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1. Introduction

The study of sub-linear expectation is a new direction of probability limit theory and has attracted
great attention in the field in recent years. Probability limit theory is mainly good at dealing with those
situations where the corresponding probability model can be determined by mathematical statistical
methods and data analysis. However, most random variables in the real world have different degrees
of uncertainty. How to analyze and calculate the financial and economic problems under uncertainty
has become an important concern at present. Compared with the classical linear model, sub-linear
expectation theory is more complex and more challenging. By relaxing the linear property of classical
expectation to sub-additivity and positive homogeneity, we can obtain many interesting properties.
Peng [1, 2] first introduced the concept and framework of sub-linear expectation, and provided the
corresponding basic properties. Under the sub-linear expectation, Peng [3,4] developed the law of weak
large numbers and the central limit theorem for independent identically distributed random variables.
Subsequently, Zhang [5—7] did a series of studies on the basis of the framework established by Peng,
proved the exponential inequality and Rosenthal’s inequality, and obtained Kolmogorov’s strong law
of larger numbers and Hartman-Wintner’s law of iterated logarithm. Zhang’s work provides us with a
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powerful tool for studying theorems under sub-linear expectations.

Complete convergence and complete moment convergence are two very important ideas in
probability limit theory. Chow [8] first proposed the concept of complete convergence for sequences
of independent random variables. Complete moment convergence is a more accurate convergence
than complete convergence. A large number of scholars have studied the theorems of complete
moment convergence for random variable sequences, and obtained many related results in the
classical probability space. Wang [9, 10] studied the complete moment convergence of difference
sequences and random variables satisfying the Rosenthal-type inequality. Qiu [11] and Yi [12]
extended the sequence suitable for the complete moment convergence again, and both obtained the
complete moment convergence of END sequence. In recent years, Some scholars have also begun to
study the complete integral convergence, but the results are relatively few. Lu [13] proved the
complete integral convergence of wise widely negative dependent random variables under sub-linear
expectation. Zhong and Wu [14] studied the complete integral convergence of the weighted sum of
the END variable under sub-linear expectation space context. Liang and Wu [15] extend complete
integral convergence theorems for END sequences of random variables. Li and Wu [16] discuss the
property of complete integral convergence and obtain the result of g-th integral convergence of arrays
of rowwise extended negatively dependent random variables under sub-linear expectation. Based on
the above results, the study of complete integral convergence needs to be improved.

The content of this article is as follows. In Section 2, we introduce some basic notation, concepts and
related properties. In Section 3, complete integral convergence theorems for weighted sums of arrays
of rowwise extended negatively dependent random variables are established. Our results generalize
Ge’s [17] conclusions from probability space to sub-linear expectation. In Section 4, we give lemmas
that are useful for proving the main results, and use these lemmas to prove the main results of this

paper.
2. Preliminaries

We use the framework and notions of Peng [1,2]. Let (€2, ) be a given measurable space and let
H be a linear space of real functions defined on (Q,¥) such that if X;,X5,...,X, € H then
o(Xi,...,X,) € H for each ¢ € C;p;,(R,), where C,;;,(R,) denotes the linear space of (local
Lipschitz) functions ¢ satisfying

lo(x) — (W < c(1 + X" + [y")x —yl, VX, y €R,,

for some ¢ > 0, m € N depending on ¢. H is considered as a space of random variables. In this case
we denote X € H.

Definition 2.1. A sub-linear expectation I on # is a function E : H — R satisfying the following
properties: for all X, Y € H, we have
(a) Monotonicity: If X > Y then EXx > By;
(b) Constant preserving: Bc = ¢;
(c) Sub-additivity: E(X + ¥) < EX + EY; whenever EX + EY is not of the form +co — 0o or —co + 00;
(d) Positive homogeneity: B(1X) = ABX, 1 > 0.

Here R = [~o0, 00]. The triple (Q, H, ) is called a sub-linear expectation space.

AIMS Mathematics Volume 6, Issue 11, 12166-12181.



12168

Given a sub-linear expectation E, let us denote the conjugate expectation & of F by
&(X) := -E(-X), ¥X € H.
From the definition, it is easily shown that for all X, Y € H,

EX <BX, B(X+¢)=EX +¢,

BX-Y)|<EX-Yand B(X-Y)>EX-EY.

If BY = &Y, then B(X + a¥) = EX + aRY for any a € R.
Next, we consider the capacities corresponding to the sub-linear expectations. Let G Cc F. A
function V : G — [0, 1] is called a capacity if

V(@) =0, V(Q)=1and V(A) < V(B) forVAC B,A,B€G.

It is called to be sub-additive if V(A U B) < V(A) + V(B) for all A,B € G with AU B € G. In the
sub-linear space (Q, H, E), we denote a pair (V, V) of capacities by

V(A) := inf(B& I(A) < &, € € H), V(A) = 1 - V(A), YA € F,

where V(A€) is the complement set of A. By definition of V and V, it is obvious that V is sub-additive,
and

V <V, VA e F; V(A) = E((A)), V(A) = &U(A)), if I(A) € H,

Ef <V(A) <Bg &f < V(@A) < &g if f<IA)<g, f.geH.

Definition 2.2. We define the Choquet integrals/expectations (Cv, C/) by

(o] 0
Cy(X):= f V(X > x)dx+f (V(X > x) — 1)dx,
0 —00

with V being replaced by V and V respectively.

Definition 2.3. (i) (Identical distribution) Let X; and X, be two random variables defined severally in
sub-linear expectation spaces (Q1, H, El) and (Q,, H,, EZ). They are called identically distributed if

E) (¢(X)) = Bz (0(X2)), Yo € Ci1ip(R),

identically distributed if X; and X; are identically distributed for each i > 1.
(i1) (Extended negatively dependence) A sequence of random variables {X,;n > 1} is said to be

whenever the sub-expectations are finite. A sequence {X,;n > 1} of random variables is said to be

upper (resp.lower) extended negatively dependent if there is some dominating constant K > 1 such
that

: (]_[ soi(Xi)) < K[ [ B, vn =2,
i=1 i=1
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whenever the non-negative functions ¢;(x) € C;1;,(R),i = 1,2,..., are all non-decreasing (resp. all
non-increasing). They are said to be extended negatively dependent (END) if they are both upper
extended negatively dependent and lower extended negatively dependent.

It is obvious that, if {X,;n > 1} is a sequence of END random variables and fi(x), fo(x),... €

CiLip(R) are non-descreasing (resp. non-increasing) functions, then {f, (X,);n = 1} is also a sequence
of END random variables.

For 0 < u < 1, let g, (x) € C;1;p(R) be an even function and it is decreasing in x > 0 such that
0<g,(x)<1forallx,g,(x)=1if|x| <pu, g, (x)=0if [x] > 1. Then
I(x[ <) <gu()<I(x<D,I(x>1)<T1-g,(x)<I(x>p). (2.1)

Let A, < B, (A, > B,) denote that there exists a constant ¢ > 0 such that A,, < ¢B, (A, > ¢B,)

for sufficiently large n, and the symbol 7 (-) will be used to signify the indicator function. {a}, means
max {a, 0}.

3. Main results

Theorem 3.1. Let {an;l <j<b,n>= 1} be an array of rowwise END random variables,

{anj, j=>1,n> 1} be an array of positive numbers, {b,,n > 1} be a non-decreasing sequence of
positive integers and {c,,n > 1} be a non-decreasing sequence of positive numbers. Suppose that for

any & > 0,
00 by
D en DV (JawXaj| 2 £b))") < o, 3.1)
n=1 j=1
and ,
= " . > (ayiX,;
Z c,,b,;z/fzaﬁjE (X)) gﬂ( - /;') < oo (3.2)
n=1 =1 &b,
Then ,
= " N aniX,:
Z CnV{ Qpj (an - Eang,u (J—l/tj)) 2 ‘gbrlz/t} < 00, (3.3)
n=1 =1 &by
and ,
ch{ (X - %, (“"f—)%))«b”f}wo (3.4)
n nj | Anj nj8u 1/t EL, . .
n=1 =1 &by
Particularly, if EX,;g, (a"ﬁ'jf) = &X, jgﬂ( "1’71 - ) then
) b
n n Xn
Z ch{ Z Iy, (X Exnjgy( ;1/ 1)) > sb}/r} < oo (3.5)
n=1 j=1
Further, if the following condition also hold:
B by
Z bl c 1 AnjXnj 6
Cn anj| Ly — 8u —1/[ < 0o, (3 )
=1 b,

S
I
~.
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and

n

i b, a2 B (%) (1 g, (ag”;f’j" ) < oo, 3.7)

n=1 j=1

Then

n=

i c,Cy {b-l/’

by
X, —BX, g, (%Xn 3.8
Zan] nj nj8yu T —gp < o00. (3.8)
&b, .

j=1
Remark 3.1. The results obtained from Theorem 3.1 is very extensive, we can obtain different forms
of complete integration convergence theorems by taking different forms of ¢, and b,,.

Taking ¢, = n** Y, b, = n,t = 1/a or ¢, = n®*h(n), b, = n, a,; = 1 in Theorem 3.1, i (n) be a
slowly varying function here, then we obtain two complete integration convergence theorems such as
Theorems 3.2 and 3.3.

Theorem 3.2. Let {X,;; j > 1,n > 1} be an array of rowwise END random variables, {a,;; j > 1,n > 1}

i Xn njXn
be an array of positive numbers satisfying EX, i8u (a . ’) = €X,;8u ( - ’) and

D @EX,=0(n") as n— oo, for some 0<6<1. (3.9)
j=1

Then, for any € > 0,

°° B RS N an;Xnj
Z nt I)CV {n Z Qn (an — EX,;8u (#)) B 8} < . (3.10)
n=1 j=1 +
Particularly, if EX,, i=0and a > 6/2, then
ZnZ(a—l)CV {n—a Zaannj _ s} < 0. (3.11)
n=1 J=1 +

Theorem 3.3. Let (X, X,;;j > 1,n > 1} be an array of rowwise identically distributed END random
variables with BX = 0, and h(x) > 0 be a slowly varying function as x —> oo. IfEang,, (%) =
£X,8 (225 ) B(XI" h(1XI)) < Cy (XI" h(IX[)) < 00 fora > 1,1 < at < 2, then

Zazmzcv{niz } . (312

n=1
Remark 3.2. Theorem 3.1 extends Theorem 2.1 of Ge [16] from the conventional probability space
to sub-linear expectation space. Theorems 3.2 and 3.3 generalize Corollary 2.6 and Theorem 2.4 of
Ge [16].

Remark 3.3. Under sub-linear expectation, Li and Wu [16] study q-th integral convergence of arrays
of rowwise extended negatively dependent random variables. Wu and Jiang [18] study complete
convergence and complete integral convergence for negatively dependent random variables. Wu [19]
establish precise asymptotics for complete integral convergence. In this paper, we study complete
integral convergence of weighted sums, and the negatively dependent random variable expands to
arrays of rowwise extended negatively dependent random variables.
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4. Proof of main results

To prove our results, we need the following lemmas.

Lemma 4.1. Zhong and Wu [14] suppose X € H, a > 0, t > 0, and h(x) is a slow varying function.
(i) Then

Cv (IXI" h(1X]")) < 0 & Z n“‘lh(n)V(le > cnl/f) < o0, forYe > 0. 4.1)

n=1

(i) If Cv (IX|* h (1X]")) < oo, then for ¥c > 0 and 6 > 1,
Z 6 (6") V (1X] > c6") < co. (4.2)
k=1

Lemma 4.2. Zhang [5] Let X, X5,...,X, be a sequence of upper extended negatively dependent
random variables in with BE[X,] <O0. Set S, = Die1 X, then

 Ex?
%, Vx> 0. 4.3)

V(E,=2x)<(1+Ke)
Proof of Theorem 3.1. For array of rowwise END random variables {Xn 1< j<b,, n>1}, we

need that truncated function belong to C;;;,(R) and is non-decreasing to make the truncated random
variables are also END. Forany ¢ > 0,1 < j<b,,n > 1,

Ynj = _Sb}l/tl(aannj < —Sbi/t) + anl( an,-an < Sbrll/t) + ﬂl (aannj > Ebll/t) >

nj

Clnj

8b]/l
an = (Xn/ + 2 )I(aannj < —Sbrll/[) + (Xn, -

anj

sb,]/ !

)I(a,, Xaj > eb)").

anj

There are X,,; = Y,; + Z,;. Note that

i (%, — B, [
anj nj I’ljgll 8b:l/t

J=1
bn bn b" a X .
A a N njnj
= Z aannj + Z Qpj (Ynj - EYn]) + Z Qpj (EYnJ - EXn]g/l( 1/¢ ))
=1 i1 =1 &bn
=L +5L+1

Hence, to prove (3.3), it suffices to verify that

chV(I,- > 8b,£/t) <o00,i=1,2, and b, |I5] — 0 as n — co.

n=1
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By (3.1), we have

i ¢,V {11 > sb,ll/’} =

e

by
c,V {Z aniZyj > 8b’11/t}

n=1 n=1 j=1
<Y eV{3j:1<j<b, such that |a,X,,| > eb)/"} (4.4)

1

n
b

anV{

J=1

Me

a,,anj > Sb,ll/t} < 0.

n

For any r > 0, combining the Cr inequality and (2.1),
r b,/" AN by

I(an <2 )+(“3 )I(an > )
Ay anj Qpj

r :uaannj 8brll/t ' 1 aannj
8u Sb},/l + Iy, — 8u Sb,l/t ’

r ,uaannj 8b111/t " a"anj
gﬂ( gb," ))+( Qnj S\ ebl!

r Hay 'Xn' Sbrlz/t '
() ()
Sbn Qpj
Through definition 2.3 (if), we know that {a,;(Y,; - BY,;),1 < j<b,n 21} is still END with

Eanj (Y,,J- - EY,,J-) =0, by (4.3), (3.2) and (4.5), it is easy to prove that

i eV {L > eb)"} = i eV

n=1 n=1

r
<

Y,

X,

<

X,

thus,

r) < E(X,,j

(4.5)

Clannj > ﬂSbrll/t) .

b

a,; (Y, - BY,;) > sb}/f]

=

o0 b
_ - N Hay Xn j
<C Y b aﬁ{,Exgjgﬂ( T ’) (4.6)

;X > ueb) ’)

2/t 2 A2 My X
< chbn ZanjEX”jgﬂ( I ) < 00

aannj

Next, we verify b,"/" |I;] — 0 as n — oo. We can obtain Zj’.ll V( > sb,l,/’) — Qasn — o
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from (3.1) and {c,,n > 1} is a non-decreasing sequence of positive numbers, then, by g, (x) | in x > 0,

b
) ) . A . a,: X,
bnl/t |13| — bnl/f Z apj (EYnj - Eangﬂ (—J 1/11))
= &b,
by a X,
Sbr—l]/lZanj EYnj—Eangy( nj]/rllj)
= eb,
by a X
Sb;”tza”jE Ynj—ang,U( jl/tj)
= &b,
by 1/t 1/t
.| eb b @i nj
Sb;”tzanjE 2 Xnj < - |+ X = Xoj8u| — v
4 dy; i &by @.7)
Jj=1 !
pebll! eby"\ by e,
X[ < Xn,‘ < + 1 X"j >
Anj S Anj Gnj
by 1t Ui 1t !
A Sbn Sbn gb” Sbn
< b;l/tzanjE[ (an > )+ X, 1('” <X,; < )]
j:1 anj anj anj anj
by Ut 1t 1/t o
N bn bn b” bn
Sb;”tzanjE[g I( ; € )+<9 I(an HE )]
= anj anj anj anj
by
<<Z X, >.U<9b1/[)_’0asn_>oo
j=1

Combining (4.4), (4.6) and (4.7), we obtain (3.3). Obviously, {~X,;; 1 < j < b,.n > 1} also satisfies
the conditions of Theorem 3.1, replacing {an; 1<j<b,n=> 1} by {—an, 1<j<b,n= 1} in (3.3),

by g.(x) is an even function, we obtain (3.4). According to the BX, i8u (“"’}f/’j’) = £X,8u (”’” ”’), 3.3)

and (3.4), we get

Yol

e
DT

Sl

Therefore (3.5) holds.
Next, we prove (3.8). For Ve > 0,

AIMS Mathematics
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A jXnj 1/t
"Jg#( Sb,l/t )) 2 8bn
A Xnj 1/t
EXn]gy( 8b}l/t )) > Sbn

a,i X,
6Xn/8u( . 1/:1 )) < —eb,"'t < co.
eb,

4.8)
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00 by
A njXn
= chf V{b‘”t Zanj( Eang#( jl/t])) -&> u}du
n=1 0 1
el 00 bn
A anjip
+chf V{b_l/t ZanJ(XnJ_EXnJg/J( JI/J)) _8>u}du
n=1 & =1 n
Z C"V{ Z Anj (an - Eang/J ( - 1/’” )) > 8brlz/t}
n=1 j=1
. A, X,
+chf { aﬂ]( Eangﬂ( j]/tl/)) > ubr]z/t} du
eb,
=: H + H,.

By (3.5), we can get H; < oco. Furthermore, the proof of H, < oo is similar to the considerations in

(4.8), by EXx, i8u (a’” ; /",’) X8, ( ok /’:’ ) we only need to prove

A Ay jXnj 1t
Z Cy anj nj Eangﬂ W > I/tbn du < co.

Foranyléjébn,u28,6>0,let

1/t 1/t
, —Mbn 1/t 1/t I/lbn 1/t
Ynj - Apj I(aannj < _ubn ) * X"jl( a’len.i < ubn ) * Cl_njl (aannj > ub” )’

, ub,’" ub,’"
a

n
J anj

There are X,,; = Y, n it Z;, j- Noting that

S o0 b, ubl/t
<3 f {Za,”z» : }du

J=1

= H31 + H32 + H33.
By (3.6), we have

uby
H; = chf an]an > Tn du
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< chf V{Hj 1< ] < bn, such that a,,jX,,j > 5ub}1/t} du

n=1
0 co by
Schf V{aan,,j >6ub;/’}du
n=1 & j=1
0 b
- anjiXnj| [ |anjXnj
SZC,I Cv[ JI/IJI( Jl/t] >8))
oy ob, ob,
) b,
_1 L aannj
< cb,! anil Cv |1 Xuil|1 — g < 00.
; j=1 ' [ ! [ #( Sébrlz/t )))
The proof of is H3; < oo similar to considerations in (4.6), by Lemma 4.2 we have
o 00 bn
Hs < Z cab u? ) Ed anid
n=1 € Jj=1
0 0o b, ua X )
-2/ -2 2 Byv2 njanj
< CZ cnb,7! u Z a, EX, .8, ( Iz )du
n=1 & =1 Uby,
00 o bn
+Cchf ZV(an‘,an >,uub,ll/’)du

j=1

00 b
(o) n ‘X .
-2/ -2 2 B2 Qnjinj
< Cchbn tf; u ZanjEangy( T )du

=

(o] 00 bn
=y -2 2 fiy2 HanjXnj anjXnj
+C Z cab,, ' u Z anjEan (g/‘ (W) ~ 8u ( ebl/t du

=1 & =1
o« o b
+Cchf ZV(aannj >,uub,1l/’)du
e oz

n=1 j=1
=: H31 + H3p + H3ps.

By (3.2), we have

S b,
. X ayi Xy 0
H < E Cnb,;z/t E a,zleX,z,jgu( n;l/?)f u_zdu<oo.
EDy, &

n=1 j=1

By (3.7), we obtain

00 b
© - A a,iX,;
Hypy < E cnb,_lz/tf u? E afleX,%j(l—g#( ;]/lj))du
e =1 &b,

n=1
- on a,iX, o0
" 2 A2 njinj 2
< chbn Z;anjEan(l —gﬂ( T ))f u “du
n= J= n &
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12176

. b
n X, .
wy 2 A2 Anjinj
< Zl cnb, Z;anjEan(l - gﬂ( I )) < o
n= J= n

The proof of Hj3y; < oo is similar to the proof of the convergence of Hj, by (3.6), we have

) b
n an Xl’l an Xl’l
< Z Cn Cv( ;1/11 [[ ;1/11 > s]]
1 ,Ll n ,Ll n

n=1 j=
00 b,
z aniXnj
1 njnj
< ZC"b" ”Z Inj CV( Y (1 _gﬂ[ v || <
n=1 =1 &ptby

Therefore, we get H3, < co. Next, we consider H33 < co. Foru > g, 1-g, (“"’;'}{ ) <l-g, (”"’ o ), the
way is similar to the proof of (4.7), we have

sup (ub,ll/ ! )

u>e

by
-1 N N an/XnJ

J=1

Thereby, for sufficiently large n, we can get

1) - Y : 3 aniXaj\) _ 1
(uby) " > an | BY,; — BX,g, )31 =0 (4.9)

J=1

By

By (4.9), we get H33 < oo. Then H3 < co. The proof of Theorem 3.1 is completed.

Proof of Theorem 3.2. In Theorem 3.1, let ¢, = n** Y b, =n,t = 1/a, by 3.9)and 0 < § < 1,

we have
Z Cnb;Z/t Z aijE (an)2 2. (Clannj)

sb,ll/ !

(4.10)

IA
)
S
P
S
L
s
[\
S
S
[S2)

in 0. 4.11)

=1

[
o
=
%‘
=
Q
A
E><
N—
[\S]
—_
p—
2
—_
Q
E
E
~———
~——
A

S
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And for Yc > 0, we have

e [ 2
=1 Ve

© & B ay X,

< Zc,, f b/

<chb 2/tZEanj ’”f udu

o0

< Z 2Aa-1),~2a Z 240

n=1 n=1
Hence, (4.10) and (4.11) satisfy conditions (3.2) and (3.7) of Theorem 3.1. By (4.12), we can get
H3, < oo, then we obtain (3.10). Finally, we show that (3.11). We only need to verify that

—a - Ty an 'Xn j
n Z a,EX, 8, ( gjna ])

=1

> cub”’)d

anjXpj

(4.12)

I =:

— 0 as n — oo.

For @ > /2, by Ean = 0, we have

n
. a, X
_ |,,-a jAnj
I=1n Zanl (Ean—Eangy( s ))
j=1
n
N a,: X,
—a Jnj
<n Zanj]E an—angﬂ( on® )
J=1
n
— S aannj
_ @
S a8 X,”.(l _gﬂ(
J=1
n 2
. |pan; X,
<n )y aq,Bl——2
" en®
j=1
n
—2a 2 By2
<n a, BX;
j=1
<«n 2 _5(0 as n — oo.

Therefore the proof of Theorem 3.2 is completed.

Proof of Theorem 3.3. For j > 1, let g;(x) € C;1;,(R) be an even function, such that 0 < g;(x) <1
for all x; g; (55 ) = 1if 2070/ < || < 27" and g; (55) = O if |x| < 20 or [x] > (1 + 1) 27/". Then

X i
gj(zm) [(,u(2j l) <|X|§(1+,u)2’), (4.13)
X g X
X178 () < 1+ Y IX7 85 (57 ). (4.14)
=1
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X = X
—8u(2k_1/,) < ) gf(zf/t)‘
j=k—1

Letc, = n*2h(n), b, = n, a,; = 1. By Theorem 3.1, we can obtain

5w o5, (24)

j=1
By (4.2), (4.13), (4.14) and ot < 2, we have

Z yz—*h(n)z n, (mm)
i X g (S X 7)

:i Z n*"Th(n) BX2g,

< i i @) n(@)ax, ()
z<> Fr)e) (> )")

By (4.1), we have

- & a,iXyi
Z I’la_z_%h (l’l) Z (1 — 8u ( Slj/l]/tl ))]
n=1 j=1

- S tmme - (25
< Zn"“l‘}h(n) fomV{IXll(le >,uan1/’) > x} dx

Qnj nj

i |x

—'8} < 00,
+

(4.15)

(4.16)
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p&nl/’ 00

= Z 111 (n) V{IXI > ,Ltsnl/’}dx+ Zn“_l_}h(n)f VA{IX] > x}pdx
n=1

,usn]/’

© (J+1)”’

< in"_lh(n)V(le >,u€nl/t)+z - fh(n)Zf V(IXI > ') dx

n=1 n=1

<<Z a-l- 'h(n)Z]t |X| >]1/’)

n=

< DT RG V(x> M) Y e

j=1 n<j

8

8

< DTGV (X1 > 1) < e,
1

Jj=

And by (4.2), (4.13) and (4.15), we have

R R L

n=1

_ N a-1-2 Byv2 (1 _ X

) ;n h(mEX (1 g”(snl/f))

:Z Z ?h(n)EXZ(l—g,,( /))
k=1 2k-1<p<2k

k=1 Jj=k—1
N -2 e (X
:;;(2) h(2Y)Ex g](gzm)

thus (3.2), (3.6), (3.7) are satisfied. In order to prove (3.12), it remain to show that
n~t iy = 1EX,,]g,J( 1’},) — 0 as n — oo. First of all, by the properties of the slowly varying
function, we obtain |X|* 2 (|X|') T when at > 1. By (2.1), @t > 1, @ > 1 and |X|" A (1X|") T, we can get

X" h (X[
X1(1 - () < K17 (01 > o) < ) T H XD
enl/ (uen'™ " h (u'etn) 4.17)

< n—a+l/th—l (Cl’l) |X|at h (let)
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By BEX =0, (4.17), at > 1, @ > 1 and E (1X|" h (IX]")) < Cv (1X|"" h (IX]")) < oo, we have

n
X, .
—1/t ZA nj \| _ 1-1/t
n EX,; —_— n
j=1 n]g‘u (gnl/f)

N X
EXg”(snl/’)

= | — Bixg, (——
=n 8u gnl/’

N X
1-1/t
< B X ()

SR )
X1 R (XT)
(,u.snl/’)m_1 h(u'e'n)
< n'"h " (en) B (X" h (1X]")) — 0 as n — oo.

(4.18)

<n""VE|X|

Combining (4.16) and (4.18), we can get (3.12). Then Theorem 3.3 holds.
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