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1. Introduction

In the real world, we often need to control or eliminate the target prey in a prey-predator system.
Biological control and chemical control are the two essential methods. The main means of chemical
control is to spray pesticides on pests at different fixed times (see e.g. [1]). However, chemical
control is said to be environmentally detrimental. There are various forms of biological control,
which is the focus of current research, such as immunocontraceptive technology, introducing other
predators, offering the predator additional food and so on. Saunders et al. [2] used the approaches of
immunocontraception and daughterless genes to control the growth of the target pest species. Ghosh et
al. [3] investigated the effectiveness of periodic impulsive releases of natural enemies into a two-patch
environment.

Numerous studies had shown that the additional food (to predator) can be helpful to increase
predators and the prey can be controlled. Tena et al. [4] showed that the melinus females were better
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able to forage and oviposit by providing sugar to them. Srinivasu et al. [5] studied a standard predator-
prey model with additional food and presented the evidence that how to eliminate target pests. Sahoo et
al. [6] investigated that the chaotic population dynamics can be controlled to obtain regular population
dynamics only by supplying additional food to top predator. Research on the models with additional
food, one can refer to the literature [7–11].

Recently, Basheer et al. [12] believed that the additional food can increase the carrying capacity and
birth rate of the predators, so they studied the following Holling-Tanner model with additional food:

du
dt

= u(t)(1 − u(t)) − su(t)v(t)
mv(t)+αβ+u(t) ,

dv
dt

= δv(t)
(
n +

β−v(t)
αβ+u(t)

)
,

(1.1)

where u(t) and v(t) denote the prey and predator density. α, β ∈ R+, and 1
α

and β represent the quality
and quantity of the additional food, respectively. The biological significance of other parameters refer
to [12]. Their research indicated that a conditional stable prey-extinction equilibrium could be obtained
in system (1.1), but it was nonexistent in the absence of additional food.

On the other hand, if the population maturation time is considered, the corresponding model should
be delayed. Therefore, lots of delayed predator-prey systems were studied (see, e.g. [13–24]). It is
interesting that Jiang et al. [25] applied a delay differential equation (DDE) to two-enterprise interaction
mechanism. The dynamical properties of DDE are far more complex than those of ordinary differential
equation (ODE). A time delay can cause an equilibrium undergoes from stable state to unstable, which
leads to the complicated dynamics of DDE. Arising periodic solution through the Hopf bifurcation is
one of the hot topics (see, e.g. [18–24, 26]). However, these bifurcating periodic solutions from Hopf
bifurcation are generally local. Whether these local periodic solutions exist globally is an interesting
subject. Erbe et al. [27] established the global Hopf bifurcation theorem and Wu [28] applied it to a
neural networks with memory. Thereafter, some researchers employed the theorem in [28] to study the
global existence of periodic solutions for DDE (see, e.g. [29–34]).

Inspiration based on model (1.1), we consider the maturation time of predator and standard Holling
type II functional response in the model, then we improve model (1.1) as follows:

du
dt

= u(t)(1 − u(t)) − su(t)v(t)
m+αβ+u(t) ,

dv
dt

= δv(t)
(
n +

β−v(t−τ)
αβ+u(t−τ)

)
,

(1.2)

where τ represent the maturation time of predator. The initial conditions are chosen as:

u(θ) = ϕ1(θ) ≥ 0, v(θ) = ϕ2(θ) ≥ 0, θ ∈ [−τ, 0), ϕ1(0) > 0, ϕ2(0) > 0

where (ϕ1(θ), ϕ2(θ)) ∈ C{[−τ, 0],R2
+},R

2
+ = {u, v : u ≥ 0, v ≥ 0}.

The main purpose of our work are concluded as follows:
(I) We consider the feedback time delay in the maturation time of predator, which is more general than
the works in [12]. We investigate the effects of feedback time on the stability of the equilibria and the
conditions on occurring Hopf bifurcations.
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(II) The delayed feedback is designed for studying bifurcating periodic solutions. We analyze the
direction and stability of bifurcating periodic solutions on the center manifold.
(III) The global existence of bifurcating periodic solutions are studied mathematically.

The rest of this paper is organized as follows. We first discuss some properties of system (1.2) to
prepare for the next section. In Section 3, we study the local stability of each feasible equilibrium of
system (1.2) with the effect of the time delay τ. The formulas determining the direction and stability
of bifurcating periodic solutions are obtained via the theory in Hassard et al. [35] in Section 4. In
Section 5, the global existence of periodic solutions under the second critical value is proved by using
the theory in Wu [28]. Finally, some examples are utilized to demonstrate the validity of the previous
results.

2. Preliminaries

Clearly, system (1.2) can be calculated by u(t) = u(0) exp{
∫ t

0

(
1 − u(ξ) − sv(ξ)

m+αβ+u(ξ)

)
dξ},

v(t) = v(0) exp{
∫ t

0
(δ

(
n +

β−v(ξ−τ)
αβ+u(ξ−τ)

)
)dξ}.

(2.1)

According to positive initial values of system (1.2), it is not difficult to obtain the following lemma.
Lemma 2.1 Any of the solutions of system (1.2) are positive for t ≥ 0 with positive initial values.
Theorem 2.2 System (1.2) is ultimately bounded when τ is bounded.
Proof. From the first equation of system (1.2) and by using the comparison theorem, it is easy to obtain

lim
t→+∞

sup u(t) ≤ 1.

Namely, there exists a time T1 such that u(t) ≤ 1 + ε for arbitrary ε > 0 and t > T1. By the second
equation of (1.2), we have

dv
dt
≤ σ

(
δ +

1
α

)
v.

Integrating both sides on the interval [t − τ, t], it produces

v(t) ≤ v(t − τ)exp
{
σ
(
δ +

1
α

)
τ
}
,

which implies

v(t − τ) ≥ v(t)exp
{
− σ

(
δ +

1
α

)
τ
}
.

Meanwhile, it follows from the second equation of (1.2) that

dv
dt
≤ δv

(
n +

1
α
−

exp
{
− σ

(
δ + 1

α

)
τ
}

αβ + 1 + ε
v
)
,

=
δexp

{
− σ(δ + 1

α
)τ

}
αβ + 1 + ε

v
(
(αβ + 1 + ε)(n +

1
α

)exp
{
σ(n +

1
α

)τ
}
− v

)
.

Using the comparison theorem, we obtain

lim
t→+∞

sup v(t) ≤ (αβ + 1)(n +
1
α

)exp
{
σ(n +

1
α

)τ
}
.
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Therefore, Theorem 2.2 is confirmed.
Theorem 2.3 In the absence of delay, if s < δ, then there is no closed loop in the first quadrant of
system (1.2).
Proof. Let B(u, v) = 1

uv , f1 = u(1 − u) − suv
m+αβ+u , f2 = δv

(
n +

β−v
αβ+u)

)
, then

∂(B f1)
∂u

+
∂(B f2)
∂v

= −
1
v

+
s

(m + αβ + u)2 −
δ

u(αβ + u)
,

≤ −
1
v

+
s

u(αβ + u)
−

δ

u(αβ + u)
,

< 0 (provided s < δ).

By using the Bendixson-Dulac criterion, the proof is completed.

3. Equilibrium, local stability and Hopf bifurcation

In the paper, we use the following representations for the sake of simplicity:

A ≡ m + αβ + sn − 1, B ≡ snαβ + sβ − m − αβ,C ≡
ū

m + αβ + ū
,

D ≡
δv̄

αβ + ū
, G ≡ ū −C(1 − ū), F ≡ G + snC,

where (ū, v̄) stands for the positive interior equilibrium and is defined in this section.
In order to obtain the equilibria, we discuss the algebraic equations: u(1 − u) − suv

m+αβ+u = 0,
δv(n +

β−v
αβ+u ) = 0.

(3.1)

Let (ū, v̄) stands for the interior equilibrium, where ū is the positive root of the equation u2 +Au+B = 0.
Thus, we have ū± = −A±

√
A2−4B
2 and v̄ = n(αβ + ū) + β. The equilibria are as follows:

(i) Trivial equilibrium E0 = (0, 0).
(ii) Predator-extinction equilibrium E1 = (1, 0).
(iii) Prey-extinction equilibrium E2 = (0, nαβ + β).
(iv) A unique coexisting equilibrium E+ = (ū+, v̄+) when B < 0; two coexisting equilibria E± = (ū±, v̄±)
when B > 0, A < 0 and A2 − 4B > 0.

Let E = (u∗, v∗) be arbitrary equilibrium. We use linearization technique to analyze the local
stability of system (1.2). The Jacobian matrix of system (1.2) at E = (u∗, v∗) is given by

J(u∗, v∗) =

 1 − 2u∗ − sv(m+αβ)
(m+αβ+u∗)2 − su

m+αβ+u∗

−
δ(β−v∗)v∗

(αβ+u∗)2 e−λτ δ(n +
β−v∗

αβ+u∗ ) −
δv∗

αβ+u∗ e
−λτ

 .
It is easy to confirm that E0 = (0, 0) is an unstable node and E1 = (1, 0) is a saddle.
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At Prey-extinction equilibrium E2 = (0, nαβ + β), the corresponding Jacobian matrix is

J(E2) =

 1 − s(αβn+β)
m+αβ

0
nδ(αβn)
αβ

e−λτ −δ(n + 1
α
)e−λτ


and the characteristic equation becomes

(λ − P1)(λ + P2e−λτ) = 0, (3.2)

where P1 = 1 − s(αβn+β)
αβ

,P2 = δ(n + 1
α
).

Case 1. τ = 0.
It follows from (3.2) that E2 = (0, nαβ+ β) is locally asymptotically stable when P1 < 0 (equivalent

to B > 0) and unstable when P1 > 0.
Case 2. τ > 0.
Let λ = iω∗(ω∗ > 0) be a root of the equation λ + P2e−λτ = 0, then iω + P2(cosωτ − i sinωτ) = 0.

By a direct calculation, we get ω∗0 = P2 and τ∗k = 1
P2

(2kπ + π
2 ), k = 0, 1, 2, · · · . Differentiating the both

sides of λ + P2e−λτ = 0 with respect to τ, we have

dλ
dτ

+ P2

(
− τ

dλ
dτ
− λ

)
e−λτ = 0,

that is (dλ
dτ

)−1
=

1
λP2e−λτ

−
τ

λ
=

1
ω2 −

τ

λ
,

which implies that

sgn
{dReλ

dτ

}
λ=iω∗0

= sgn
{
Re

(dλ
dτ

)−1}
λ=iω∗0

=
1
ω∗20

> 0.

Lemma 3.1 If B > 0 , then all roots of the characteristic equation (3.2) have negative real part when
0 ≤ τ < π

2P2
and at least one positive real part when τ > π

2P2
.

Therefore, we have the following conclusions for the boundary equilibria.
Theorem 3.2 (i) The trivial equilibrium E0 = (0, 0) and predator-extinction equilibrium E1 = (1, 0) are
always unstable for all τ ≥ 0.
(ii) When B > 0, the prey-extinction equilibrium E2 = (0, nαβ + β) is asymptotically stable for all
0 ≤ τ < π

2P2
and unstable for all τ > π

2P2
. The system (1.2) undergoes a Hopf bifurcation at E2 for

τ = π
2P2

.
Now we investigate the stability of the coexisting equilibrium E = (ū, v̄). The corresponding

Jacobian matrix is

J(E) =

(
−ū + C(1 − ū) −sC

nDe−λτ −De−λτ

)
and the corresponding characteristic equation becomes

λ2 + Gλ + Dλe−λτ + DFe−λτ = 0. (3.3)

Case 1. τ = 0.
Equation (3.3) becomes

λ2 + (G + D)λ + DF = 0.
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We calculate F as follows:
F = ū −C(1 − ū) + snC

= C(m + αβ + sn + 2ū − 1)
= C(A + 2ū),

which implies that F < 0 when ū = ū− and F > 0 when ū = ū+. Thus, the following conclusions are
obvious.
Lemma 3.3 If the coexisting equilibria exist and τ = 0, then E+ = (ū+, v̄+) is locally asymptotically
stable when G + D > 0 and E− = (ū−, v̄−) is always unstable.

Case 2. τ > 0.
Let λ = iω(ω > 0) be a root of the equation (3.3), then

−ω2 + iωG + iωD(cosωτ − i sinωτ) + DF(cosωτ − i sinωτ) = 0. (3.4)

We obtain
−ω2 + ωD sinωτ + DF cosωτ = 0,
ωG + ωD cosωτ − DF sinωτ = 0,

(3.5)

that is

cosωτ =
ω2(F −G)
ω2D + DF2 ,

sinωτ =
ω3 + ωGF
ω2D + DF2 .

(3.6)

From (3.6), we have

ω4 + (G2 − D2)ω2 − D2F2 = 0. (3.7)

Let z = ω2, (3.7) turns to

z2 + (G2 − D2)z − D2F2 = 0. (3.8)

Clearly, (3.8) has a unique positive root z0 =
−(G2−D2)+

√
(G2−D2)2+4D2F2

2 . So (3.8) has a pair of purely
imaginary roots ±iω0(ω0 =

√
z0). From the first equation of (3.6), we have

τk =
1
ω0

(
2kπ + arccos

ω2(F −G)
ω2D + DF2

)
, k = 0, 1, 2, 3, · · · .

Differentiating both sides of (3.3) with respect to τ, we have

2λ
dλ
dτ

+ G
dλ
dτ

+ D
dλ
dτ

e−λτ + Dλe−λτ
(
− τ

dλ
dτ
− λ

)
+ DFe−λτ

(
− τ

dλ
dτ
− λ

)
= 0,

namely, (
dλ
dτ

)−1

=
(2λ + G)eλτ

Dλ(λ + F)
+

1
λ(λ + F)

−
τ

λ
.
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Then

Re
(
dλ
dτ

)−1

λ=iω0

=
ω0G cosω0τ0 − 2ω0 sinω0τ0 − 2ω0F cosω0τ0 + G sinω0τ0 + Dω0

−ω0D(ω2
0 + F2)

=
2ω2

0 + (G2 − D2)

D2(ω2
0 + F2)

=

√
(G2 − D2)2 + 4D2F2

D2(ω2
0 + F2)

,

which implies that

sgn
{dReλ

dτ

}
λ=iω0

= sgn
{
Re

(
dλ
dτ

)−1

λ=iω0

}
> 0.

Lemma 3.4 If condition G + D > 0 holds, then all roots of the characteristic equation (3.3) at E+ =

(ū+, v̄+) have negative real part when 0 < τ < τ0 and at least one positive real part when τ > τ0.
From lemma 3.3 and 3.4, we confirm the following conclusions about the interior equilibrium.

Theorem 3.5 (i) If E− = (ū−, v̄−) exists, then it is unstable for all τ ≥ 0.
(ii) If E+ = (ū+, v̄+) exists and the condition G + D > 0 holds, then E+ is locally asymptotically stable
for all 0 ≤ τ < τ0 and unstable for all τ > τ0. The system (1.2) undergoes a Hopf bifurcation at E+ for
τ = τ0.
Remark 3.6 If the prey is pest, we just need to control the quantity of additional food satisfy the
following conditions:

β >
1 − m − sn

α
(i.e. A > 0) and β >

m
snα + s − α

(i.e. B > 0),

then additional food can induce pest eradication. Meanwhile, the density of predators eventually goes
to nαβ + β when the maturation time of predator species is less than π

2P2
.

Remark 3.7 If the conditions B > 0, A < 0, A2 − 4B > 0 and G + D > 0 hold simultaneously, the
system (1.2) is bistable when τ < min{τ∗0, τ0}.

4. Direction and stability of the Hopf bifurcation

We know from the literature [35] that the properties of Hopf bifurcation are determined by the
following three quantities, namely 

µ2 = −
Re(c1(0))
λ′(τ̃) ,

β2 = 2Re(c1(0)),
T2 = −

lm(c1(0))+µ2lmλ′(τ̃)
ω̃

,

(4.1)

where c1(0) = i
2ω̃τ̃

[
g11g20−2|g11|

2−
|g02 |

2

3

]
+

g21
2 , τ̃ is the critical value. µ2, β2 and T2 determine direction,

stability and the period of the bifurcating periodic solutions, respectively. So we need to figure out the
value of gi j in c1(0). We will use the normal form theory and the center manifold theorem to obtain the
expression of gi j in this section.
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It has known that system (1.2) undergoes Hopf bifurcation at coexisting equilibrium E+ when τ =

τ0. We denote the critical values τk and E+ = (ū+, v̄+) as τ̃ and E∗ = (u∗, v∗), respectively. Let
x(t) = u(τt) − u∗ and y(t) = v(τt) − v∗ , using Taylor expansion, (1.2) can be rewritten as(

ẋ(t)
ẏ(t)

)
= τA1

(
x(t)
y(t)

)
+ τB1

(
x(t − 1)
y(t − 1)

)
+ F(xt, yt, τ), (4.2)

where

A1 =

(
a1 a2

0 0

)
, B1 =

(
0 0
a3 a4

)
,

F(xt, yt, τ) = τ

(
a5x2(t) + a6x(t)y(t) + · · ·

a7x2(t − 1) + a8x(t − 1)y(t) + a9x(t − 1)y(t − 1) + a10y(t)y(t − 1) + · · ·

)
,

a1 = 1 − 2u∗ − s(m+αβ)v∗

(m+αβ+u∗)2 , a2 = − su∗
m+αβ+u∗ , a3 = −

δν∗(β−v∗)
(αβ+u∗)2 = δnv∗

αβ+u∗ ,

a4 = − δv∗
αβ+u∗ , a5 = −2 +

2s(m+αβ)v∗

(m+αβ+u∗)3 , a6 = −
2s(m+αβ)

(m+αβ+u∗)2 ,

a7 =
2δν∗(β−v∗)
(αβ+u∗)3 , a8 = −

2δ(β−v∗)
(αβ+u∗)2 , a9 = 2δv∗

(αβ+u∗)2 , a10 = − 2δ
αβ+u∗ .

Let τ = τ̄ + h, then h = 0 is a Hopf bifurcation value of the system (1.2). Choose the phase space
C = C([−1, 0],R2) , φ(θ) = (φ1(θ), φ2(θ))T ∈ C, θ ∈ [−1, 0], define L(h)

L(h)φ = (τ̃ + h)A1φ(0) + (τ̃ + h)B1φ(−1).

By the Riesz representation theorem, we choose the bounded variation function

η(h, θ) = (τ̃ + h)A1δ(θ) − (τ̃ + h)B1δ(θ + 1)

such that

L(h)φ =

∫ 0

−1
dη(h, θ)φ(θ),

where δ(θ) is delta function.
For φ ∈ C1([−1, 0],R2), define

A(h)φ(θ) = φ̇(θ) + T0(θ)[L(h)(φ) − φ̇(0)],

and
R(h)φ(θ) = T0(θ)F(φ, τ + h),

where T0(θ) =

 I, θ = 0,
0, θ ∈ [−1, 0).

Then (4.2) is written as
u̇t = A(h)ut + R(h)ut, (4.3)

where ut = u(t + θ) and ut = (xt, yt)T.
For φ ∈ C1([−1, 0],C2) and ψ ∈ C1([0, 1], (C2)∗), define a adjoint operator of A(0)

A∗ψ(s) = −ψ̇(s) + T0(−s)[
∫ 0

−1
dη(0, t)ψ(−t) + ψ̇(0)]
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and the bilinear form

〈ψ, φ〉 = ψ̄(0)φ(0) −
∫ 0

−1

∫ θ

0
ψ̄(ξ − θ)dη(θ, 0)φ(ξ)dξ.

From the previous discussion, we know ±iω̃τ̃ are the eigenvalues of A(0) and A∗. Let q(θ) =

(1, α1)T eiω̃τ̃θ be the eigenvector of A(0) corresponding to iω̃τ̃ and q∗(s) = M(1, α2)eiω̃τ̃s be the
eigenvector of A∗ corresponding to −iω̃τ̃, and they satisfy the conditions 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0.
Therefore, we have

τ̃

(
a1 a2

a3e−iω̃τ̃ a4e−iω̃τ̃

) (
1
α1

)
= iω̃τ̃

(
1
α1

)
and

τ̃M(1 α2)
(

a1 a2

a3eiω̃τ̃ a4eiω̃τ̃

)
= −iω̃τ̃M(1 α2),

then α1 = iω̃−a1
a2

and α2 = −iω̃−a1
a3eiω̃τ̃ .

By the bilinear form, we have

〈q∗(s), q(θ)〉 = M̄(1, ᾱ2)(1, α1)T −

∫ 0

−1

∫ θ

ξ=0
M̄(1, ᾱ2)e−iω̃τ̃(ξ−θ)dη(θ, 0)(1, α1)T eiω̃τ̃ξdξ,

= M̄(1 + α1ᾱ2) −
∫ 0

−1
M̄(1, ᾱ2)θeiω̃τ̃θdη(θ, 0)(1, α1)T ,

= M̄((1 + α1ᾱ2) + τ̃ᾱ2(a3 + a4α1)e−iω̃τ̃). (4.4)

Thus M = 1
(1+ᾱ1α2)+τ̃α2(a3+a4ᾱ1)eiω̃τ̃ .

We need the coordinates to describe the center manifold C0 near h = 0. Let z and z̄ be local
coordinates for C0 in the directions of q∗ and q̄∗. Assume that ut is a solution of (4.3) at h = 0, define

z(t) = 〈q∗, ut〉, W(t, θ) = ut(θ) − z(t)q(θ) − z̄(t)q̄(θ).

On C0, we have W(t, θ) = W(z(t), z̄(t), θ), where

W(z, z̄, θ) = W20(θ) z2

2 + W11zz̄ + W02(θ) z̄2

2 + W30(θ) z3

2 + · · ·. (4.5)

The manifold of (4.2) on the center manifold is determined by the following equation

ż(t) = iτ̃ω̃z(t) + q̄∗(0)F(zq(0) + z̄q̄(0) + W(z, z̄, 0)) 4= iω̃τ̃z(t) + q̄∗(0)F0

which is abbreviated to
ż(t) = iτ̃ω̃z(t) + g(z, z̄), (4.6)

where the power series form of g(z, z̄) is

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · (4.7)
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and

F0 = τ̃

(
a5x2(t) + a6x(t)y(t)

a7x2(t − 1) + a8x(t − 1)y(t) + a9x(t − 1)y(t − 1) + a10y(t)y(t − 1)

)
.

By a direct calculation, we have

x(t) = z + z̄ + W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz̄ + W (1)
02 (0)

z̄2

2
+ W (1)

30 (0)
z3

2
+ · · ·,

y(t) = α1z + ᾱ1z̄ + W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz̄ + W (2)
02 (0)

z̄2

2
,

x(t − 1) = e−iω̃τ̃z + eiω̃τ̃z̄ + W (1)
20 (−1)

z2

2
+ W (1)

11 (−1)zz̄ + W (1)
02 (−1)

z̄2

2
+ W (1)

30 (−1)
z3

2
+ · · ·,

y(t − 1) = α1e−iω̃τ̃z + ᾱ1eiω̃τ̃z̄ + W (2)
20 (−1)

z2

2
+ W (2)

11 (−1)zz̄ + W (2)
02 (−1)

z̄2

2
+ W (2)

30 (−1)
z3

2
+ · · ·.

(4.8)

Substituting (4.8) into F0 and comparing with (4.7), we obtain
g20 = 2τ̃M̄(a5 + a6α1 + ᾱ2(a7e−2iω̃τ̃ + a8α1e−iω̃τ̃ + a9α1e−2iω̃τ̃ + a10α

2
1e−iω̃τ̃)),

g02 = 2τ̃M̄(a5 + a6ᾱ1 + ᾱ2(a7e2iω̃τ̃ + a8ᾱ1eiω̃τ̃ + a9ᾱ1e2iω̃τ̃ + a10ᾱ
2
1eiω̃τ̃)),

g11 = 2τ̃M̄(a5 + a6Re{α1} + ᾱ2(a7 + a8Re{α1eiω̃τ̃} + a9Re{α1} + a10Re{α1ᾱ1eiω̃τ̃})),
g21 = 2τ̃M̄(a5k5 + a6k6 + ᾱ2(a7k7 + a8k8 + a9k9 + a10k10)),

where
k5 = W (1)

20 (0) + 2W (1)
11 (0),

k6 = 1
2 ᾱ1W (1)

20 (0) + α1W (1)
11 (0) + 1

2W (2)
20 (0) + W (2)

11 (0),
k7 = eiω̃τ̃W (1)

20 (−1) + 2e−iω̃τ̃W (1)
11 (−1),

k8 = 1
2 ᾱ1W (1)

20 (−1) + α1W (1)
11 (−1) + 1

2eiω̃τ̃W (2)
20 (0) + e−iω̃τ̃W (2)

11 (0),
k9 = 1

2eiω̃τ̃W (2)
20 (−1) + e−iω̃τ̃W (2)

11 (−1) + 1
2 ᾱ1eiω̃τ̃W (1)

20 (−1) + α1e−iω̃τ̃W (1)
11 (−1),

k10 = 1
2 ᾱ1W (2)

20 (−1) + α1W (2)
11 (−1) + 1

2 ᾱ1eiω̃τ̃W (2)
20 (0) + α1e−iω̃τ̃W (2)

11 (0).

In order to obtain the normal form of (4.6) confined to the center manifold, we need compute W20(θ)
and W11(θ).

Using Ẇ = u̇t − żq − ˙̄zq̄ which combines with (4.3) and (4.6), we obtain

Ẇ =

AW − gq(θ) − ḡq̄(θ), θ ∈ [−1, 0),
AW − gq(θ) − ḡq̄(θ) + F0, θ = 0.

(4.9)

On the other hand, from (4.5) and (4.6), we have

Ẇ = Wzż + Wz̄ ˙̄z
= [W20(θ)z + W11(θ)z̄](iτ̃ω̃z(t) + g(z, z̄)) + [W11(θ)z + W02(θ)z̄](iτ̃ω̃z̄(t) + ḡ(z, z̄)) + · · · .

(4.10)

We substitute (4.6) into (4.9) and compare the coefficients of z2

2 and zz̄ with (4.10), respectively. It
gives

(2ω̃τ̃I − A)W20(θ) =

 − g20q(θ) − ḡ02q̄(θ), θ ∈ [−1, 0),
− g20q(θ) − ḡ02q̄(θ) + Fz2 , θ = 0.

(4.11)

and

− AW11(θ) =

 − g11q(θ) − ḡ11q̄(θ), θ ∈ [−1, 0),
− g11q(θ) − ḡ11q̄(θ) + Fzz̄, θ = 0.

(4.12)
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According to (4.11) and (4.12), by a direct calculation for θ ∈ [−1, 0), we obatin

W20(θ) =
ig20

ω̃τ̃
q(θ) +

iḡ02

3ω̃τ̃
q̄(θ) + E1e2iω0θ

and
W11(θ) = −

ig11

ω̃τ̃
q(θ) +

iḡ11

ω̃τ̃
q̄(θ) + E2,

where E1 and E2 hold the following equations(
2iω̃τ̃ − a1 −a2

−a3e−2iω̃τ̃ 2iω̃τ̃ − a4e−2iω̃τ̃

)
E1 = 2

(
a5 + a6α1

a7e−2iω̃τ̃ + a8α1e−iω̃τ̃ + a9α1e−2iω̃τ̃ + a10α
2
1e−2iω̃τ̃

)
,

(
−a1 −a2

−a3 −a4

)
E2 = 2

(
a5 + a6Re{α1}

a7 + a8Re{α1eiω̃τ̃} + a9Re{α1} + a10α1ᾱ1Re{eiω̃τ̃}

)
.

From the above discussions, we have the following conclusions on the center manifold.
Theorem 4.1 (i) If µ2 > 0 (µ2 < 0), then the Hopf bifurcation is supercritical (subcritical).
(ii) If β2 < 0 (β2 > 0), the bifurcating periodic solution is stable (unstable).
(iii) If T2 > 0 (T2 < 0), the period increases (decreases).

5. Global existence of periodic solutions

Next, we investigate the global continuation of bifurcating periodic solutions from the positive
equilibrium (E+, τk). We employ the global Hopf bifurcation theorem and follow closely the notations
in Wu [28].

Denote the conditions for the existence of E+ as
(H) Either B < 0 or B > 0, A < 0 and A2 − 4B > 0.

Let R+ = {(u, v) ∈ R2, u > 0, v > 0}, X = C([−τ, 0],R2), zt = (ut, vt), the system (1.2) is rewritten as

ż(t) = F(zt, τ, p), (5.1)

where zt(θ) = z(t + θ) ∈ X and (τ, p) ∈ R+ × R+. Clearly, the mapping F : X × R+ × R+ −→

R2 is completely continuous. If we take R2 for the subspace of constant functions of X, we obtain
F̂ |R2×R+×R+

: R2 × R+ × R+ −→ R
2. It is easy to know (E0, τ, p), (E1, τ, p), (E2, τ, p), (E−, τ, p) and

(E+, τ, p) are all stationary solutions of (5.1). Now, we verify that (E+, τ, p) holds the conditions (A1),
(A2), (A3) and (A4) in [28].

From (1.2), We know easily that F̂ ∈ C2(R2
+×R+×R+,R

2
+) and F(φ, τ, p) is differential with respect

to φ. That is to say, the conditions (A1) and (A3) are satisfied. We also obtain

DF̂(E+, τ, p) =

(
−ū+ + C(1 − ū+) −sC

nD −D

)
.

Directly calculate, we have

DetDzF̂(E+, τ, p) = −D(ū+ −C(1 − ū+) + snD) = −DF < 0.

Then DzF̂(E+, τ, p) is a homeomorphism on R2 at E+, which satisfies the condition (A2).

AIMS Mathematics Volume 6, Issue 11, 12225–12244.



12236

The characteristic matrix of (5.1) at (E+, τ, p) is taken as:

∆(E+,τ,p)(λ) = λId − DF(E+, τ, p)(eλ.Id). (5.2)

A stationary solution (E+, τ, p)(λ) of (5.1) is called a center if det∆(E+,τ,p)(λ) = 0 has purely imaginary
characteristic roots of the form im2π

p0
for some positive integer m. It follows from (5.2) that

det∆(E+,τ,p)(λ) = λ2 + Eλ + Dλe−λτ + DFe−λτ = 0, (5.3)

which is the same as (3.3). Taking p0 = 2π
ω0

, we know i2π
p0

is a root of (5.3), namely, i 2π
p0

is an eigenvalue
of (E+, τk,

2π
ω0

). Thus, (E+, τk,
2π
ω0

) is a center, where τk and ω0 are defined in Section 3. Furthermore,
the center (E+, τk,

2π
ω0

) is an isolated center, because it satisfies the following two conclusions:
(i) J(E+, τk,

2π
ω0

) = 1, where J(E+, τk,
2π
ω0

) is a positive integer set with respect to m such that im2π
p0

are
eigenvalues of (E+, τk,

2π
ω0

).
(ii) For arbitrary k ≥ 0, there exist εk > 0, δk > 0 and a smooth function λ : (τk −σk, τk +σk → C)(C is
complex field) such that det∆(E+,τk ,

2π
ω0

)(λ(τ)) = 0, |λ(τ)− iω0| < εk for arbitrary τ ∈ (τk −σk, τk +σk) and

λ(τk) = iω0, dλ(τ)
dτ |τ=τk > 0. That is, (E+, τk,

2π
ω0

) is the only center in certain neighborhood of (E+, τk,
2π
ω0

).
Let

Ωεk ,p0 = {(r, p)|0 < r < εk, p0 − εk < p < p0 + εk}.

Clearly, for τ ∈ (τk − σk, τk + σk) and (r, P) ∈ ∂Ωεk ,p0 such that det∆(E+,τ,p)

(
r + i2π

p

)
= 0 if and only if

τ = τk, p = p0, r = 0. This is the condition (A4).
So far, we have verified the conditions (A1) − (A4) in [28]. Define

H±m(E+, τk,
2π
ω0

)(r, p) = det M( E+, τk ± δk, p)
(
r + im

2π
p

)
.

The condition (A4) and J(E+, τk,
2π
ω0

) = 1 imply H±1 (E+, τk,
2π
ω0

)(r, p) , 0 for (r, p) ∈ ∂Ωεk ,p0 . Therefore,
the first crossing number γ1(E+, τk,

2π
ω0

) is calculated as

γ1(E+, τk,
2π
ω0

) = deg(H−1 )(E+, τk,
2π
ω0

)(r, p),Ωεk ,p0) − deg(H+
1 )(E+, τk,

2π
ω0

)(r, p),Ωεk ,p0) = −1. (5.4)

By the similar arguments, we can know (E0, τ, p) and (E1, τ, p) are not the centers, but (E2, τ
∗
k,

2π
ω∗0

)

and (E−, τk,
2π
ω0

) are isolated centers. we may also obtain γ1(E2, τ
∗
k,

2π
ω∗0

) = −1 and γ1(E−, τk,
2π
ω0

) = −1.
In what follows we define
Σ = Cl{(z, τ, p)|z is p − periodic solution o f (5.1)},
N = {(z̄, τ, p)|F(z̄, τ, p) = 0}.

Let C
(
E+, τk,

2π
ω0

)
denote the connected component through (E+, τk,

2π
ω0

) in Σ.
By Theorem 3.2 in [28], there exists an isolated center (E+, τk,

2π
ω0

) which satisfies J(E+, τk,
2π
ω0

) = 1

and γ1(E+, τk,
2π
ω0

) , 0 such that C
(
E+, τk,

2π
ω0

)
through (E+, τk,

2π
ω0

) in Σ is nonempty. In addition, all the
centers of (5.1) are isolated centers and satisfy∑

(z̄,τ,p)∈(E+,τk ,
2π
ω0

)∩N(F)

γm(z̄, τ, p) < 0.
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By Theorem 3.3 in [28], we obtain the following Lemma.
Lemma 5.1 C

(
E+, τk,

2π
ω0

)
is unbounded.

On the other hand, from Theorem 2.2 in Section 2, it is easy to obtain the following lemma.
Lemma 5.2 If τ is bounded, then any nontrivial periodic solution of system (1.2) is uniformly bounded.
Lemma 5.3 When the conditions (H) and s < δ hold, (1.2) has no any nontrivial τ−periodic solutions.
Proof. If (u∗(t), v∗(t)) is a nontrivial τ−periodic solution of (1.2), then it is also a nontrivial periodic
solution of the following (5.5). 

du
dt

= u(1 − u) − suv
m+αβ+u ,

dv
dt

= δv
(
n +

β−v
αβ+u

)
.

(5.5)

When the condition (H) hold, (5.5) has at most five equilibria, namely, E0 = (0, 0), E1 = (1, 0),
E2 = (0, nαβ+ β) and E± = (ū±, v̄±). Note that E0, E1, and E2 are located in u-axis and v-axis, they can
not produce any nontrivial periodic solution. On the other hand, E± also can not produce any nontrivial
periodic solution due to s < δ. Thus, there is no any nontrivial periodic solution in (5.5). The proof is
complete.
Theorem 5.4 Suppose the conditions (H), G+D > 0 and s < δ hold, then for each τ > τk, k = 1, 2, 3 · · · ,
system (1.2) has at least k − 1 periodic solutions.
Proof. Let ProjΘC(E+, τk,

2π
ω0

) be the projection of C(E+, τk,
2π
ω0

) onto Θ-space. From Lemma 5.2, it is
easy to know that ProjzC(E+, τk,

2π
ω0

) is bounded. It follows from the proof of Lemma 5.3 that (1.2) with
τ = 0 has no nontrivial periodic solution. Thus, ProjτC(E+, τk,

2π
ω0

) is away from zero.
We suppose that ProjτC(E+, τk,

2π
ω0

) is bounded. Then there exist τ∗ such that ProjτC(E+, τk,
2π
ω0

) is a
subset of interval (0, τ∗). From the definition of τk and ω0 in section 3, we have 2π

ω0
< τk, k = 1, 2, 3 · · · .

Applying Lemma 5.3, we have p ∈ (0, τ∗) when (z, τ, p) ∈ C(E+, τk,
2π
ω0

).
The above discussion shows that C(E+, τk,

2π
ω0

) is bounded, which contradicts Lemma 5.1. Therefore,
ProjτC(E+, τk,

2π
ω0

) contains at least an interval (τk,+∞). The proof is complete.

6. Numerical simulations

Based on the previous discussion, three numerical results of system (1.2) are presented.
Case 1. We consider system (1.2) with s = 0.8, m = 0.2, α = 1, β = 0.6, δ = 0.4, n = 0.8, that is

du
dt

= u(t)(1 − u(t)) − 0.8u(t)v(t)
0.2+0.6+u(t) ,

dv
dt

= 0.4v(t)
(
0.8 +

0.6−v(t−τ)
0.6+u(t−τ)

)
.

(6.1)

We have A = 0.4400, B = 0.0640 and
√

A2 − 4B = −0.624. It implies system (6.1) has no positive
equilibrium and satisfies the condition (ii) in Theorem 3.2. Therefore, the prey-extinction equilibrium
E2 = (0, 1.08) is stable when τ < τ∗0, where τ∗0 = 2.1817. When τ pass through the critical value τ∗0, E2

loses its stability(see Figure 1).
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Figure 1. (a)&(b) When τ = 1.6817 < τ∗0, the prey-extinction equilibrium E2 = (0, 1.08)
is stable; (c)&(d) When τ = 2.2817 > τ∗0, the prey-extinction equilibrium E2 = (0, 1.08) is
unstable.

Case 2. we discuss the following system
du
dt

= u(t)(1 − u(t)) − 0.2u(t)v(t)
0.1+0.6+u(t) ,

dv
dt

= 0.3v(t)
(
0.4 +

0.6−v(t−τ)
0.6+u(t−τ)

)
,

(6.2)

where s = 0.2, m = 0.1, α = 1, β = 0.6, δ = 0.3, n = 0.4. Calculate directly, we have B = −0.5320,
G = 0.7641, D = 0.2444, then there is a unique coexisting equilibrium E+ = (0.8476, 1.1791). From
the condition (ii) in Theorem 3.5, there exists the critical value τ0 = 6.0476 such that E+ is stable when
τ < τ0 and unstable when τ > τ0(see Figure 2).

On the other hand, we obtain the following values by using Matlab
α1 = −6.9759 − 2.3462i, α2 = 2.7585 + 7.7731i, M = −0.0090 − 0.0008i,
g20 = −14.4293 − 14.6239i, g02 = 19.8351 − 5.9477i, g11 = 0.6641 − 2.1798i,
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g21 = −41.2805 + 50.5284i, c1(0) = −27.6348 − 37.3972i, λ′(τ0) = 0.0192 − 0.0298i.
It follows that µ2 = 1440.4 > 0 and β2 = −55.2696 < 0 and T2 = 312.4076, which, together with
Theorem 4.1, implies that the bifurcating periodic solution exists when τ > τ0 and the bifurcating
periodic solution is stable on the center manifold and the period increases.

When τ = τ0, all roots of characteristic equation (3.3) have negative real parts except ±iω0. Since
the periodic solution on the center manifold is stabile, the periodic solution in the whole phase space
is stable(see Figure 2 (c) and (d)).
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Figure 2. (a)&(b) When τ = 5.6475 < τ0, E+ = (0.8476, 1.1791) is stable; (c)&(d) When
τ = 6.4475 > τ0, E+ = (0.8476, 1.1791) is unstable and a stable bifurcating periodic solution
occurs.

Case 3. the simulation of the system (1.2) with s = 0.6, m = 0.2, α = 0.3, β = 0.5, δ = 0.65, n = 0.6 is
given by 

du
dt

= u(t)(1 − u(t)) − 0.6u(t)v(t)
0.2+0.15+u(t) ,

dv
dt

= 0.65v(t)
(
0.6 +

0.5−v(t−τ)
0.15+u(t−τ)

)
,

(6.3)
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which has two positive equilibriums E− = (0.0145, 0.5987) and E+ = (0.2755, 0.7553) due to A =

−0.2900, B = 0.0040 and
√

A2 − 4B = 0.2610. By the condition (i) and (ii) in Theorem 3.5, we can
know that E− = (0.0145, 0.5987) is always unstable for any τ > 0 and there exists the critical value
τ0 = 1.2379 such that E+ is stable for any τ ∈ [0, τ0). When τ crosses τ0, E+ is unstable and a Hop
bifurcation occurs. We obtain c1(0) = −23.7642 + 34.8292i and λ′(τ0) = 0.5009 − 0.6450i by using
Matlab, then µ2 = 47.4457 > 0 and β2 = −47.5284 < 0 and T2 = −3.6496, which implies that the
bifurcating periodic solution is stable on the center manifold and the period increases. As discussed in
system (6.2), for τ > τ0, the periodic solution of system (6.3) in the whole phase space is stable. The
corresponding simulation results are shown in Figure 3.

In addition, system (6.3) also has a prey-extinction equilibrium E2 = (0, 0.59) corresponding to the
critical value τ∗0 = 0.6144. Thus, E2 = (0, 0.59) and E+ = (0.2755, 0.7553) are the stability equilibria
of system (6.3) when τ < 0.6144, which is depicted in Figure 4.
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Figure 3. (a)&(b) When τ = 1.1 < τ0, E+ = (0.2755, 0.7553) is stable;, (c)&(d) When
τ = 1.4 > τ0, E+ = (0.2755, 0.7553) is unstable and a stable bifurcating periodic solution
occurs.
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Figure 4. When τ = 0.5144 < 0.6144, (a) E2 = (0, 0.59) is stable with initial date (0.01, 0.5)
and (b) E+ = (0.2755, 0.7553) is also stable with initial date (0.3, 0.5).

7. Conclusions

In the paper, we investigate a delayed predator-prey system with additional food and asymmetric
functional response. The local stability of all possible equilibria are studied. It shows that we can
exterminate the prey by adjusting the quality and quantity of additional food when the prey density and
time delay are relatively small. We know that the number of positive equilibria is determined by the
value of B. For B < 0, there is only one conditionally stable or unstable coexisting equilibrium E+,
which depends on the delay. However, there exist an absolutely unstable coexisting equilibriumE− and
a conditionally stable or unstable coexisting equilibrium E+ for B > 0 in system (1.2). We also find
that the model is bistable when B > 0, A < 0 and A2 − 4B > 0 (see Figure 4).

Our investigation shows that coexisting equilibrium E+ is always unstable after τ passes through
the first critical value τ0. That is to say, there does not exist any stability switching. However, stability
switching can occurs in some predator-prey systems (see e.g. [26, 29, 33]). Moreover, the formulas
determining the direction (µ2) and stability (β2) of Hopf bifurcation are given. We also show that the
local Hopf bifurcation implies the global Hopf bifurcation of positive equilibrium after the second
critical value of delay. Finally, we give three examples to illustrate the stability of the system (1.2) near
the first critical value, and the simulation results are consistent with our conclusions.

This paper mainly considers the effects of providing additional food and designing a delayed
feedback on Holling-Tanner model theoretically. We cannot claim that our method always holds
for Holling-Tanner model due to the variety of ways to provide additional food and design delayed
feedback. However, our investigation has potential significance for biological control. Therefore, the
future works may consider how does the different ways of additional food and delayed feedback affect
a predator-prey system, and cover the effects of additional food on an ecoepidemic model and so forth.
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