ R+ × R+.

Then it is easy to check that

ln 7 − ln(1 + x2) ≤ f (t, x) ≤ ln 9 −
2
3

ln(1 + x2).

Since inf
k∈Z+

{tk − tk−1} > − logγ7, there exists m > 0 small enough such that

inf
k∈Z+

{tk − tk−1} > −
ln γ

ln 7
1+m2

> 0. (4.2)

For given m, let λ = 2, then there exists M > m large enough such that

0 <
ln 2

2
3 ln(1 + M2) − ln 9

< −
ln γ

ln 7
1+m2

. (4.3)
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Choose q = 1
γ

and considering (4.2), (4.3), it is easy to check that all conditions in Theorem 3.1 hold
and thus system (4.1) is persistent for the case γ < 1.

Property 4.2. Case γ > 1. System (4.1) is persistent, if inf
k∈Z+

{tk − tk−1} > 0.

Proof. Choose q ∈ (1, γ] and m > 0 small enough such that

0 <
ln q

ln 7
1+m2

< η, (4.4)

where η � inf
k∈Z+

{tk − tk−1} > 0. Let λ = γ > 1 and then choose M > m large enough such that

ln λ
2
3 ln(1 + M2) − ln 9

< η. (4.5)

By (4.4) and (4.5), it is easy to check that all conditions in Theorem 3.1 hold and thus system (4.1) is
persistent for the case γ > 1.

Property 4.3. Case γ = 1. System (4.1) is persistent.

Proof. In view of Corollary 3.1 and the analysis of Properties 4.1 and 4.2, the above property is obvious.

Remark 4.1. In particular, if let γ = 0.5, then by Property 4.1 system (4.1) is persistent, if infk∈Z+
{tk −

tk−1} > 0.36. For example, when tk = 0.4k, Figure 1(a) shows that system (4.1) is persistent. However,
when tk = 0.3k, Property 4.1 is invalid. In this case, it is interesting to see that system (4.1) will become
extinct, which is shown in Figure 1(b). This partially reflects the advantage of our development results.
In addition, if let γ = 2 and 8, then by Property 4.2 system (4.1) is persistent, if infk∈Z+

{tk − tk−1} > 0.
Figure 1(c) shows the case that γ = 2, tk = 0.2k, Figure 1(d) shows the case that γ = 8, tk = k.
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Figure 1. (a) State trajectory of system (4.1) with γ = 0.5 and tk = 0.4k; (b) State trajectory of system (4.1) with γ = 0.5
and tk = 0.3k; (c) State trajectory of system (4.1) with γ = 2 and tk = 0.2k; (d) State trajectory of system (4.1) with γ = 8
and tk = k.

Example 4.2. Consider the logistic type differential equations with jumps:
x′(t) = x

[
r + 0.1 sin

2π
ω

t −
(
1 + 0.2 cos

2π
ω

t
)
x
]
, t ≥ 0, t , tk,

x(t+
k ) = γkx(tk), k ∈ Z+,

x(0) = x0 ∈ R+,

(4.6)

where tk =
kω
θ

; r > 0.1, ω > 0 and θ ∈ Z+ are some given constants; γk > 0 satisfying γk+θ = γk, k ∈ Z+.

For system (4.6), we have
Property 4.4. System (4.6) has a unique positive ω-periodic solution, which is globally attractive, if

min
1≤i≤θ

γi < 1 and
1

min1≤i≤θ γi
< exp

[ω
θ

(r − 0.1)
]
.

Property 4.5. System (4.6) has a unique positive ω-periodic solution, which is globally attractive, if
min
1≤i≤θ

γi > 1.

Proof. By Corollary 3.6, then above two Properties can be easily derived.
Remark 4.2. In particular, if let γk = 0.8, r = 0.4 and ω = θ, then by Property 4.4 system (4.6)
has a unique globally attractive positive ω-periodic solution. When ω = 2 and 5, the corresponding
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simulations are given in Figure 2(a) and 2(b), respectively. Under the same conditions, if let γk = 2,
then by Property 4.5 system (4.6) has a unique globally attractive positive ω-periodic solution, which
are shown in Figure 2(c) and 2(d) for ω = 1 and 10, respectively.
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Figure 2. (a) State trajectories of system (4.6) with γk = 0.8 and ω = 2; (b) State trajectories of system (4.6) with γk = 0.8
and ω = 5; (c) State trajectories of system (4.6) with γk = 2 and ω = 1; (d) State trajectories of system (4.6) with γk = 2
and ω = 10.

5. Conclusions

In this paper, we investigated a class of logistic type differential system with jumps. Based on
impulsive control theory, some new sufficient condition ensuring the permanence and existence of a
unique globally attractive positive periodic solution were derived. The developed method is different
from the usual methods in other literatures. Two numerical examples were given to illustrate the
effectiveness and advantages of the results. The research thought in the paper can be extended to the
investigation of jump for impulsive logistic differential system with time delays. In the near future, we
shall do some further research on this topic.
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