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Abstract: Lie symmetry analysis of differential equations proves to be a powerful tool to solve or
atleast to reduce the order and non-linearity of the equation. The present article focuses on the solution
of Generalized Equal Width wave (GEW) equation using Lie group theory. Over the years, different
solution methods have been tried for GEW but Lie symmetry analysis has not been done yet. At first,
we obtain the infinitesimal generators, commutation table and adjoint table of Generalized Equal Width
wave (GEW) equation. After this, we find the one dimensional optimal system. Then we reduce GEW
equation into non-linear ordinary differential equation (ODE) by using the Lie symmetry method. This
transformed equation can take us to the solution of GEW equation by different methods. After this,
we get the travelling wave solution of GEW equation by using the Sine-cosine method. We also give
graphs of some solutions of this equation.
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1. Introduction

Symmetry is a wonderful tool in explicating the laws of nature. One of the great stories of Lie’s
success was the initiation of a program to solve or at least to simplify the differential equation by using
the Lie group theory on the analogy of Évariste Galois’s work to solve the algebraic equations having
degrees two, three and four. But he was unable to give closed forms of roots of equations whose
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degrees are five or greater, by using only the arithmetic operation which are (+,−,÷,×, √) [1]. Lie’s
original ideas was to establish a general theory of integration of ordinary differential equation on the
similar basis as Galois and Abel did for algebraic equations.

At first the method could not attract much attention until last few decades when a revival of the
interests in Lie’s theory was observed which resulted in a significate progress. The main hinderance
was the complicated system of many differential equations which we obtain in symmetry analysis.
Today we have strong computer algebra systems like Maple and Mathematica to handle this problem.
Physical laws of nature are best governed by the exploitation of symmetries involved in the system.
Real world phenomenons can be transformed into mathematical language by using non-linear PDE’s.
The non-linear PDE’s have attracted much attention and have wide range of applications in science
and engineering like plasma waves, fluid mechanics, optics, biological systems, chemical physics and
financial systems. One such immensely popular class of equation is Non-linear Evolution Equation
(NLEE’s). Complex systems can be characterized by NLDE’s. One particularly famous NLDE is the
KdV equation derived by korteweg and de Vries [2]. It can be give in the following form,

ut + uux + uxxx = 0. (1.1)

It can be observed that this equation is a non-linear PDE in one dimension and describes the time-
dependent motion of shallow water waves. Other equation is the Regularised Long wave equation
(RLW) [3]. It is more common than KdV equation to depict the behaviour of non-linear dispersive
waves. This equation can be written as,

ut + ux + εuux − µuxxt = 0. (1.2)

Morrison et al. [4] introduced one dimensional non-linear Evolution Equation, in the given form,

ut + uux − µuxxt = 0. (1.3)

It is also known as Equal Width wave (EW) equation [5–10] derived by using both KdV and RLW
equation. Authors in [5] discussed solitary waves related to EW equation. Different methods have been
adopted to find the solution of EW equations both numerically and analytically, see for instance [5–10].
Because of soliton solution with permanent speed and form, the wave has equal width for all wave
amplitude. That’s why it is called Equal Width wave equation. Here µ is a positive parameter, x, t
denote space and time coordinate respectively, and u(x, t) represents wave amplitude with boundary
condition u → 0 as x → ±∞. In plasma physics u represents −ve of electrostatic potential and in
fluid problems, u represents wave vertical displacement of water surface [11]. Solitary wave solutions
can also be found in EW equation. Soliton is unique type of solitary waves that retain it’s shape after
colliding with other objects.

The Modified Equal Width wave (MEW) equation is derived from EW equation and it has cubic
non-linearity with dispersive wave form

ut + u2ux − µuxxt = 0. (1.4)

This equation has also been discussed on large scale recently [12–18]. Authors solved this equation
numerically in [12,18]. Some B-spline methods have been adopted to solve this equation in [13–17]. A
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generalization of EW equation also known as Generalized Equal Width wave (GEW) equation [19–23]
can be derived from EW equation in following form

ut + unux − µuxxt = 0, (1.5)

with n + 1 non linearity and dispersion wave having solitary solution, where n ε Z+. This equation
can be related with Generalized KdV equation [24] and Generalized RLW equation [25, 26]. Solitary
waves of GEW has been discussed in [19]. Raslan used collocation method to solve GEW in [20].
Some other methods also have been employed on this equation, see [21–23].

With the passage of time, application of DEs and it uses are increasing continuously. Many
numerical as well as analytical method keep on emerging to solve PDE’s. Some famous numerical
method are Finite difference method [27], Multigrid method [28], Methods of lines [29], Domain
decomposition method [30], Gradient discretization method [31], Mesh free method [32], Spectral
method [33] and Quadratic B-spline method [34] etc. Some popular analytical methods are Daraboux
transformation method [35, 36], Inverse scattering method [37, 38], Kudryashov method [39, 40],
Simplest equation method [41], Homogenous balance method [42], Tanh-coth method [43], Hirota
bilinear method [44], Jacobi elliptic function expansion method [45, 46], Sine-cosine method [47] and
Lie symmetric method [48–53]. These methods give exact solutions of the PDE’s. Many numerical
and analytical method have been used to find the solution of EW equation, MEW equation and GEW
equation. Zaki used the least square finite element method to find the numerical solution of EW
equation [54]. Elein Yusufoglu et al. used He’s variational iteration method to find the numerical
solution of EW equation [55]. G. A Gardner et al. used Galerkin method to obtain numerical solution
of EW equation [56]. B. G. Karakoc et al. used cubic B-spline lumped Galerkin method to find the
numerical solution of MEW equation [57]. Khalique et al. used Jacobi elliptic expansion method to
find the travelling wave solution of EW equation [58]. Evan et al. computed the solitary wave solution
of GEW equation by using quadratic B-spline method [59]. S. Hamdi et al. discussed the exact solution
of GEW equation [60]. Halil Zeybek obtained the numerical solution of GEW equation by using cubic
B-spline Galerkin method [61]. S. B. G. Karakoc et al. used the septic B-spline collocation method to
find the solution of GEW equation in [62] and derived numerical solution of GEW equation by using
sextic B-spline finite element method in [63]. B. G. Karakoc et al. used the finite element method to
find the numerical solution of GEW equation [64].

In this article, we find Lie symmetries and travelling wave solution of GEW equation by using
Sine-cosine method. Lie symmetry approach has not been used for GEW equation. We use this
method to reduce the complexity of GEW equation. It is worth mentioning that Lie symmetry method
is the most important approach for constructing analytical solutions of nonlinear PDEs. We prefer
to use Lie symmetry analysis because it studies the invariance of differential equations (DEs) under
a one-parameter group of transformations which transforms a solution to another new solution and
is used to reduce the order such as the number of variables of DEs; moreover, the conservation laws
can be constructed by using the symmetries of the DEs. Kumar et al. effectively used this method
for (3+1)-dimensional generalized KP equation in [48], (3+1)-dimensional KdV-type equation in [49],
(2+1)-dimensional BK equation with variable coefficient in [50] and CHKP equation in [51]. Liu et
al. used this approach to find the invariant solutions of SP equation in [52]. Chauhan et al. used this
method to find traveliing wave solutions of EW equation in [53].
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2. General method to find the Lie symmetry

We describe a method to find the symmetry of non-linear PDEs in this section. For this, we consider
the system of n− th order non-linear PDEs having p independent variable X = (x1, x2, ....., xp) ∈ Rp and
q dependent variable U = (u1, u2, ....., uq) ∈ Rq has form

∆b(X,U (n)) = 0, b = 1, 2, ..........l, (2.1)

where U (n) =∂un

∂xn .

To construct the Lie symmetry, firstly we introduce a Lie group of transformation acting on both
dependent and independent variable such as

x̃c = xc + εξc(X,U) + O(ε2), c = 1, 2, ....., p,

ũd = ud + εηd(X,U) + O(ε2), d = 1, 2, ....., q, (2.2)

where ε taken as a very small parameter, usually taken as ε <<< 1 and ξc and ηd are infinitesimal
generators with respect to the independent and dependent variable respectively.
The vector field of above transformation is

V =

p∑
c=1

ξc(X,U)
∂

∂xc +

q∑
d=1

ηd(X,U)
∂

∂ud . (2.3)

Thus the n − th prolongation of vector field v is also the vector field, which is

pr(n)V = V +

q∑
r=1

∑
S

ηS
r (X,U (n))

∂

∂ur
S
, (2.4)

defined on the space M(n) ⊂ X × U (n), where S = (s1, s2, ....sk), with 1 ≤ sk ≤ p, 1 ≤ k ≤ n, here

ηS
r (x, u(n)) = DS (ηr −

p∑
c=1

ξcur
c) +

p∑
c=1

ξcur
S ,c, (2.5)

where ur
c=

∂ur

∂xc , and ur
s,c=

∂ur
s

∂xc , where the total derivative Dx and Dy is defined as

DxH =
∂H
∂x

+ ux
∂H
∂u

+ uxx
∂H
∂ux

+ uxy
∂H
∂uy

+ ......., (2.6)

DyH =
∂H
∂y

+ uy
∂H
∂u

+ uxy
∂H
∂ux

+ uyy
∂H
∂uy

+ .......,

with condition

Pr(n)v[∆b(X,U (n))] = 0, b = 1, 2, ..........l, whenever ∆b(X,U (n)) = 0. (2.7)
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3. Lie symmetry of Generalized Equal Width wave equation

Taking one parameter local Lie group of transformation having variable x, t and u are as follows:

x∗ = x + ες(t, x, u) + O(ε2),
t∗ = t + εk(t, x, u) + O(ε2), (3.1)
u∗ = u + εϕ(t, x, u) + O(ε2),

where ε ∈ R is the group parameter. The vector field v of equation is defined as

V = ς(t, x, u)
∂

∂x
+ k(t, x, u)

∂

∂t
+ ϕ(t, x, u)

∂

∂u
. (3.2)

The third order prolongation is defined as:

Pr(3)V = V+ϕx ∂

∂ux
+ϕt ∂

∂ut
+ϕxx ∂

∂uxx
+ϕxt ∂

∂uxt
+ϕtt ∂

∂utt
+ϕxxx ∂

∂uxxx
+ϕxxt ∂

∂uxxt
+ϕxtt ∂

∂uxtt
+ϕttt ∂

∂uttt
. (3.3)

Now by applying the third order prolongation to the Eq (1.5), we get invariance condition

ϕt + nun−1ϕux + unϕx − µϕxxt = 0, (3.4)

by putting the value of coefficients [ϕt], [ϕx] and [ϕxxt] in above equation

ϕt = Dt(ϕ − ςux − kut) + ςuxt + kutt,

ϕx = Dx(ϕ − ςux − kut) + ςuxt + kutt, (3.5)

ϕxxt = DxDxDt(ϕ − ςux − kut) + ςuxxxt + kuxxtt,

where Dt and Dx are total derivative. By applying the third order prolongation and use the value of ϕt,
ϕx and ϕxxt, we get

nun−1ϕux − unςuu2
x − unkuuxut + unϕuux − unςxux − unkxut

+unϕx − ςuuxut − ςtux − kuu2
t − ktut + ϕuut + ϕt + 3µςuuuxuxxut

+4µkuuuxutuxt − µϕxxt + 2µkuxuxutt + µςuuuu3
xut + µkuuuu2

xu
2
t

+µkuutu2
xut − µϕuuuu2

xut + 3µςuuu2
xuxt + µkuuu2

xutt + 3µςutuxuxx

+2µkutuxuxt − 2µϕuuuxuxt + µkuuuxxu2
t + µkutuxxut − µϕuuuxxut

+3µςuuxxuxt + µkuuxxutt + µςuuxxxut + 3µςuuxuxxt + 2µkuuxxtut

+2µkuuxuxtt + 4µkuxutuxt + 2µςuuxu2
xut + 2µkuuxuxu2

t + 2µkuxtuxut

+µςxxuuxut − 2µϕuuxuxut + 4µςuxuxuxt + 2µςuxuxxut + µςuutu3
x

−µϕuutu2
x − µϕutuxx + 2µkuu2

xt + µςtuxxx + µktuxxt − µϕuuxxt

+2µςxuxxt + 2µkxuxtt + µςxxtux + µkxxtut − 2µϕuxtux − µϕuxxut

+2µςxtuxx + 2µkxtuxt − 2µϕuxuxt + µςxxuxt + µkxxutt + 2µςuxtu2
x

+µkuxxu2
t = 0.

(3.6)
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By putting the value of ut and put the coefficients of various monomial equal to zero, we get the system
of equations in term of partial derivatives, which is

ux : nun−1ϕ − unςx + unkt − 2µϕuxt + µunϕuxx = 0,
uxxt : 2µςx − µ

2ϕuxx = 0,
uxt : −2µϕux + µςxx = 0,

uxuxt : ϕuu = 0, (3.7)
uxx : ϕut = 0,

constant : ϕt + unϕx − µϕxxt = 0.

We can solve this system manually or by using software Mathematica or Maple, so by solving the
system we get infinitesimal

ς(t, x, u) = C3, k(t, x, u) = C1t + C2, ϕ(t, x, u) = −
1
n

C1u, (3.8)

where C1, C2 and C3 are arbitrary constants. As a result, three vector fields spanned the Lie algebra of
infinitesimal generators of Eq (1.5) .

H1 = t
∂

∂t
−

1
n

u
∂

∂u
,

H2 =
∂

∂t
,

H3 =
∂

∂x
. (3.9)

Thus the one-parameter Lie group Gi, (i = 1, 2, 3) generated by the three vector fields H1, H2 and H3

which are

G1 = (t, x, u)→ (teε , x, ue−
1
n ε),

G2 = (t, x, u)→ (t + ε, x, u),
G3 = (t, x, u)→ (t, x + ε, u), (3.10)

where ε ∈ R is the group parameter.
Since each group Gi is a symmetric group, so if u = h(t, x) is a solution of (1.5), so are the functions

u(1) = e−
1
n εh(te−ε , x),

u(2) = h(t − ε, x),
u(3) = h(t, x − ε). (3.11)
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3.1. Optimal system of one-dimensional subalgebras

An optimal system of one parameter Lie group is the collection of all inequivalent one parameter
Lie group that any other subgroup is conjugate to one of group in the collection. To compute the
optimal system, first we compute the commutator table.

The commutator table of Hi, (i = 1, 2, 3) is

Table 1. Commutator table.

∗ H1 H2 H3

H1 0 −H2 0

H2 H2 0 0

H3 0 0 0

Now we proceed to compute the adjoint table.
The adjoint table for Hi, (i = 1, 2, 3) is

Table 2. Adjoint table.

[ad j] H1 H2 H3

H1 H1 eεH2 H3

H2 H1 − εH2 H2 H3

H3 H1 H2 H3

Consider a generator of the form

H = a1H1 + a2H2 + a3H3, (3.12)

where a1, a2 and a3 are arbitrary constant. We solve it by using different cases.
Case 1:
Let a1 , 0 and a1 = 1, then

H = H1 + a2H2 + a3H3. (3.13)

By acting Ad jea2 H2 on H, the coefficient a2 disappear.

H́ = H1 + a3H3. (3.14)

Subcase 1: If a3 < 0, then
H́ = H1 − H3. (3.15)
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Subcase 2: If a3 > 0, then
H́ = H1 + H3. (3.16)

Case 2:
Let a1 = 0 and a2 = 1, then

H = H2 + a3H3. (3.17)

Subcase 1: If a3 < 0, then
H = H2 − H3. (3.18)

Subcase 2: If a3 > 0, then
H = H2 + H3. (3.19)

Case 3:
Let a1 = 0, a2 = 0 and a3 = 1, then

H = H3. (3.20)

Case 4:
Let a3 = 0, then

H = a1H1 + a2H2. (3.21)

By acting Ad j
e

a2
a1

H2 on H, we get

H́ = a1H1. (3.22)

Case 5:
Let a1 = a3 = 0 and a2 , 0, then

H = a2H2. (3.23)

So by using the optimal system method, we get the optimal system of Eq (1.5), which is •H1

•H2

•H3

•H1 ± H3

•H2 ± H3.

3.2. Lie symmetry reduction of Generalized Equal Width wave equation

In this section, we use the Lie symmetry method to find the exact solution of GEW equation. First
by using the Lie symmetry, we convert PDEs into ODEs, then by using any appropriate method, we
get the exact solution of ODEs. To obtain reduction form, we use subalgebra H1, H2, H3, H1 + H3 and
H2 + H3.
Case 1:
The characteristic equation for H1 = −1

nu ∂
∂u + t ∂

∂t is

dx
0

=
dt
t

=
du
−1
n u

. (3.24)

From this, we have

x = r, s = ut
1
n , (3.25)
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where r and s are constant of integration. So

u =
F(r)

t
1
n

, and (3.26)

ut = −
1
n

F(r)

t
1
n +1

, ux =
F′(r)

t
1
n

, uxxt = −
1
n

F′′(r)

t
1
n +1

.

So by putting the value of ut, ux and uxxt in Eq (1.5), we get

− F(r) + nFn(r)F′(r) + µF′′(r) = 0, (3.27)

which is a 2nd order non-linear ODE, which we can solved numerically.
Case 2:
The characteristics equation for H2 = ∂

∂t is

dx
0

=
dt
1

=
du
0
. (3.28)

From this, we have
x = r, u = s, (3.29)

where r and s are constant of integration. So

u = F(r), and (3.30)

ut = 0, ux = F′(r), uxxt = 0. (3.31)

So by putting the value of ut, ux and uxxt in Eq (1.5), we get

F′(r) = 0, and (3.32)

F(r) = c1, (3.33)

where c1 is the constant of integration.
Case 3:
The characteristics equation for H3 = ∂

∂x is

dx
1

=
dt
0

=
du
0
. (3.34)

So, we have
t = r, u = s, (3.35)

where r and s are constant of integration. Thus we have

u = F(r), and (3.36)

ut = F′(r), ux = 0, uxxt = 0. (3.37)
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By putting the value of ux,ut and uxxt in Eq (1.5), we have

F′(r) = 0, (3.38)

which implies that
F(r) = c2, (3.39)

where c2 is the constant of integration.
Case 4:
The characteristics equation for H1 + H3 = ∂

∂x + t ∂
∂t −

1
nu ∂

∂u is

dx
1

=
dt
t

=
du
−1
n u

. (3.40)

So we have
r =

ex

t
, s = ut

1
n , (3.41)

where r and s are constant of integration. Thus we have

u =
F(r)

t
1
n

, and (3.42)

ut = −[
F(r) + nrF′(r)

nt
1
n +1

], ux =
rF′(r)

t
1
n

, uxxt = −[
nr3F′′′(r) + (3n + 1)r2F′′(r) + (n + 1)rF′(r)

nt
1
n +1

].

(3.43)
By putting the value of ux, ut and uxxt in Eq (1.5), we get

− F(r) − nrF′(r) + nrFn(r)F′(r) + µ(nr3F′′′(r) + (3n + 1)r2F′′(r) + (n + 1)rF′(r)) = 0, (3.44)

which is a 3rd order non-linear ODE, which we can solve numerically.
Case 5:
The characteristic equation for H2 + H3 = ∂

∂t + ∂
∂x is

dx
1

=
dt
1

=
du
0
. (3.45)

So, we have
r = x − t, u = s, (3.46)

where r and s are constant of integration. Thus we have

u = F(r), and (3.47)

ut = −F′(r), ux = F′(r), uxxt = −F′′′(r). (3.48)

By putting the value ut, ux and uxxt in Eq (1.5), we get a 3rd order non-linear ODE.

− F′(r) + Fn(r)F′(r) + µF′′′(r) = 0. (3.49)
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4. Travelling wave solution of Generalized Equal Width wave equation by using Sine-cosine
method

Travelling wave: A wave in which medium move in the direction of propagation of wave is called
travelling wave. We can find the travelling wave solution of those equation which propagation the wave
property. The wave occur in the form of u(x, t)= f (x − ct), where c is the wave speed which move in
negative direction as c < 0 and in positive direction as c > 0.

Procedure:
We consider the non-linear PDE’s in the form

P(u, ux, ut, uxx, uxt, utt, ..........) = 0, (4.1)

where u(x, t) is the travelling wave solution of non-linear PDE’s. The wave variable ξ = x − ct is used
to obtain the travelling wave solution so that u(x, t) = u(ξ), where ξ = x − ct.
This allow us to make the following modification:

∂

∂t
= −c

d
dξ
,

∂2

∂t2 = c2 d2

dξ2 ,
∂

∂x
=

d
dξ
,

∂2

∂x2 =
d2

dξ2 . (4.2)

The above equation was used to transfer PDEs to ODEs.

Q(u,−cu′, u′, u′′, c2u′′, ........) = 0, (4.3)

where u′ = du
dξ .

Equation (4.3) is then integrated till all terms contain derivative. For the sake of simplicity, the
integration constant has been set to zero.

The solution of Sine-cosine method is in the forms

u(t, x) = λ cosβ(ξµ), |ξ| ≤
π

2µ
, (4.4)

and
u(t, x) = λ sinβ(ξµ), |ξ| ≤

π

µ
, (4.5)

where λ and β are parameters and µ is the wave number and c is the wave speed. From Eqs (4.4) and
(4.5), we have

(un)′(ξµ) = −nβλnµ cosnβ−1(ξµ) sin(ξµ), (4.6)
(un)′′(ξµ) = −n2µ2β2λn cosnβ(ξµ) + nµ2λnβ(nβ − 1) cosnβ−2(ξµ),

and

(un)′(ξµ) = nβλnµ sinnβ−1(ξµ) cos(ξµ), (4.7)
(un)′′(ξµ) = −n2µ2β2λn sinnβ(ξµ) + nµ2λnβ(nβ − 1) sinnβ−2(ξµ).

By substitute Eqs (4.6) and (4.7) into (4.3), we get equation in the form of sinR(ξµ) or cosR(ξµ). Then
to compute the parameter, we compare the exponent of each pair and then coefficient of equal power
of cosk(ξµ) or sink(ξµ). Then we get the system of equation in µ, β and λ that will be determined.
The Sine-cosine method reduce the size of computational work than any other method which we have
mention before.
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4.1. Implementation of Sine-cosine method on Generalized Equal Width wave equation

The GEW equation is
ut + unux − buxxt = 0, (4.8)

here b is a parameter.
By using u(x, t) = u(ξ), ξ = x − ct. Equation (4.8) is transferred to non-linear ODE

− cu′ + unu′ + cbu′′′ = 0. (4.9)

Integrating (4.9) one time and use the constant of integration to be zero for the sake of simplicity, we
find that

− cu +
un+1

n + 1
+ cbu′′ = 0. (4.10)

By using u(x, t) = λ cosβ(ξµ) into (4.10), we get

− cλ cosβ(ξµ) +
1

n + 1
λn+1 cos(n+1)β(ξµ) + cbµ2λβ(β − 1) cos(β−2)(ξµ) − cbβ2µ2λ cosβ(ξµ) = 0. (4.11)

By comparing the exponent of each pair and coefficient of equal power of cosk(ξµ), we get system of
algebraic equation in β, µ and ξ, which is

β − 1 , 0,
β(n + 1) = β − 2, (4.12)
−cλ − cbβ2µ2λ = 0,

1
n + 1

λn+1 = −cbµ2λβ(β − 1).

By figuring out the system, we get

β =
−2
n
, µ =

√
1
−b

(
n
2

), λ = [
c
2

(n + 1)(n + 2)]
1
n , (4.13)

by putting the value of β, µ and λ in (4.4), we get the following periodic solution for b < 0 as shown in
Figure 1.

u1(x, t) = [
c
2

(n + 1)(n + 2) sec2(

√
1
−b

(
n
2

)(x − ct))]
1
n , |

√
1
−b

(
n
2

)(x − ct)| <
π

2
. (4.14)

When we take b > 0, we get the following soliton solution as shown in Figure 2.

u2(x, t) = [
c
2

(n + 2)(n + 1)sech2(

√
1
b

(
n
2

)(x − ct))]
1
n , 0 <

√
1
b

(
n
2

)(x − ct) < π. (4.15)

If we put ansatz u(x, t) = λ sinβ(µξ), then for b < 0, we get periodic solution as shown in
Figure 3.

u3(x, t) = [
c
2

(n + 2)(n + 1) csc2(

√
1
−b

(
n
2

)(x − ct))]
1
n . (4.16)

And for b > 0, we have soliton solution as shown in Figure 4.

u4(x, t) = [
c
2

(n + 2)(n + 1)csch2(

√
1
b

(
n
2

)(x − ct))]
1
n . (4.17)
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5. Graphical representation of some solutions

In this section we present the graphs of solution of the GEW equation. In Figure 1, we obtain
periodic solution of GEW which is given in (4.14). It has wave speed value c = 1.

Figure 1. Periodic solution, u1(x, t) of GEW with wave speed c = 1, b = −1, n = 2 and
x = −4..4, t = −4..4.

In the Figure 2, we give a soliton solution of GEW equation for given values of parameters c = 1,
b = 1, n = 2 and x = −6..6, t = −6..6.

Figure 2. Soliton solution u2(x, t) of GEW with wave speed c = 1, b = 1, n = 2 and
x = −6..6, t = −6..6.

In the Figure 3, we give a periodic solution of GEW for given values of parameters c = 1, b = −1,
n = 2 and x = −6..6, t = −6..6.
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Figure 3. Periodic solution u3(x, t) of GEW with wave speed c = 1, b = −1, n = 2 and
x = −6..6, t = −6..6.

In the Figure 4, we give a soliton solution of GEW equation for given values of parameters c = 1,
b = 1, n = 2 and x = −6..6, t = −6..6.

Figure 4. Soliton solution u4(x, t) of GEW with wave speed c = 1, b = 1, n = 2 and
x = −6..6, t = −6..6.

6. Conclusions

In the present article, we discussed the solution of Generalized Equal Width wave equation. We
analysed the solution of GEW using two methods. At the first step transformed this PDE into ODE
using Lie symmetry analysis. We used Lie symmetry analysis to reduce the complexity of the equations
actually. It is worth-mentioning that GEW equation has not been discussed from the point of view of
Lie symmetries. In the second step, we also used method of Sine-cosine to evaluate the exact solutions
of this equation. We also analyzed the graphs of the solutions and found how they behave depending
upon the parameters involved.

AIMS Mathematics Volume 6, Issue 11, 12148–12165.



12162

Acknowledgment

The fourth author thanks Prince Sultan University for funding this paper through the TAS research
group.

Conflict of interest

The authors declare no conflict of interest.

References

1. R. Gilmore, Lie Groups, Physics and Geometry: An Introduction for Physicists, Engineers and
Chemists, Cambridge U. Press, New York, 2008.

2. T. Xiang, A summary of the Korteweg-de Vries equation, 2015.

3. H. N. Hassan, H. K. Saleh, The solution of the regularized long wave equation using the fourier
Leap-frog method, Z. Naturforsch. A, 65 (2010), 268–276.

4. P. J. Morrison, J. D. Meiss, J. R. Cary, Scattering of regularized-long-wave solitary waves, Physica
D, 11 (1984), 324–336.

5. S. Dhawan, Turgut Ak, G. Apaydin, Algorithms for numerical solution of the Equal Width wave
equation using multi-quadric quasi-interpolation method, Int. J. Mod. Phys. C, 30 (2019), 17.

6. L. R. T. Gardner, G. A. Gardner, F. A. Ayoub, N. K. Amein, Simulations of the EW undular bore,
Commun. Numer. Meth. En., 13 (1997), 583–592.

7. M. G. Rani, S. Padmasekaran, T. Shanmugapriya, Symmetry reductions of (2+1)-dimensional
Equal Width wave equation, Int. J. Appl. Comput. Math., 12 (2017).

8. A. Esen, A numerical solution of the Equal Width wave equation by a Lumped Galerkin method,
Appl. Math. Comput., 168 (2005), 270–282.

9. B. Saka, A finite element method for Equal Width wave equation, Appl. Math. Comput., 175 (2006),
730–747.

10. I. Dag, B. Saka, A cubic B-spline collocation method for the EW equation, Math. Comput. Appl.,
9 (2004), 381–392.

11. S. K. Bhowmik, S. B. G.Karakoc, Numerical solutions of the Generalized Equal Width wave
equation using Petrov-Galerkin method, Appl. Anal., 100 (2019), 714–734.

12. R. Arora, M. J. Siddiqui, V. P. Singh, Solution of the Modified Equal Width wave equation, its
variant and non-homogeneous Burger’s equation by RDT Method, Am. J. Comput. Appl. Math., 1
(2011), 53–56.

13. S. T. Mohyud-Din, A. Yildirim, M. E. Berberler, M. M. Hosseini, Numerical solution of Modified
Equal Width wave equation, World Appl. Sci. J., 8 (2010), 792–798.

14. T. Geyikli, S. B. G. Karakoc, Septic B-spline collocation method for the numerical solution of the
Modified Equal Width wave equation, Appl. Math., 2 (2011), 739–749.

AIMS Mathematics Volume 6, Issue 11, 12148–12165.



12163

15. T. Geyikli, S. B. G. Karakoc, Subdomain finite element method with quartic B-splines for the
Modified Equal Width wave equation, Comput. Math. Math. Phys., 55 (2015), 410–421.

16. M. Merdan, A. Yildirim, A. Gokdogan, Numerical solution of time-fraction Modified Equal Width
wave equation, Eng. Comput., 29 (2012), 766–777.

17. A. Esen, A Lumped Galerkin method for the numerical solution of the Modified Equal Width wave
equation using quadratic B-splines, Int. J. Comput. Math., 83 (2006), 449–459.

18. B. Saka, Algorithms for numerical solution of the Modified Equal Width wave equation using
collocation method, Math. comput. model., 45 (2007), 1096–1117.

19. M. Yaseer, A. Essa, Multigrid method for solving the Generalized Equal Width wave equation, Int.
J. Math. Arch., 8 (2017).

20. K. R. Raslan, Collocation method using cubic B-spline for the Generalized Equal Width wave
equation, Int. J. Simul. Process Model., 2 (2006), 37–44.

21. N. Taghizadeh, M. Mirzazadeh, M. Akbari, M. Rahimian, Exact soliton solutions for Generalized
Equal Width wave equation, Math. Sci. Lett., 2 (2013), 99–106.

22. H. Zeybek, B. G. Karakoc, Application of the collocation method with B-spline to the GEW
equation, Electron. Trans. Numer. Anal., 46 (2017), 71–88.

23. T. Roshan, A Petrov-Galerkin method for solving the Generalized Equal Width wave (GEW)
equation, J. Comput. Appl. Math., 235 (2011), 1641–1652.

24. L. R. T. Gardner, G. A. Gardner, T. Geyikli, The boundary forced MKdV equation, J. Comput.
Phys., 113 (1994), 5–12.

25. D. Kaya, A numerical simulation of solitary-wave solutions of the generalized regularized long
wave equation, Appl. Math. Comput., 149 (2004), 833–841.

26. D. Kaya, S. M. El-Sayed, An application of the decomposition method for the Generalized KdV
and RLW equations, Chaos Soliton. Fract., 17 (2003), 869–877.

27. S. Kumar, Finite difference method: A brief study, SSRN Elect. J., 6 (2014).

28. S. C. Shiralashetti, M. H. Kantli, A. B. Deshi, A new wavelet multigrid method for the numerical
solution of elliptic type differential equations, Alex. Eng. J., 57 (2018), 203–209.

29. M. N. O. Sadiku, C. N. Obiozor, A simple introduction to the method of lines, Int. J. Elec. Eng.
Edu., 37 (2000), 282–296.

30. V. Dolean, P. Jolivet, F. Nataf, An Introduction to Domain Decomposition Methods: Algorithms,
Theory and Parallel Implementation, Siam Press Manag. Co. Ltd., 2016.

31. J. Droniou, R. Eymard, T. Gallouet, R. Herbin, The gradient discretisation method for linear
advection problems, Comput. Methods Appl. Math., 20 (2020), 437–458.

32. Z. Jiang, Lingde Su, T. Jiang, A Meshfree method for numerical solution of non-homogeneous
time-dependent problems, Abstr. Appl. Anal., 11 (2014).

33. N. Rai, S. Mondal, Spectral methods to solve non-linear problems: A review, Part. Diff. Equ. Appl.
Math., 4 (2021).

34. F. Cheng, X. Wang, B. A. Barsky, Quadratic B-spline curve interpolation, Comput. Math., 41
(2001), 39–50.

AIMS Mathematics Volume 6, Issue 11, 12148–12165.



12164

35. Q. Zhao, L. Wu, Darboux transformation and explicit solutions to the generalized TD equation,
Appl. Math. Lett., 67 (2017), 1–6.

36. R. Li, X. Geng, B. Xue, Darboux transformations for a matrix long-wave-short-wave equation and
higher-order rational rogue-wave solutions, Appl. Math. Lett., 43 (2020), 948–967.

37. M. A. Ablowitz, P. A. Clarkson, Solitons, Non-linear Evolution Equations and Inverse Scattering,
Cambridge Uni. Press, 1991.

38. W. X. Ma, Inverse scattering for non-local reverse-time non-linear schrödinger equations, Appl.
Math. Lett., 102 (2020).

39. F. Mahmud, Md Samsuzzoha, M. A. Akbar, The generalized Kudryashov method to obtain exact
traveling wave solutions of the Phi-four equation and the fisher equation, Results Phys., 7 (2017),
4296–4302.

40. M. S. Islam, K. Khan, A. H. Arnous, Generalized Kudryashov method for solving some (3+1)-
dimensional non-linear evolution equations, New Trend Math. Sci., 3 (2015), 46–57.

41. T. Motsepa, C. M. Khalique, Conservation laws and solutions of a generalized coupled (2+1)-
dimensional Burger’s system, Comput. Math., 74 (2017), 1333–1339.

42. M. L. Wang, Y. B. Zhou, Z. B. Li, Application of a homogeneous balance method to exact solutions
of non-linear equations in mathematical physics, Phys. Lett. A, 216 (1996), 67–75.

43. A. M. Wazwaz, The tanh-coth method for solitons and kink solutions for non-linear parabolic
equations, Appl. Math. Comput., 188 (2007), 1467–1475.

44. R. Hirota, The Direct Method in Soliton Theory, Cambridge Uni. Press, 2004.

45. Z. Y. Zhang, Jacobi elliptic function expansion method for the Modified Korteweg-de Vries-
Zakharov-Kuznetsov and the Hirota equations, Phys. Lett. A, 60 (2001), 1384–1394.

46. I. Simbanefayi, C. M. Khalique, Travelling wave solutions and conservation laws for the Korteweg-
de Vries-Bejamin-Bona-Mahony equation, Results Phys., 8 (2018), 57–63.

47. A. M. Wazwaz, Exact solutions for the ZK-MEW equation by using the tanh and sine−cosine
methods, Int. J. Comput. Math., 82 (2005), 699–708.

48. S. Kumar, W. X. Ma, A. Kumar, Lie symmetries, optimal system and group-invariant solutions of
the (3+1)-dimensional generalized KP equation, Chin. J. Phys., 69 (2021), 1–23.

49. S. Kumar, D. Kumar, A. M. Wazwaz, Lie symmetries, optimal system, group-invariant solutions
and dynamical behaviors of solitary wave solutions for a (3+1)-dimensional KdV-type equation,
Eur. Phys. J. Plus, 136 (2021).

50. S. Kumar, L. Kaur, M. Niwas, Some exact invariant solutions and dynamical structures of
multiple solitons for the (2+1)-dimensional Bogoyavlensky-Konopelchenko equation with variable
coefficients using Lie symmetry analysis, Chin. J. Phys., 71 (2021), 518–538.

51. S. Kumar, M. Niwas, I. Hamid, Lie symmetry analysis for obtaining exact soliton solutions of
generalized Camassa-Holm-Kadomtsev-Petviashvili equation, Int. J. Mod. Phys. B, 35 (2021).

52. H. Liu, J. Li, Lie symmetry analysis and exact solutions for the short pulse equation, non-linear
analysis: Theory, methods and applications, Chin. J. of Phys., 71 (2009), 2126–2133.

AIMS Mathematics Volume 6, Issue 11, 12148–12165.



12165

53. A. Chauhan, R. Arora, A. Tomar, Lie symmetry analysis and traveling wave solutions of Equal
Width wave equation, Proyecciones, 39 (2020), 179–198.

54. S. I. Zaki, A least-squares finite element scheme for the EW equation, Comput. Methods Appl.
Mech. Eng., 189 (2000), 587–594.

55. E. Yusufoglu, A. Bekir, Numerical simulation of Equal Width wave equation, Comput. Math., 54
(2007), 1147–1153.

56. L. R. T Gardner, G. A Gardner, Solitary waves of the Equal Width wave equation, J. Comput.
Phys., 101 (1992), 218–223.

57. S. B. G. Karakoc, T. Geyikli, Numerical solution of the Modified Equal Width wave equation, Int.
J. Diff. Equ., 15 (1992).

58. C. M. Khalique, K. Plaatjie, I. Simbanefayi, Exact solutions of Equal Width equation and its
conservation laws, Open Phys., 17 (2019), 505–511.

59. D. J. Evans, K. R. Raslan, Solitary waves for the Generalized Equal Width (GEW) equation, Int. J.
Comput. Math., 82 (2005), 445–455.

60. S. Hamdi, W. H. Enright, W. E. Schiesser, J. J. Gottlieb, Exact solutions of the Generalized Equal
Width wave equation, Int. Conf. Comput. Sci. Appl., 2668 (2003), 725–734.

61. S. B. G. Karakoc, H. Zeybek, A cubic B-spline Galerkin approach for the numerical simulation of
the GEW equation, Stat. Optim. Inf. Comput., 4 (2016), 30–41.

62. S. B. G. Karakoc, H. Zeybek, A septic B-spline collocation method for solving the Generalized
Equal Width wave equation, Kuwait J. Sci., 43 (2016), 20–31.

63. S. B. G. Karakoc, K. Omrani, D. Sucu, Numerical investigations of shallow water waves via
Generalized Equal Width (GEW) equation, Appl. Numer. Math., 162 (2021), 249–264.

64. S. B. G. Karakoc, A Numerical analysing of the GEW equation using finite element method, J. Sci.
Arts, 2 (2019), 339–348.

© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 11, 12148–12165.

http://creativecommons.org/licenses/by/4.0

	Introduction
	General method to find the Lie symmetry
	Lie symmetry of Generalized Equal Width wave equation
	Optimal system of one-dimensional subalgebras 
	Lie symmetry reduction of Generalized Equal Width wave equation

	Travelling wave solution of Generalized Equal Width wave equation by using Sine-cosine method
	Implementation of Sine-cosine method on Generalized Equal Width wave equation

	Graphical representation of some solutions
	Conclusions

