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1. Introduction

Recently, fractional calculus has gained consideration in pure and applied analysis due to its
advancement in bifurcation, chaos, random walks, image encryption, chaotic maps, visco-elastic
materials, electrodynamics, hydrodynamics, physics, biology, and control theory, see [1–16]. As a
result, mathematicians are becoming intensely interested in searching for the applications of
fractional derivative/integral operators in partial differential equations [17–33] and integral
equations/inequalities [34–44]. Accordingly, several definitions of fractional derivatives and their
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integral transforms are widely discussed in [45–49].
In this paper, we will deal with the following multi-term time-fractional diffusion equation (TFDE)

HDν1,ω1
0+,t

u(t, x) +

n∑
j=2

m j
HDν j,ω j

0+,t
u(t, x) = uxx(t, x) + H(t, x), (t, x) ∈ (0,T ) × (0, π), (1.1)

subject to the boundary conditions

u(t, 0) = 0 = u(t, π), t ∈ (0,T ) (1.2)

and initial conditions

lim
t→0

J(1−ν j)(1−ω j)
0+,t

u(t, x) = jρ(x), j = 1, 2, ..., n, n ∈ N, x ∈ (0, π), , (1.3)

where HDν j,ω j

0+,t
stands for the Hilfer fractional derivatives (HFDs) in time variable of orders ν j, 0 <

νn < ... < ν2 < ν1 < 1 and type ω j, 0 ≤ ωn ≤ ... ≤ ω2 ≤ ω1 ≤ 0, m > 0, Ω := (0,T ) × (0, π)
and J(1−ν j)(1−ω j)

0+,t
denotes the Riemann-Liouville fractional (RLF) integrals in time variable of orders

(1 − ν j)(1 − ω j), j = 1, 2, ..., n, n ∈ N respectively.
We are going to discuss both problems, that are a direct problem where H(t, x) = f (t, x) is a known

function of time and space, and an inverse source term where H(t, x) = f (x) is an unknown function of
space only.

Let us provide a brief overview of the importance of considering direct problems (DPs) and inverse
problems (IPs) for fractional diffusion equations (FDEs). Al-Musalhi et al. [51] studied DP and ISP of
a fractional diffusion equation with regularized Caputo-like counterpart of a hyper-Bessel differential
operator. Kirane et al. [52] examined TFDE’s DP and IP in two dimensions and explained possible
results of existence and uniqueness. Liu et al [53] calculated direct and inverse Cauchy problems by
applying multiple-scale radial basis function method. Hu et al. [54] considered DP and IP for
electromagnetic scattering by a doubly periodic structure with a partially coated dielectric. The
authors [55] of the paper investigated at the DP and IPs of solving well-posed solvability for an
abstract differential equation with Hadamard fractional derivatives. Turner et al. [56] studied DP and
IP to estimating those parameters through computational techniques for a multi-term TFDE. For a
space-time FDE, Ali et al. [57] reported two IPs in which the capturing of space-dependent and
time-dependent source term. Tarar et al. [58] studied the IP of the determination of an uncertain
source term for a space-time fractional differential equation (FDE).

An IP of identifying time-dependent source term for a parabolic TFDE has been proposed by
Slodicka [59] whenever over-specified data is provided at the boundary of the spatial domain. Malik
et al. [60] considered two IPs of recovering space-dependent and time-dependent source-term
temporal variable for a fourth-order time (FDE). Karimov at al. [61] is discussed IPs in which
identification of time-dependent source-term for higher order multi-term time fractional partial
differential equation (PDE) involving Caputo Fabrizo derivative. Karimov [62] calculated an IP of
investigating a source term for a semi-linear time-fractional telegraph equation. The total energy
source has a temporal dimension for an IP of recovering of the space-time FDE established by Ali et
al. [63]. Rundell et al. [64] considered an IP of determination of non-linear boundary conditions for a
FDE. In [65], Sun et al. presented an IP for collectively extracting diffusion intensity and source- term
for a multi-term TFDE.
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In the next section we presented preliminaries, multinomial Mittag-Leffler function (in short
MMLF) and spectral problem. We discussed the formal solution, existence, uniqueness and stability
result for the direct problem in the next section. In the next section we presented the formal solution,
existence, uniqueness and stability result for the inverse source problem. In the next section, we
presented some particular cases. We also concluded our paper in the last section.

2. Preliminaries and spectral problem

For the given framework (1.1)-(1.2), we will present some basic definitions from FC, properties,
and Lemma’s related to MMLF and spectral problem.

Definition 2.1. [66] Let h ∈ L1
loc([a, b]),−∞ < a < z < b < ∞ be a locally integrable real-valued

function. The left and right sided RLF integral of order ξ > 0 are defined as

Jξa+,zh(z) :=
1

Γ(ξ)

∫ z

a
(z − τ)ξ−1h(τ) dτ,

and

Jξb−,zh(z) :=
1

Γ(ξ)

∫ b

z
(τ − z)ξ−1h(τ) dτ,

respectively.

Definition 2.2. [67] Let h ∈ L1([a, b]),−∞ < a < z < b < ∞ and h ∗ g(1−ξ)(1−η) ∈ AC([a, b]). The HFD
of order ξ, 0 < ξ < 1 and type η, 0 ≤ η ≤ 1 is defined as

HDξ, η
a+,zh(z) :=

(
Jη(1−ξ)

a+,z
d
dz

J(1−ξ)(1−η)
a+,z h

)
(z),

where gξ = zξ−1/Γ(ξ) and “ ∗ ” indicates integral convolution stated as

(h ∗ g)(z) =

∫ z

0
h(τ)g(z − τ)dτ.

The HFD interpolates both the RLF and the Caputo fractional (CF) derivatives.
• For η = 0, the HFD becomes the RLFD, i.e.,

Dξ,0
a+,zh(z) =

d
dz

J(1−ξ)
a+,z h(z) := RLDξ

a+,zh(z).

In this case the initial conditions (1.3) reduce to the following condition

lim
t→0

J(1−ν1)
0+,t

u(t, x) = 1ρ(x), x ∈ (0, π).

• For η = 1, the HFD becomes the Caputo fractional derivative, i.e.,

Dξ,1
a+,zh(z) = J1−ξ

a+,z
d
dz

h(z) := CDξ
a+,zh(z).

In this case the initial conditions (1.3) reduce to one condition, i.e., u(x, 0) = 1ρ(x), x ∈ (0, π).
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Lemma 2.3. [66] Let hi be a sequence of functions defined on (a, b] for each i ∈ N, such that

(1) HDξ,η
a+,zhi(z) exists ∀i ∈ N, z ∈ (a, b],

(2) both series
∞∑

i=1

hi(z) and
∞∑

i=1

HDξ,η
a+,zhi(z) are uniformly convergent on the interval [a + ε, b] for any

ε > 0.
Then,

HDξ,η
a+,z

∞∑
i=1

hi(z) =

∞∑
i=1

HDξ,η
a+,zhi(z), 0 < ξ ≤ η < 1, a < z < b.

2.1. Mittag-Leffler type functions

In this subsection, we will define a MMLF and some of its important estimates.

Definition 2.4. [68] For η > 0, ξi > 0, zi ∈ C, i = 1, 2, ..., n, n ∈ N, the MMLF is stated as

E(ξ1,ξ2,...,ξn),η(z1, z2, ..., zn) :=
∞∑

k=0

∑
l1+l2+...+ln=k
l1≥0,...,lm≥0

(k; l1, ..., ln)
Πn

i=1zli
i

Γ

(
η +

n∑
i=1

ξili

) ,

where (k; l1, ..., ln) =
k!

l1! × ... × ln!
.

Remark 1. For n = 2 MMLF reduces to

E(ξ1,ξ2),η(z1; z2) =

∞∑
k=0

∑
l1+l2=k

l1≥0,l2≥0

k!
l1!l2!

zl1
1 zl2

2

Γ(η + ξ1l1 + ξ2l2)
,

=

∞∑
k=0

k∑
i=0

k!
i!(k − i)!

zi
1zk−i

2

Γ(η + ξ1l1 + ξ2l2)
.

Moreover, note that
E(ξ1,ξ2,...,ξn),η(z1; z2; ...; zn) = E(ξn,...,ξ2,ξ1),η(zn; ...; z2; z1).

Remark 2. For z1 , 0 and z2 = 0, the MMLF takes the following form

E(ξ1,ξ2),η(z1; 0) =

∞∑
k=0

zk
1

Γ(η + ξ1k)
:= Eξ1,η(z1).

Let us fix following notation

E(ξ1,ξ2,...,ξn),η(τ; q1, q2, ...qn) := τη−1E(ξ1,ξ2),η(−q1τ
ξ1 ,−q2τ

ξ2 , ...,−qnτ
ξn),

where qi > 0, i = 1, 2.

Lemma 2.5. [69] For ξ, η, τ, σi > 0, i = 1, 2, ..., n, n ∈ N the Laplace transform of the multinomial
Mittag-Leffler function is given by

L{E(ξ1,ξ2,...,ξn),η(τ; q1, ..., qn)} =
s−η

1 +

n∑
i=1

qis−ξi

, if

∣∣∣∣∣∣ n∑
i=1

qis−ξi

∣∣∣∣∣∣ < 1.
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Lemma 2.6. [70] For 0 < η < 1 and 0 < ξ2 < ξ1 < 1 be given. Assume that ξ1π/2 < µ < ξ1π,
µ ≤ |arg(q2τ

ξ1)| ≤ π and qiτ > 0. Then there exists a constant C0 depending only on µ, ξi, i = 1, 2 such
that

|E(ξ1−ξn,...,ξ1−ξ2,ξ1),ξ1+1(−qnτ
ξ1−ξn , ...,−q2τ

ξ1−ξ2 ,−q1τ
ξ1)| ≤

C0

1 + |q1τξ1 |
.

Lemma 2.7. [70] For h ∈ C1([a, b]) and ξi, qi > 0, for i = 1, 2, ..., n, n ∈ N, we have

|h(τ) ∗ E(ξ1−ξn,...,ξ1−ξ2,ξ1),ξ1(τ; qn, ..., q2, q1)| ≤
C0

q1
‖ h ‖C1([0,T ]),

where ‖h‖C1([0,T ]) = sup
t∈[0,T ]

|h(t)| + sup
t∈[0,T ]

|h′(t)|.

2.2. Auxiliary result

The spectral analysis pertaining to system (1.1)-(1.2) will be discussed in this subsection. The
spectral problem analogous to (1.1)-(1.2) is described as

X′′(x) = λX(x), X(0) = 0, X(π) = 0.

The spectral problem is self-adjoint. It has the following eigenvalues and eigenfunctions:

λn = n2, {Xn(x)}∞n=1 = {sin(nx)}∞n=1.

The set of eigenfunctions {Xn(x)}∞n=1 forms an orthogonal basis in L2((0, π)), see [71].

Lemma 2.8. For h(t, .) ∈ C2([0, π]) satisfying h(t, 0) = 0 = h(t, π), we have

|hn(t)| ≤
D0

|λn|
2 ‖h

′′(t, x)‖C2,0(Ω̄),

where

hn(t) =
〈
h(t, x), Xn(x)

〉
. (2.1)

Proof. From the expression of hn(t) given by (2.1) and integration by parts, we obtain

hn =
1
|λn|

2

〈
h′′(x, t), Xn(x)

〉
,

Using Cauchy Schwarz inequality, we have

|hn| ≤
1
|λn|
‖h′′(t, x)‖C2,0(Ω̄)‖Xn(x)‖C2([0,π]),

which implies

|hn| ≤
D0

|λn|
‖h′′(t, x)‖C2,0(Ω̄),

where ‖Xn(x)‖C2([0,π]) ≤ D0. �
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3. Direct problem (DP)

We’ll develop the series solution of the DP for the given system (1.1)-(1.3) in this portion. It would
therefore also be exhibited that u(t, x), tuxx(t, x), tHDν j,ω j

0+,t
u(t, x) j = 1, 2, ...n denotes a continuous

function with results for uniqueness and stability.

3.1. Series form solution

Applying Fourier’s process, the solution of the DP (1.1)-(1.3) can be expressed

u(t, x) =

∞∑
n=1

Xn(x)Un(t), (3.1)

where Un(t) is unknowns and satisfy the following fractional equation

HDν1,ω1
0+,t

Un(t) +

n∑
j=2

m j
HDν j,ω j

0+,t
Un(t) = λnUn(t) + fn(t),

fn(t) = 〈 f (t, x), Xn(x)〉.

Employing Laplace transform method and the initial conditions (1.3), see detail [69], one gets

L{Un(t); s} =
sω1(ν1−1)

1ρn

sν1 +

n∑
j=2

m jsν j − λn

+

n∑
j=2

m jsω j(ν j−1)
jρn

sν1 +

n∑
j=2

m jsν j − λn

+
L{ fn(t); s}

sν1 +

n∑
j=2

m jsν j − λn

where jρn = 〈 jρ(x), Xn(x)〉, j = 1, 2, ..., n, n ∈ N.

By Lemma 2.5, we obtain

Un(t) =1ρnEν,ν1+ω1(1−ν1)(t; mn, ...,m3,m2, λn) +

n∑
j=2

jρnm jEν,ν1+ω j(1−ν j)(t; mn, ...,m3,m2, λn)

+ fn(t) ∗ Eν,ν1(t; mn, ...,m3,m2, λn), (3.2)

where
ν := (ν1 − νn, ..., ν1 − ν2, ν1).

As a result, the DP solution, u(x, t), is presented by

u(t, x) =

∞∑
n=1

(
1ρnEν,ν1+ω1(1−ν1)(t; mn, ...,m3,m2, λn) +

n∑
j=2

jρnm jEν,ν1+ω j(1−ν j)(t; mn, ...,m3,m2, λn)

+ fn(t) ∗ Eν,ν1(t; mn, ...,m3,m2, λn)
)

sin(nx). (3.3)
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3.2. Existence of DP’s solutions

In this subsection, we will investigate existence of the series representation of the solution of the
DP given by (3.3).

Theorem 3.1. Assume that 1ρ(x) and jρ(x) to fulfill the subsequent assumptions

1. jρ ∈ C2([0, π]), such that jρ(0) = 0 = jρ(π), j = 1, 2, ..., n, n ∈ N,
2. f (t, ·) ∈ C2([0, π]), such that f (t, 0) = 0 = f (t, π).

Then, there exists a classic solution of the DP.

Proof. To demonstrate that the DP solution is classic, we will illustrate that

tu(t, x) ∈ C(Ω̄), Ω̄ = [0, π] × [0,T ], tuxx(t, x) ∈ C(Ω̄), tν1+1 HDν j,ω j

0+,t
u(t, x) ∈ C(Ω̄) j = 1, 2, ..., n.

Due to Lemma 2.6, Lemma 2.7 and Eq (3.3), we have

|u(t, x)| ≤
∞∑

n=1

C0

|λn|

(
|1ρn|tω1(1−ν1)−1 +

n∑
j=2

m j| jρn|tω j(1−ν j)−1 + ‖ f ‖C1([0,T ])

)
,

which implies

t|u(t, x)| ≤
∞∑

n=1

C0

|λn|

(
|1ρn|tω1(1−ν1) +

n∑
j=2

m j| jρn|tω j(1−ν j) + t‖ f ‖C1([0,T ])

)
. (3.4)

Since λn = n2, we conclude that the series involved in (3.4) is convergent uniformly. Hence, by virtue
of Weierstrass M-test (WSMT), t|u(t, x)| shows a continuous function.

Further, we will derive that tuxx(t, x) represent a continuous function. For the convergence of tuxx(t, x),
we take term by term differentiation of Eq (3.1), we have

uxx(t, x) =

∞∑
n=1

X′′n (x)Un(t), (3.5)

where

X′′n (x) = n2 sin(nx), ⇒ |X′′n (x)| ≤ |n2|. (3.6)

In order to prove the uniform convergence of uxx(t, x), we need to show that Un(t) represent a
continuous function. Due to Lemma 2.6, Lemma 2.7 and Eq (3.2), we obtain

t|Un(t)| ≤
∞∑

n=1

C0

|λn|

(
|1ρn|tω1(1−ν1) +

n∑
j=2

m j| jρn|tω j(1−ν j) + ‖ f ‖C1([0,T ])t
)
. (3.7)

As λn = n2, we can deduced that t|Un(t)| is convergent uniformly. Consequently, t|Un(t)| represents a
continuous function due to WSMT. Based on (3.6) and (3.7), we conclude that t|uxx(t, x)|, given by Eq
(3.5), is convergent uniformly. Hence, WSMT ensures the continuity of t|uxx(t, x)|.
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Similarly, we will establish the continuity of tν1+1 HDν j,ω j

0+,x
u(t, x), j = 1, 2, ..., n, n ∈ N. For this,

consider the following expression

∞∑
n=1

HDν j,ω j

0+,x
Un(t)Xn(x) =

∞∑
n=1

Xn(x)
(
λnUn(t) + fn(t)

)
=

∞∑
n=1

λnUnXn(x) + f (t, x).

The uniform convergence of
∞∑

n=1

λnUnXn(x) can be proved by using Eq (3.2) and Lemma 2.6.

Furthermore, f (t, x) is given source term. Hence, by Lemma 2.3, we obtain

HDν j,ω j

0+,x
u(t, x) =

∞∑
n=1

HDν j,ω j

0+,x
Un(t)Xn(x).

�

3.3. Uniqueness of DP’s solution

In this subsection, we will discuss the uniqueness of the solution of the DP.

Theorem 3.2. Consider two classic solution sets of the DP are u(t, x) and ũ(t, x). If u(t, x0) = ũ(t, x0)
for certain x0 ∈ (0, π) then

u(t, x) = ũ(t, x), (t, x) ∈ Ω.

Proof. Consider the following functions

Un(t) =

π∫
0

u(t, x)Xn(x)dx, and Ũn(t) =

π∫
0

ũ(t, x)Xn(x)dx. (3.8)

In (4.10), we apply multi-term HFDs of the 2nd equation, we obtain

HDν1,ω1
0+,t

Ũn(t) +

n∑
j=2

m j
HDν j,ω j

0+,t
Ũn(t) =

∫ π

0

(
HDν1,ω1

0+,t
ũ(t, x) +

n∑
j=2

m j
HDν j,ω j

0+,t
ũ(t, x)

)
Xn(x)dx.

As, ũ(t, x) is a classic solution and the above relation is satisfying by interchanging of fractional
derivatives and integral. From (1.1), we have the following fractional differential equation

HDν1,ω1
0+,t

Ũn(t) +

n∑
j=2

m j
HDν j,ω j

0+,t
Ũn(t) = λnŨn(t) + fn(t).

Taking Laplace transform in above equation and using Eq (3.8) and initial conditions (1.3), we have

Ũn(t) =

(∫ π

0
1ρ(x)Xn(x)dx

)
Eν,ν1+ω1(1−ν1)(t; mn, ...,m3,m2, λn)
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+

n∑
j=2

(∫ π

0
jρ(x)Xn(x)dx

)
m jEν,ν1+ω j(1−ν j)(t; mn, ...,m3,m2, λn)

+ fn(t) ∗ Eν,ν1(t; mn, ...,m3,m2, λn).

In the similar lines, the expression Un(t) is obtained as

Un(t) =

(∫ π

0
1ρ(x)Xn(x)dx

)
Eν,ν1+ω1(1−ν1)(t; mn, ...,m3,m2, λn)

+

n∑
j=2

(∫ π

0
jρ(x)Xn(x)dx

)
m jEν,ν1+ω j(1−ν j)(t; mn, ...,m3,m2, λn)

+ fn(t)Eν,ν1(t; mn, ...,m3,m2, λn).

Since, u(t, x) = ũ(t, x). Hence, we have Un(t) = Ũn(t). �

3.4. Stability of the DP’s solution

The stability result for the DP solution will be presented in this subsection.

Theorem 3.3. Under the assumptions of Theorem 3.1, the solution of the DP is continually based on
the given current data, i.e., 1ρ(x), jρ(x).

Proof. From (3.3), we have

|u(t, x) − ũ(t, x)| ≤
∞∑

n=1

{(
(1ρn − 1ρ̃n)Eν,ν1+ω1(1−ν1)(t; mn, ...,m3,m2, λn)

+

n∑
j=2

m j( jρn − jρ̃n)Eν,ν1+ω j(1−ν j)(t; mn, ...,m3,m2, λn)

+ ( fn(t) − f̃n(t)) ∗ Eν,ν1(t; mn, ...,m3,m2, λn)
)

sin(nx)
}
.

Due to Cauchy Schwarz inequality together with Lemmas 2.6 and 2.7, we obtain

t|u(t, x) − ũ(t, x)| ≤
∞∑

n=1

C0

|λn|

(
‖1ρ(x) − 1ρ̃(x)‖C2([0,π])tω1(1−ν1) +

n∑
j=2

m j‖ jρ(x) − jρ̃(x)‖C2([0,π])tω2(1−ν2)

+ t‖ f − f̃ ‖C2([0,T ])

)
.

�

4. Inverse source problem (ISP)

We will look at the ISP in this section, which is the determination of a pair of functions u(t, x), f (x)
for the particular system (1.1)-(1.3). For the complete recovery of the classic solution, we need some
additional data usually known as over-specified condition and is given by

u(T, x) = Ψ(x), x ∈ [0, π]. (4.1)
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Let us define the classical solution of the ISP {u(t, x), f (x)} such that T f (x) ∈ C([0, π]), tu(t, x) ∈
C(Ω̄), tuxx(t, x) ∈ C(Ω̄) and tν1+1 HDν j,ω j

0+,t
u(t, x) ∈ C(Ω̄), j = 1, 2, ..., n, n ∈ N is called a classical

solution. We investigated existence, uniqueness and stability results for the ISP’s solution under given
current data.

4.1. Series form solution

The Fourier process can be used to write the solution to the ISP (1.1)-(1.3) & (4.1)

u(t, x) =

∞∑
n=1

Xn(x)Un(t), (4.2)

f (x) =

∞∑
n=1

Xn(x) fn, (4.3)

where Un(t) and fn are unknowns that satisfy the fractional linear equation

HDν1,ω1
0+,t

Un(t) +

n∑
j=2

m j
HDν2,ω2

0+,t
Un(t) = λnUn(t) + fn.

Employing Laplace transform and the initial conditions (1.3), we obtain

L{Un(t); s} =
sω1(ν1−1)

1ρn

sν1 +

n∑
j=2

m jsν j − λn

+

n∑
j=2

m jsω j(ν j−1)
jρn

sν1 +

n∑
j=2

m jsν j − λn

+
s−1 fn

sν1 +

n∑
j=2

m jsν j − λn

where jρn = 〈 jρ(x), Xn(x)〉, j = 1, 2, ..., n, n ∈ N.
Due to Lemma 2.5, we obtain

Un(t) =1ρnEν,ν1+ω1(1−ν1)(t; mn, ...,m3,m2, λn) +

n∑
j=2

jρnm jEν,ν1+ω j(1−ν j)(t; mn, ...,m3,m2, λn)

+ fnEν,ν1+1(t; mn, ...,m3,m2, λn), (4.4)

Now, we will use the over-specified condition (4.1) to evaluate the space dependent source term, we
have

fn =
1

Eν,ν1+1(T ; mn, ...,m3,m2, λn)

{
Ψn −

(
1ρnEν,ν1+ω1(1−ν1)(T ; mn, ...,m3,m2, λn)

+

n∑
j=2

jρnm jEν,ν1+ω j(1−ν j)(T ; mn, ...,m3,m2, λn)
)}
, (4.5)

where Ψn = 〈Ψ(x), Xn(x)〉.
As a consequence, the ISP solution, i.e., {u(t, x), f (x)} is expressed by

u(t, x) =

∞∑
n=1

(
1ρnEν,ν1+ω1(1−ν1)(t; mn, ...,m3,m2, λn) +

n∑
j=2

jρnm jEν,ν1+ω j(1−ν j)(t; mn, ...,m3,m2, λn)
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+ fnEν,ν1+1(t; mn, ...,m3,m2, λn)
)

sin(nx), (4.6)

where fn is given by (4.5), and we have

f (x) =

∞∑
n=1

[ 1
Eν,ν1+1(T ; mn, ...,m3,m2, λn)

{
Ψn −

(
1ρnEν,ν1+ω1(1−ν1)(T ; mn, ...,m3,m2, λn)

+

n∑
j=2

jρnm jEν,ν1+ω j(1−ν j)(T ; mn, ...,m3,m2, λn)
)}]

sin(nx). (4.7)

4.2. Existence of ISP’s solution

The existence of the set solution of the ISP given by (4.6)-(4.7) will be investigated in this
subsection.

Theorem 4.1. Let 1ρ(x), jρ(x) & Ψ(x) satisfy conditions below

1. jρ ∈ C2([0, π]), such that jρ(0) = 0 = jρ(π), j = 1, 2, ..., n, n ∈ N
2. Ψ ∈ C2([0, π]), such that Ψ(0) = 0 = Ψ(π).

Then, there exists a classic solution of the ISP.

Proof. We can demonstrate the uniform convergence of the series representations of
f (x), u(t, x), uxx(t, x),
HDν j,ω j

0+,t
u(t, x) j = 1, 2, ..., n, n ∈ N to investigate that the ISP solution is classic.

Using Lemma 2.6 and Eq (4.7), we get

| f (x)| ≤
∞∑

n=1

( |λn|

C0
|Ψn| − |1ρn|Tω1(1−ν1)−1 +

n∑
j=2

m j| jρn|Tω j(1−ν j)
)
.

Due to Lemma (2.8), we obtain

T | f (x)| ≤
∞∑

n=1

D0

|λn|

( |λn|T
C0
‖Ψ′′(x)‖C2([0,π]) − ‖1ρ

′′(x)‖C2([0,π])Tω1(1−ν1)

+

n∑
j=2

m j‖ jρ
′′(x)‖C2([0,π])Tω j(1−ν j)

)
. (4.8)

Since, λn = n2. By Eq (4.8), we can conclude that T | f (x)| convergent uniformly in Ω. Hence, by virtue
of WSMT, T | f (x)| shows a continuous function.
Further, we will derive that u(t, x) given by (4.6) shows a continuous function. By using Lemma 2.6
and Eq (4.4), we have

t|u(t, x)| ≤
∞∑

n=1

C0

|λn|

(
|1ρn|tω1(1−ν1) +

n∑
j=2

m j| jρn|tω j(1−ν j) + | fn|
)
. (4.9)

By λn = n2, the series involved in (4.9) is convergent uniformly. Consequently, by WSMT, t|u(t, x)|
shows a continuous function.
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Next, we are going to discuss that uxx(t, x) represent a continuous function. Due to (3.6) and (4.4), we
deduce that t|uxx(t, x)|, given by Eq (3.5), is convergent uniformly. Hence, by virtue of WSMT shows
the continuity of t|uxx(t, x)|.
Similarly, we can establish the continuity of HDν j,ω j

0+,x
u(x, t), j = 1, 2, ..., n. �

4.3. Uniqueness of ISP’s solution

We will report about the solution’s uniqueness in this subsection.

Theorem 4.2. Consider {u(t, x), f (x)} and {ũ(t, x), f̃ (x)} are two classic ISP’s solution sets. If u(t, x0) =

ũ(t, x0) for some x0 ∈ (0, π), then we have

u(t, x) = ũ(t, x) t ∈ [0,T ] ⇒ f (x) = f̃ (x) ∀ x ∈ (0, π).

Proof. Let us define the following functions

Un(t) =

π∫
0

u(t, x)Xn(x)dx, and Ũn(t) =

π∫
0

ũ(t, x)Xn(x)dx. (4.10)

In (4.10), we take multi-term HFDs of the second equation, we have

HDν1,ω1
0+,t

Ũn(t) +

n∑
j=2

m j
HDν j,ω j

0+,t
Ũn(t) =

∫ π

0

(
HDν1,ω1

0+,t
ũ(t, x) +

n∑
j=2

m j
HDν j,ω j

0+,t
ũ(t, x)

)
Xn(x)dx.

From (1.1), we have the following fractional differential equation

HDν1,ω1
0+,t

Ũn(t) +

n∑
j=2

m j
HDν j,ω j

0+,t
Ũn(t) = λnŨn(t) + f̃n. (4.11)

Using Laplace transform, Eq (4.10) and initial conditions (1.3), we obtain

Ũn(t) =

(∫ π

0
1ρ(x)Xn(x)dx

)
Eν,ν1+ω1(1−ν1)(t; mn, ...,m3,m2, λn)

+

n∑
j=2

(∫ π

0
jρ(x)Xn(x)dx

)
m jEν,ν1+ω j(1−ν j)(t; mn, ...,m3,m2, λn)

+ f̃nEν,ν1+1(t; mn, ...,m3,m2, λn).

On the similar lines, we can be obtained Un(t)

Un(t) =

(∫ π

0
1ρ(x)Xn(x)dx

)
Eν,ν1+ω1(1−ν1)(t; mn, ...,m3,m2, λn)

+

n∑
j=2

(∫ π

0
jρ(x)Xn(x)dx

)
m jEν,ν1+ω j(1−ν j)(t; mn, ...,m3,m2, λn)

+ fnEν,ν1+1(t; mn, ...,m3,m2, λn).
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Since, u(t, x) = ũ(t, x), we have
Un(t) = Ũn(t),

and hence

fnEν,ν1+1(t; mn, ...,m3,m2, λn) = f̃nEν,ν1+1(t; mn, ...,m3,m2, λn)

which implies (
fn − f̃n

)
Eν,ν1+1(t; mn, ...,m3,m2, λn) = 0.

Taking Laplace transform technique, we obtain(
fn − f̃n

)
s
(
sν1 +

n∑
j=2

m jsν j − λn

) = 0, Re s > 0, ⇒
fn − f̃n

Φ − λn
= 0, (4.12)

where sν1 +

n∑
j=2

m jsν j = Φ. Just one appropriate disc should be taken. D1, which only involves λ1, and

then integrating (4.12) around the disc using the Cauchy integral formula, we get the following only
one unique source term

f1 = f̃1.

To obtain the nth terms, we take different disks, we have

fn = f̃n,∀ n ∈ N, ⇒ f (x) = f̃ (x),

respectively. �

4.4. Stability of ISP’s solution

The stability result for the ISP solution will be addressed in this subsection.

Theorem 4.3. Under the supposition of Theorem 4.1, the ISP’s solution is constantly relies on the
given original and final data, i.e., 1ρ(x), jρ(x) and Ψ(x) .

Proof. Due to (4.6), we have the following expression

|u(t, x) − ũ(t, x)| ≤
∞∑

n=1

{(
(1ρn − 1ρ̃n)Eν,ν1+ω1(1−ν1)(t; mn, ...,m3,m2, λn)

+

n∑
j−2

m j( jρn − jρ̃n)Eν,ν1+ω j(1−ν j)(t; mn, ...,m3,m2, λn)

+ ( fn − f̃n)Eν,ν1+1)(t; mn, ...,m3,m2, λn)
)

sin(nx)
}
,

where fn is given by Eq (4.5) and f̃n is

f̃n =
1

Eν,ν1+1(T ; mn, ...,m3,m2, λn)

{
Ψ̃n −

(
1ρ̃nEν,ν1+ω1(1−ν1)(T ; mn, ...,m3,m2, λn)
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+

n∑
j=2

jρ̃nm jEν,ν1+ω j(1−ν j)(T ; mn, ...,m3,m2, λn)
)}
.

Thanks to Cauchy Schwarz inequality together with Lemmas 2.6, we have

t|u(t, x) − ũ(t, x)| ≤
∞∑

n=1

C0

|λn|

(
‖1ρ − 1ρ̃‖C2([0,π])tω1(1−ν1) +

m∑
j=2

m j‖ jρ − jρ̃‖C2([0,π])tω j(1−ν j)

+ ‖ f − f̃ ‖C2([0,π])

)
.

Similarly, we can be proved the stability of f (x). �

5. Particular cases

In this section, we will look at some specific cases for time FDE, as defined by (1.1).

Case-I: For ω j = 1, j = 1, 2, ..., n, n ∈ N (1.1) reduces to the following system

CDν1
0+,t

u(t, x) +

n∑
j=2

m j
CDν j

0+,t
u(t, x) = uxx(t, x) + F(t, x), (t, x) ∈ Ω, (5.1)

In Caputo sense we need only one initial condition

u(0, x) = 1ρ(x)

and boundary condition (1.2). The solution of the DP in this case with given source term F(t, x) has
the following form

u(t, x) =

∞∑
n=1

(
1ρnEν,1(t; mn, ...,m3,m2, λn) +

n∑
j=2

jρnm jEν,1(t; mn, ...,m3,m2, λn)

+ fn(t) ∗ Eν,ν1(t; mn, ...,m3,m2, λn)
)

sin(nx).

The ISP’s solution, i.e., {u(t, x), f (x)} for Eq (5.1) and over-specified (4.1) can be determined by
substituting ω j = 1, j = 1, 2, ..., n in (4.6) and (4.7), we have

u(t, x) =

∞∑
n=1

(
1ρnEν,1(t; mn, ...,m3,m2, λn) +

n∑
j=2

jρnm jEν,1(t; mn, ...,m3,m2, λn)

+ fnEν,ν1+1(t; mn, ...,m3,m2, λn)
)

sin(nx),

f (x) =

∞∑
n=1

[ 1
Eν,ν1+1(T ; mn, ...,m3,m2, λn)

{
Ψn −

(
1ρnEν,1(T ; mn, ...,m3,m2, λn)

+

n∑
j=2

jρnm jEν,1(T ; mn, ...,m3,m2, λn)
)}]

sin(nx).
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On similar way, we can show the regularity of the solution DP and ISP.
Case-II: For ω j = 0, j = 1, 2, ..., n, n ∈ N, the Eq (1.1) becomes

RLDν1
0+,t

u(t, x) +

n∑
j=2

m j
RLDν j

0+,t
u(t, x) = uxx(t, x) + F(t, x), (t, x) ∈ Ω, (5.2)

In this case we need only one initial condition

lim
t→0

J(1−ν j)
0+,t

u(t, x) = jρ(x), j = 1, 2, ..., n n ∈ N,

and boundary condition (1.2). The solution of the DP in this case is given by

u(t, x) =

∞∑
n=1

(
1ρnEν,ν1(t; mn, ...,m3,m2, λn) +

n∑
j=2

jρnm jEν,ν1(t; mn, ...,m3,m2, λn)

+ fn(t) ∗ Eν,ν1(t; mn, ...,m3,m2, λn)
)

sin(nx).

The ISP’s solution, i.e., {u(t, x), f (x)} for Eq (5.2) and over-specified (4.1) can be determined by
substituting ω j = 0, j = 1, 2, ..., n in (4.6) and (4.7), we have

u(t, x) =

∞∑
n=1

(
1ρnEν,ν1(t; mn, ...,m3,m2, λn) +

n∑
j=2

jρnm jEν,ν1(t; mn, ...,m3,m2, λn)

+ fnEν,ν1+1(t; mn, ...,m3,m2, λn)
)

sin(nx),

f (x) =

∞∑
n=1

[ 1
Eν,ν1+1(T ; mn, ...,m3,m2, λn)

{
Ψn −

(
1ρnEν,ν1(T ; mn, ...,m3,m2, λn)

+

n∑
j=2

jρnm jEν,ν1(T ; mn, ...,m3,m2, λn)
)}]

sin(nx).

On the similar lines, we can present regularity solution for the DP and ISP.

6. Conclusions

Time-fractional diffusion equation involves multi-term time fractional derivative so-called HFD of
different orders ν j, 0 < νn < ... < ν2 < ν1 < 1 and type 0 ≤ ωn ≤ ... ≤ ω2 ≤ ω1 ≤ 1 is considered.
Under certain conditions on the given data, the formal solution of the DP obtained by the Fourier
method is used to prove the classic solution of the DP (see Theorem 3.1). The DP solution has been
shown to be unique and stable. The second ISP is the Identification of a space-dependent source-term
from an over-specified condition at some T . The formal solution of the ISP is constructed with the
help of the eigenfunction expansion method. Under some assumptions about the data, the ISP’s series
solution is shown to be a classic solution (see Theorem 4.1). It has also been shown to be unique and
stable.
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