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1. Introduction

In this paper, we consider the Cauchy problem of the following 2D density-dependent magnetic
Bénard equations 

ρt + u · ∇ρ = 0,
ρut + ρu · ∇u + ∇p = µ∆u + b · ∇b + ρθe2,

ρθt + ρu · ∇θ = κ∆θ + ρu · e2,

bt + u · ∇b = ν∆b + b · ∇u,

divu = divb = 0.

(1.1)

which is equipped the following initial conditions and far-field behavior:{
(ρ, ρu, ρθ, b)(x, 0) = (ρ0, ρu0, ρθ0, b0)(x) for x ∈ R2,

(ρ, u, θ, b)(x, ·)→ (0, 0, 0, 0), as |x| → ∞,
(1.2)

where ρ, u, θ, b and p denote the density, velocity, temperature, magnetic field, and pressure of the fluid,
respectively. µ > 0 is the viscosity coefficient, κ > 0 is the heat conductivity coefficient, and ν > 0 is
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the magnetic diffusivity acting as a magnetic diffusion coefficient of the magnetic field. e2 = (0, 1)T ,
where T is the transpose.

The magnetic Bénard equations (1.1) illuminates the heat convection phenomenon under the
dynamics of the velocity and magnetic fields in electrically conducting fluids such as plasmas
(see [10, 11] for details). If we ignore the Rayleigh-Bénard convection term u · e2, system (1.1)
recovers the inhomogeneous incompressible MHD equations (i.e., θ ≡ 0). Let us review some previous
works about the standard incompressible MHD equations. In the absence of vacuum, Abidi-Paicu [1]
established the local and global (with small initial data) existence of strong solutions in the framework
of Besov spaces. Chen et al. [2] proved a global solution for the global well-posedness to the
3D Cauchy problem for the bounded density. In the presence of vacuum, imposing the following
compatibility condition,

−µ∆u0 + ∇p0 − b0 · ∇b0 =
√
ρ0g (1.3)

for some (p0, g) ∈ H1 × L2. Chen et al. [3] obtained the unique local strong solutions to the 3D Cauchy
problem with general initial data. Song [13] studied the local well-posedness of strong solutions
without additional compatibility condition (1.3), which extended the main result of [3]. Recently,
Gao-Li [4] shown the global strong solutions with vacuum in bounded domain, provided that initial
data is suitable small. Later on, Zhang-Yu [15] extended this result to the whole space. For the 2D
case, Huang-Wang [5] investigated the global existence of strong solution with general large data in
bounded domain provided that the compatibility condition (1.3) holds. Recently, Lv et al. [8] showed
the global existence of strong solutions to the 2D Cauchy problem with the large data and vacuum.

Let us go back to the system (1.1). Very recently, by weighted energy method, Zhong [16] showed
the local existence of strong solutions to the Cauchy problem of (1.1) in R2. However, the global
existence of strong solution to the 2D Cauchy problem of (1.1) with vacuum and general initial data is
not addressed. In fact, this is the main aim of this paper.

Before stating the main results, we first explain the notations and conventions used throughout this
paper. For R > 0. Set

BR := {x ∈ R2||x| < R},
∫

f dx =
∫
R2

f dx, µ = κ = ν = 1.

Moreover, for 1 ≤ r ≤ ∞ and k ≥ 1, the standard Sobolev spaces are defined as follows:

Lr = Lr(R2), Wk,r = Wk,r(R2), Hk = Wk,2.

Without loss of generality, we assume that initial density ρ0 satisfies∫
ρ0dx = 1, (1.4)

which implies that there exists a positive constant N0 such that∫
BN0

ρ0dx ≥
1
2

∫
ρ0dx =

1
2
. (1.5)

Throughout this paper, always denote

x̄ := (e + |x|2)1/2 log1+σ0(e + |x|2), (1.6)

with σ0 > 0 fixed. The main result of this paper is stated as the following theorem:
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Theorem 1.1. In addition to (1.4) and (1.5), assume that the initial data (ρ0, u0, θ0, b0) satisfies for any
given numbers a > 1 and q > 2,

ρ0 ≥ 0, x̄aρ0 ∈ L1 ∩ H1 ∩W1,q, divu0 = divb0 = 0,
∇u0,∇θ0,∇b0 ∈ L2,

√
ρ0u0,

√
ρ0θ0 ∈ L2, x̄ab0 ∈ L2,

b0 ∈ L4.

(1.7)

Then the problems (1.1) and (1.2) has a unique global strong solution (ρ ≥ 0, u, θ, b, p) satisfying that
for any 0 < T < ∞, 

0 ≤ ρ ∈ C([0,T ]; L1 ∩ H1 ∩W1,q),
x̄aρ ∈ L∞(0,T ; L1 ∩ H1 ∩W1,q),
√
ρu,∇u, x̄−1u,

√
t
√
ρut,
√

t∇p,
√

t∇2u ∈ L∞(0,T ; L2),
√
ρθ,∇θ, x̄−1θ,

√
t
√
ρθt,
√

t∇2θ ∈ L∞(0,T ; L2),

b, x̄
a
2 b,∇b,

√
tbt,
√

t∇2b ∈ L∞(0,T ; L2),

∇u,∇θ ∈ L2(0,T ; H1) ∩ L
q+1

q (0,T ; W1,q),

∇p ∈ L2(0,T ; L2) ∩ L
q+1

q (0,T ; Lq),
√

t∇u,
√

t∇θ ∈ L2(0,T ; W1,q),
√
ρut,
√
ρwt ∈ L2(R2 × (0,T )),

√
tx̄

a
2∇b,

√
t∇bt,

√
t∇ut,

√
t∇θt ∈ L2(R2 × (0,T )),

(1.8)

and

inf
0≤t≤T

∫
BN1

ρ(x, t)dx ≥
1
4
, (1.9)

for some positive constant N1 depending only on
√
ρ0u0, N0, and T .

Remark 1.1. We remark that Theorem 1.1 is proved without any smallness on the initial data.
Moreover, the initial density can contain vacuum states and even has compact support. We also point
out that Theorem 1.1 extends the result of Zhong [16] to the global one. In particular, when b = 0,
the incompressible magnetic Bénard equations (1.1) reduces to the incompressible Bénard equations,
Theorem 1.1 also extends Zhong [17] to the global one.

We now make some comments on the key ingredients of the analysis in this paper. For the initial data
satisfying (1.7), Zhong [16] recently established the local existence and uniqueness of strong solutions
to the Cauchy problems (1.1) and (1.2) (see Lemma 2.1). Thus, to extend the local strong solution to
be a global one, we need to obtain global a priori estimates on strong solutions to (1.1) and (1.2) in
suitable higher norms. However, due to critically of Sobolev’s inequality in R2, it seems difficult to
bound ∥u∥Lp just in term of ∥

√
ρu∥L2 and ∥∇u∥L2 for any p ≥ 2. Moreover, compared with [9], for the

systems (1.1) and (1.2) here, the strong coupling terms and Rayleigh-Bénard convection terms, such
as u · ∇b, ρu · e2, and ρθe2, will bring out some new difficulties.

To overcome these difficulties mentioned above, some new ideas are needed. First, using the
structure of the 2D magnetic equations, we multiply (1.1)4 by 4|b|2b and thus obtain the useful a priori
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estimate on L2(R2×(0,T ))-norm of |b||∇b| (see (3.5)), which is crucial in deriving the L∞(0,T ; L2(R2))-
norm of ∇u, ∇θ and ∇b. Next, in order to derive the estimates on L∞(0,T ; L2(R2))-norm of ∇u, ∇θ,
motivated by [9], multiplying (1.1)2 and (1.1)3 by u̇ := ut + u · ∇u and θ̇ := θt + u · ∇θ instead of usual
ut and θt respectively, we deduce that the key point to obtain the estimate on the L∞(0,T ; L2(R2))-norm
of the gradient of the velocity u and temperature θ is to bound the terms

I2 :=
∫

p∂ jui∂iu jdx.

We find I2 in fact can be bounded by ∥∇p∥L2∥∇u∥2L2 (see (3.8)), since ∂ jui∂iu j ∈ H1 due to the fact
that divu = 0 and ∇⊥ · ∇u = 0 (see Lemma 2.4). Moreover, the usual L2(R2 × (0,T ))-norm of bt

cannot be directly estimated due to the strong coupled term u · ∇b. Thus, we multiplying (1.1)4 by
∆b instead of usual bt, the coupled term can be controlled after integration by parts. Thirdly, to tackle
the difficulty caused by the lack of the Sobolev inequality, motivated by [8, 16, 17], by introducing a
weighted function to the density, as well as a Hardy-type inequality in [7] by Lions, the ∥ρηv∥σ (η > 0,
σ > max{2, 2

η
}) is controlled in term of ∥

√
ρv∥L2 and ∥∇v∥L2 (see (3.18)), which plays an important

role in bounding the Rayleigh-Bénard convection terms ρu · e2 and ρθe2, and deriving the estimates
on the L∞(0,T ; L2(R2)) of

√
t
√
ρut and

√
t
√
ρθt. Finally, with these a priori estimates on the velocity,

temperature and magnetic field at hand, some useful spatial weighted estimates on both b, ∇u and ∇θ
are derived, which yields the bounded of L∞(0,T ; L2(R2))-norm of

√
t∇2b (see Lemma 3.7).

The rest of the paper is organized as follows. In Section 2, we collect some elementary facts and
inequalities which will be needed in later analysis. Section 3 is devoted to the a priori estimates.
Finally, we give the proof of Theorem 1.1 in Section 4.

2. Preliminaries

In this section, we will recall some known facts and elementary inequalities which will be used
frequently later.

We start with the local existence of strong solutions whose proof can be found in [16].

Lemma 2.1. Assume that (ρ0, u0, θ0, b0) satisfies (1.7). Then there exists a small time T > 0 and a
unique strong solution (ρ, u, θ, b, p) to the problems (1.1) and (1.2) in R2 ×T satisfying (1.8) and (1.9).

Next, the following Gagliardo-Nirenberg inequalities will be stated, which see [12] for the detailed
proof.

Lemma 2.2. For all v ∈ C∞0 (Rn), integer j, 0 ≤ j < m, 1 ≤ r, q ≤ ∞, and j
m ≤ ϑ ≤ 1, there exists a

positive constant C depending only on j, m, n, p′, q, and r such that

∥∇ jv∥Lp′ ≤ C∥∇mv∥ϑLr∥v∥1−ϑLq (2.1)

where

1
p′
=

j
n
+ ϑ
(1
r
−

m
n

)
+ (1 − ϑ)

1
q
,

and m − j − n
r is not a nonnegative integer. If 1 < r < ∞ and m − j − n

r is a nonnegative integer, (2.1)
holds with ϑ ∈ [ j

m , 1).

AIMS Mathematics Volume 6, Issue 11, 12085–12103.



12089

As a key technical ingredient for our approach, we need the following weighted bounds for functions
in the space D̃1,2(R2) ≜ {v ∈ H1

loc(R
2) : ∇v ∈ L2(R2)}, whose proof can be found in [6, Lemma 2.4].

Lemma 2.3. Let x̄ be as in (1.6). Assume that ρ ∈ L1 ∩ L∞ be a non-negative function satisfying∫
BN1

ρdx ≥ M1, ∥ρ∥L1∩L∞ ≤ M2,

with M1,M2 > 0 and BN1 ⊂ R
2 (N1 ≥ 1). Then there exists C = C(M1,M2,N1) > 0 such that

∥vx̄−1∥L2 ≤ C
(
∥
√
ρv∥L2 + ∥∇v∥L2

)
, ∀ v ∈ D̃1,2(R2). (2.2)

Moreover, for any η > 0 and σ > max{2, 2
η
}, there exits C = C(σ, η,M1,M2,N1) > 0 such that

∥vx̄−η∥Lσ ≤ C
(
∥
√
ρv∥L2 + ∥∇v∥L2

)
, ∀ v ∈ D̃1,2(R2). (2.3)

Finally, let H1 and BMO stand for the usual Hardy and BMO spaces (see [14, Section 4]). Then
the following well-known facts play a key role in the proof of Lemma 3.2, whose proof can be found
in [9].

Lemma 2.4. (i) There is a positive constant C such that

∥E · B∥H1 ≤ C∥E∥L2∥B∥L2 , (2.4)

for all E ∈ L2 and B ∈ L2 with

divE = 0, ∇⊥B = 0 inD′.

(ii) There is a positive constant C such that for all v ∈ D̃1,2(R2), it holds

∥v∥BMO ≤ C∥∇v∥L2 .

3. A priori estimates

In this section, we will establish some necessary a priori bounds for strong solutions (ρ, u, θ, b, p) to
the Cauchy problems (1.1) and (1.2) to extend the local strong solution. Thus, let T > 0 be a fixed time
and (ρ, u, θ, b, p) be the strong solution to (1.1) and (1.2) on R2 × (0,T ] with initial data (ρ0, u0, θ0, b0)
satisfying (1.4)–(1.6). In what follows, we will use the convention that C denotes a generic positive
constant depending on initial data and T .

We begin with the following standard energy estimate and the estimate on the L∞(0,T ; L1 ∩ L∞)-
norm of the density.

Lemma 3.1. Under the assumption of Theorem 1.1, it holds that

sup
0≤t≤T

(∥ρ∥L1∩L∞ + ∥
√
ρu∥2L2 + ∥

√
ρθ∥2L2 + ∥b∥2L2)

+

∫ T

0
(∥∇u∥2L2 + ∥∇θ∥

2
L2 + ∥∇b∥2L2)dt ≤ C. (3.1)
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Proof. First, it follows from the transport equation (1.1)1 and making use of (1.1)4 (see Lions [7,
Theorem 2.1]) that

sup
0≤t≤T
∥ρ∥L1∩L∞ ≤ C. (3.2)

Next, multiplying the Eqs (1.1)2,3,4 by (u, θ, b) and integrating by parts over R2, one obtains by using
divu = divb = 0,

1
2

d
dt

(∥
√
ρu∥2L2 + ∥

√
ρθ∥2L2 + ∥b∥2L2) + ∥∇u∥2L2 + ∥∇θ∥

2
L2 + ∥∇b∥2L2

≤ C
∫
ρ|u||θ|dx ≤ C∥

√
ρu∥2L2 +C∥

√
ρθ∥2L2 , (3.3)

which together with Gronwall’s inequality yields (3.1) and completes the proof of lemma. □

Lemma 3.2. Under the assumption of Theorem 1.1, it holds that

sup
0≤t≤T

(∥b∥4L4 + ∥∇u∥2L2 + ∥∇θ∥
2
L2 + ∥∇b∥2L2)

+

∫ T

0
(∥
√
ρut∥

2
L2 + ∥

√
ρθt∥

2
L2 + ∥∇

2b∥2L2)dt

+

∫ T

0
(∥∇2u∥2L2 + ∥∇

2θ∥2L2)dt ≤ C. (3.4)

Proof. (1). Multiplying (1.1)4 by 4|b|2b and integrating the resulting equation over R2, one has

d
dt

∫
|b|4dx + 12

∫
|b|2|∇b|2dx

≤ C∥∇u∥L2∥|b|2∥2L4

≤ C∥∇u∥L2∥|b|2∥L2∥∇|b|2∥L2

≤ ∥|b||∇b|∥2L2 +C∥∇u∥2L2∥b∥4L4 ,

which together with Gronwall’s inequality and (3.1) yields that

sup
0≤t≤T
∥b∥4L4 +

∫ T

0
∥|b||∇b|∥2L2dt ≤ C. (3.5)

(2). Multiplying (1.1)2 by u̇ := ut + u · ∇u and integrating by parts over R2, we find that

1
2

d
dt

∫
|∇u|2dx +

∫
ρ|u̇|2dx

=

∫
∆u · (u · ∇u)dx −

∫
∇p · u̇dx +

∫
b · ∇b · u̇dx

+

∫
ρθe2 · u̇dx =

4∑
i=1

Ii. (3.6)
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It follows from integration by parts and Hölder’s inequality that

I1 = −

∫
∂iu j∂iuk∂ku jdx ≤ C∥∇u∥2L2∥∇

2u∥L2 , (3.7)

Notice that div(∂ ju) = ∂ jdivu = 0 and ∇⊥ · (∇u j) = 0, we infer from Lemma 2.4 that

|I2| ≤

∣∣∣∣ ∫ p∂ jui∂iu jdx
∣∣∣∣ ≤ C∥p∥BMO∥∂ jui∂iu j∥H1 ≤ C∥∇p∥L2∥∇u∥2L2 . (3.8)

In view of (1.1)4, Hölder’s and Gagliardo-Nirenberg inequalities, we deduce after integrating by
parts that

I3 = −
d
dt

∫
b · ∇u · bdx +

∫
bt · ∇u · bdx +

∫
b · ∇u · btdx

+

∫
b · ∇b · (u · ∇u)dx

= −
d
dt

∫
b · ∇u · bdx +

∫
(∆b − u · ∇b + b · ∇u) · ∇u · bdx

+

∫
b · ∇u · (∆b − u · ∇b + b · ∇u)dx −

∫
bi∂iu j∂ jukbkdx

−

∫
biu j∂i∂ jukbkdx

= −
d
dt

∫
b · ∇u · bdx +

∫
(∆b + b · ∇u) · ∇u · bdx

+

∫
b · ∇u · (∆b + b · ∇u)dx −

∫
bi∂iu j∂ jukbkdx

≤ −
d
dt

∫
b · ∇u · bdx + δ∥∇2b∥2L2 +C∥|b||∇u|∥2L2

≤ −
d
dt

∫
b · ∇u · bdx + δ∥∇2b∥2L2 +C∥b∥2L4∥∇u∥L2∥∇2u∥L2

≤ −
d
dt

∫
b · ∇u · bdx + δ∥∇2b∥2L2 +C∥∇2u∥L2∥∇u∥L2 . (3.9)

For the estimates of I4, we derive

I4 ≤ C∥
√
ρu̇∥L2∥

√
ρθ∥L2 ≤ ε∥

√
ρu̇∥2L2 +C.

Combining the above estimates yields

1
2

d
dt
(
∥∇u∥L2 + N(t)

)
+ ∥
√
ρu̇∥2L2

≤ δ∥∇2b∥2L2 +C(∥∇2u∥L2 + ∥∇p∥L2)(∥∇u∥L2 + ∥∇2u∥2L2), (3.10)

where N(t) := 2
∫

b · ∇u · bdx. We get by direct computations

|N(t)| ≤ C∥∇u∥L2∥b∥2L4 ≤ C∥∇u∥L2∥b∥L2∥∇b∥L2 ≤
1
2
∥∇u∥2L2 + c1∥∇b∥2L2 .
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(3). Multiplying (1.1)3 by θ̇ := θt + u · ∇θ and integrating by parts over R2, one has

1
2

d
dt

∫
|∇θ|2dx +

∫
ρ|θ̇|2dx

= −

∫
∂iθ∂iu j∂ jθdx +

∫
ρu · e2 · θ̇dx

≤ C∥∇u∥L2∥∇θ∥2L4 +C∥
√
ρθ̇∥L2∥

√
ρu∥L2

≤ κ∥
√
ρθ̇∥2L2 +C∥∇u∥L2∥∇θ∥L2∥∇2θ∥L2 +C. (3.11)

(4). Multiplying (1.1)4 by ∆b and integrating by parts over R2, we infer from Hölder’s inequality,
Gagliardo-Nirenberg inequality, and (3.5) that

1
2

d
dt

∫
|∇b|2dx +

∫
|∇2b|2dx

≤ C
∫
|∇u||∇b|2dx +

∫
|b||∇u||∇2b|dx

≤ C∥∇u∥L2∥∇b∥2L4 +C∥b∥L4∥∇u∥L4∥∇2b∥L2

≤ C∥∇u∥L2∥∇b∥L2∥∇2b∥L2 +C∥∇u∥
1
2
L2∥∇

2u∥
1
2
L2∥∇

2b∥L2

≤ δ∥∇2b∥2L2 +C∥∇u∥2L2∥∇b∥2L2 +C∥∇2u∥L2∥∇u∥L2 . (3.12)

(5). It follows from the standard Lp′-estimates of Stokes equations that for any p′ ∈ [2,∞),

∥∇2u∥Lp′ + ∥∇p∥Lp′ ≤ C∥ρu̇∥Lp′ +C∥ρθe2∥Lp′ + ∥|b||∇b|∥Lp′ . (3.13)

which combined with (3.1) gives

∥∇2u∥L2 + ∥∇p∥L2 ≤ C∥
√
ρu̇∥L2 +C∥|b||∇b|∥L2 +C∥

√
ρθ∥L2

≤ C∥
√
ρu̇∥L2 +C∥|b||∇b|∥L2 +C. (3.14)

On the other hand, in view of the standard estimate of elliptic system, one obtains

∥∇2θ∥L2 ≤ C∥ρθ̇∥L2 +C∥ρu · e2∥L2 . (3.15)

Adding (3.10) + (c1 +
1
2 ) × (3.12) + (3.11) altogether for enough large constant c1 > 0, it follows

from (3.14) and (3.15) that

d
dt
(
∥∇u∥2L2 + ∥∇b∥2L2 + ∥∇θ∥

2
L2

)
+ 4∥
√
ρu̇∥2L2 + 4∥

√
ρθ̇∥L2 + 4

(
c1 +

1
2

)
∥∇2b∥2L2

≤ ε∥
√
ρu̇∥2L2 + η∥

√
ρθ̇∥2L2 + δ∥∇

2b∥2L2 +C∥∇u∥2L2∥∇b∥2L2 +C∥∇u∥L2∥∇θ∥L2∥∇2θ∥L2

+C(∥∇2u∥L2 + ∥∇p∥L2)(∥∇u∥L2 + ∥∇u∥2L2) +C

≤ ε∥
√
ρu̇∥2L2 + κ∥

√
ρθ̇∥2L2 + δ∥∇

2b∥2L2 + ε∥∇
2u∥2L2 + κ∥∇

2θ∥2L2

+C∥∇u∥2L2(∥∇u∥2L2 + ∥∇b∥2L2 + ∥∇θ∥
2
L2) +C

≤ C∥∇u∥2L2(∥∇u∥2L2 + ∥∇b∥2L2 + ∥∇θ∥
2
L2) +C∥|b||∇b|∥2L2

+ ε∥
√
ρu̇∥2L2 + κ∥

√
ρθ̇∥2L2 + δ∥∇

2b∥2L2 +C,
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which together with (3.1), (3.5), Gronwall’s inequality, and choosing ε, κ, δ small enough, one obtains

sup
0≤t≤T

(∥∇u∥2L2 + ∥∇θ∥
2
L2 + ∥∇b∥2L2) +

∫ T

0
(∥
√
ρu̇∥2L2 + ∥

√
ρθ̇∥2L2 + ∥∇

2b∥2L2)dt ≤ C. (3.16)

(6). It follows from [9, Lemma 3.4] and (1.5) that

sup
0≤t≤T
∥x̄aρ∥L1 ≤ C, inf

0≤t≤T

∫
BN0

ρdx ≥
1
4
, (3.17)

which along with (3.1) and (2.3) entails that for any η > 0 and σ > max{2, 2
η
}, there is a constant

C̄(σ, η) > 0 such that

∥ρηv∥Lσ ≤ ∥ρη x̄
3a
4σ ∥

L
4σ
3
∥vx̄−

3a
4σ ∥L4σ

≤ ∥ρ∥
η− 3

4σ
L∞ ∥ρx̄

a∥
3

4σ

L1 ∥vx̄−
3a
4σ ∥L4σ

≤ C̄(η, σ)(∥
√
ρv∥L2 + ∥∇v∥L2) for all v ∈ D̃1,2. (3.18)

In particular, this together with (2.3) and (3.1) yields

∥ρηu∥Lσ + ∥ρηθ∥Lσ + ∥ux̄−η∥Lσ + ∥θx̄−η∥Lσ ≤ C(1 + ∥∇u∥L2 + ∥∇θ∥L2). (3.19)

Thus, we infer from (3.14)–(3.16), (3.5) and (3.1), Hölder’s and and Garliardo-Nirenberg
inequalities that ∫ T

0
(∥
√
ρut∥

2
L2 + ∥

√
ρθt∥

2
L2)dt

≤ C
∫ T

0
(∥
√
ρu̇∥2L2 + ∥

√
ρ|u||∇u|∥2L2 + ∥

√
ρθ̇∥2L2 + ∥

√
ρ|u||∇θ|∥2L2)dt

≤ C
∫ T

0
(∥
√
ρu∥L4∥∇u∥L4 + ∥

√
ρu∥L4∥∇θ∥L4)dt +C

≤ C
∫ T

0
(∥∇2u∥2L2 + ∥∇

2θ∥2L2)dt +C

≤ C
∫ T

0
(∥
√
ρu̇∥2L2 + ∥

√
ρθ̇∥2L2 + ∥|b||∇b|∥2L2)dt +C

≤ C, (3.20)

(7). We infer from (3.14), (3.15), (3.19), (3.1), (3.4), and Gagliardo-Nirenberg inequality that

∥∇2u∥2L2 + ∥∇
2θ∥2L2

≤ C∥
√
ρu̇∥2L2 +C∥

√
ρθ̇∥2L2 +C∥|b||∇b|∥2L2 +C∥

√
ρθ∥2L2 +C∥

√
ρu∥2L2

≤ C∥
√
ρut∥

2
L2 +C∥

√
ρθt∥

2
L2 +C∥

√
ρ|u||∇u|∥2L2 +C∥

√
ρ|u||∇θ|∥2L2

+C∥b∥2L4∥∇b∥L2∥∇2b∥L2 +C

≤ C∥
√
ρut∥

2
L2 +C∥

√
ρθt∥

2
L2 +C∥

√
ρu∥

1
2
L2∥
√
ρu∥

3
2

L6(∥∇u∥2L4 + ∥∇θ∥
2
L4)
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+C∥∇2b∥2L2 +C

≤ C∥
√
ρut∥

2
L2 +C∥

√
ρθt∥

2
L2 +C∥∇u∥L2∥∇2u∥L2 +C∥∇θ∥L2∥∇2θ∥L2

+C∥∇2b∥2L2 +C

≤
1
2

(∥∇2u∥2L2 + ∥∇
2θ∥2L2) +C∥

√
ρut∥

2
L2 +C∥

√
ρθt∥

2
L2 +C∥∇2b∥2L2 +C,

which yields to

∥∇2u∥2L2 + ∥∇
2θ∥2L2 ≤ C∥

√
ρut∥

2
L2 +C∥

√
ρθt∥

2
L2 +C∥∇2b∥2L2 +C. (3.21)

This together with (3.16) and (3.20) leads to∫ T

0
(∥∇2u∥2L2 + ∥∇

2θ∥2L2)dt ≤ C. (3.22)

Thus, it follows from (3.16), (3.20), and (3.22) that (3.4) holds. The proof of Lemma 3.2 is completed.
□

Lemma 3.3. Under the assumption of Theorem 1.1, it holds that

sup
0≤t≤T
∥x̄ab∥2L2 +

∫ T

0
∥x̄a∇b∥2L2dt ≤ C. (3.23)

Proof. Multiplying (1.1)4 by x̄ab and integrating by parts over R2, one has

1
2

d
dt

∫
x̄a|b|2dx +

∫
x̄a|∇b|2dx

=
1
2

∫
|b|2∆x̄adx +

∫
b · ∇u · bx̄adx +

1
2

∫
|b|2u · ∇x̄adx

= N1 + N2 + N3. (3.24)

It follows from (3.19), (3.4), Hölder’s and Gagliardo-Nirenberg inequalities that

N1 ≤ C
∫
|b|2 x̄a(|x̄−1∇x|2 + |x̄−1∇2 x̄|)dx ≤ C∥x̄

a
2 b∥2L2 ,

N2 ≤ C∥x̄
a
2 b∥2L4∥∇u∥L2

≤ C∥x̄
a
2 b∥L2(∥x̄

a
2 b∥L2 + ∥x̄

a
2∇b∥L2∥x̄−1∇x̄∥L∞)

≤
1
4
∥x̄

a
2∇b∥2L2 +C∥x̄

a
2 b∥2L2 ,

N3 ≤ C
∫
|b|2 x̄a x̄−

3
4 ux̄−

1
4 log1+σ0(e + |x|2)dx

≤ C∥x̄
a
2 b∥L4∥x̄

a
2 b∥L2∥ux̄−

3
4 ∥L4

≤ C∥x̄
a
2 b∥L2(∥x̄

a
2∇b∥L2 + ∥x̄

a
2 b∥L2∥x̄−1∇x̄∥L∞)

≤
1
4
∥x̄

a
2∇b∥2L2 +C∥x̄

a
2 b∥2L2 ,
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where we use the fact that x̄−1∇x̄ and x̄−1∇2 x̄ are uniformly bounded on R2 since |x̄−1∇x̄| ≤ C/(1 + |x|)
and |x̄−1∇2 x̄| ≤ C/(1 + |x|2), and (e + y)−α log(e + y) ≤ α−1 for α > 0 and y ≥ 0.

Substituting N1 − N3 into (3.24), we obtain that

d
dt
∥x̄

a
2 b∥2L2 + ∥x̄

a
2∇b∥2L2 ≤ C∥x̄

a
2 b∥2L2 , (3.25)

which together with Gronwall’s inequality yields (3.23). The proof of Lemma 3.3 is completed. □

Lemma 3.4. Under the assumption of Theorem 1.1, it holds that

sup
0≤t≤T

t(∥
√
ρut∥

2
L2 + ∥

√
ρθt∥

2
L2 + ∥bt∥

2
L2) +

∫ T

0
t(∥∇ut∥

2
L2 + ∥∇θt∥

2
L2 + ∥∇bt∥

2
L2)dt ≤ C. (3.26)

Proof. Firstly, differentiating (1.1)2, (1.1)3 with respect to t respectively, we have

ρutt + ρu · ∇ut − ∆ut + ∇pt = −ρt(ut + u · ∇u) − ρut · ∇u + (ρθe2)t + (b · ∇b)t, (3.27)
ρθtt + ρu · ∇θt − ∆θt = −ρt(θt + u · ∇θ) − ρut · ∇θ + (ρu · e2)t. (3.28)

Multiplying (3.27), (3.28) by ut, θt respectively, and integrating it by parts over R2, it implies

1
2

d
dt

(∥
√
ρut∥

2
L2 + ∥

√
ρθt∥

2
L2) + ∥∇ut∥

2
L2 + ∥∇θt∥

2
L2

=

∫
ρu · ∇ut · utdx −

∫
ρut · ∇u · utdx −

∫
ρu · ∇(u · ∇u · ut)dx

+

∫
(b · ∇b)t · utdx +

∫
(ρθe2)t · utdx +

∫
ρu · ∇θtθtdx −

∫
ρut · ∇θθtdx

−

∫
ρu · ∇(u · ∇θθt)dx +

∫
(ρu · e2)tθtdx

≤ C
∫
ρ|u||ut||∇ut|dx +C

∫
ρ|ut|

2|∇u|dx +C
∫
|bt||∇ut||b|dx

+C
∫
ρ|u|(|ut||∇u|2 + |u||∇2u| + |u||∇u||∇ut|)dx +C

∫
ρ|ut||∇θ||θt|dx

+C
∫
ρ(|θt||ut| + |u||∇θ||ut| + |u||θ||∇ut|)dx +C

∫
ρ|u||∇θt||θt|dx

+C
∫
ρ|u|(|∇u||∇θ||θt| + |u||∇2θ||θt| + |u||∇θ||∇θt|)dx

+C
∫
ρ(|ut||θt| + |u||∇u||θt| + |u|2|∇θt|)dx =:

9∑
i=1

Zi. (3.29)

By using Hölder’s, Gagliardo-Nirenberg inequalities, (3.1), (3.4), (3.18), and (3.19), one gets

Z1 ≤ C∥
√
ρu∥L6∥

√
ρut∥L3∥∇ut∥L2

≤ C∥
√
ρu∥L6∥

√
ρut∥

1
2
L2∥
√
ρut∥

1
2

L6∥∇ut∥L2
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≤ C∥∇u∥L2∥
√
ρut∥

1
2
L2(∥
√
ρut∥

1
2
L2 + ∥∇ut∥

1
2
L2)∥∇ut∥L2

≤
1

12
∥∇ut∥

2
L2 +C∥

√
ρut∥

2
L2 ,

Z2 ≤ C∥∇u∥L2∥
√
ρut∥

2
L4

≤ C∥∇u∥L2∥
√
ρut∥

3
2

L6∥
√
ρut∥

1
2
L2

≤ C(∥∇ut∥
3
2
L2 + ∥

√
ρut∥

3
2
L2)∥
√
ρut∥

1
2
L2

≤
1

12
∥∇ut∥

2
L2 +C∥

√
ρut∥

2
L2 ,

Z3 ≤ C∥∇ut∥L2∥bt∥L4∥b∥L4

≤ C∥∇ut∥L2∥bt∥
1
2
L2∥∇bt∥

1
2
L2

≤
1

12
∥∇ut∥

2
L2 + δ∥∇bt∥

2
L2 +C∥bt∥

2
L2 ,

Z4 ≤ C∥
√
ρu∥L6∥

√
ρut∥L3∥∇u∥2L4 +C∥ρ

1
4 u∥2L12∥

√
ρut∥L3∥∇2u∥L2

+C∥∇ut∥L2∥
√
ρu∥2L8∥∇u∥L4

≤ C∥
√
ρut∥

1
2
L2∥
√
ρut∥

1
2

L6∥∇
2u∥L2 +C∥∇ut∥L2∥∇2u∥

1
2
L2

≤ C(∥
√
ρut∥L2 + ∥

√
ρut∥

1
2
L2∥∇ut∥

1
2
L2)∥∇

2u∥L2 +C∥∇ut∥L2∥∇2u∥
1
2
L2

≤
1

12
∥∇ut∥

2
L2 +C∥

√
ρut∥

2
L2 +C∥∇2u∥2L2 +C,

Z5 ≤ C∥
√
ρut∥L6∥

√
ρθt∥L3∥∇θ∥L2

≤ C(∥
√
ρut∥L2 + ∥∇ut∥L2)(∥

√
ρθt∥L2 + ∥

√
ρθt∥

1
2
L2∥∇θt∥

1
2
L2)

≤
1

12
∥∇ut∥

2
L2 +

1
8
∥∇θt∥

2
L2 +C∥

√
ρut∥

2
L2 +C∥

√
ρθt∥

2
L2 ,

Z6 ≤ C∥
√
ρut∥L2∥

√
ρθt∥L2 +C∥

√
ρu∥L6∥

√
ρut∥L3∥∇θ∥L2

+C∥∇ut∥L2∥
√
ρu∥L6∥

√
ρθ∥L3

≤ C∥
√
ρut∥L2∥

√
ρθt∥L2 +C∥

√
ρut∥

1
2
L2∥
√
ρut∥

1
2

L6

+C∥∇ut∥L2(∥
√
ρu∥L2 + ∥∇u∥L2)∥

√
ρθ∥

1
2
L2∥
√
ρθ∥

1
2

L6

≤
1

12
∥∇ut∥

2
L2 +C∥

√
ρut∥

2
L2 +C∥

√
ρθt∥

2
L2 +C,

Z7 ≤ C∥
√
ρu∥L6∥

√
ρθt∥L3∥∇θt∥L2

≤ C(∥
√
ρu∥L2 + ∥∇u∥L2)∥

√
ρθt∥

1
2
L2∥
√
ρθt∥

1
2

L6∥∇θt∥L2

≤ C(∥
√
ρθt∥L2 + ∥

√
ρθt∥

1
2
L2∥∇θt∥

1
2
L2)∥∇θt∥L2

≤
1
8
∥∇θt∥

2
L2 +C∥

√
ρθt∥

2
L2 ,

Z8 ≤ C∥
√
ρu∥L6∥

√
ρθt∥L3∥∇u∥L4∥∇θ∥L4

≤ C∥
√
ρθt∥

1
2
L2∥
√
ρθt∥

1
2

L6∥∇u∥
1
2
L2∥∇

2u∥
1
2
L2∥∇θ∥

1
2
L2∥∇

2θ∥
1
2
L2
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≤ C(∥
√
ρθt∥L2 + ∥

√
ρθt∥

1
2
L2∥∇θt∥

1
2
L2)∥∇

2θ∥
1
2
L2∥∇

2u∥
1
2
L2

≤
1
8
∥∇θt∥

2
L2 +C∥

√
ρθt∥

2
L2 +C∥∇2u∥2L2 +C∥∇2θ∥2L2 ,

Z9 ≤ C∥
√
ρθt∥L2∥

√
ρut∥L2 +C∥

√
ρu∥L6∥

√
ρθt∥L3∥∇u∥L2

+C∥
√
ρu∥L3∥

√
ρu∥L6∥∇θt∥L2

≤ C∥
√
ρθt∥L2∥

√
ρut∥L2 +C(∥

√
ρu∥L2 + ∥∇u∥L2)∥

√
ρθt∥

1
2
L2∥
√
ρθt∥

1
2

L6

+C∥
√
ρu∥

1
2
L2(∥
√
ρu∥L2 + ∥∇u∥L2)

3
2 ∥∇θt∥L2

≤
1
8
∥∇θt∥

2
L2 +C∥

√
ρut∥

2
L2 +C∥

√
ρθt∥

2
L2 +C.

Putting all above estimates into (3.29), we thus obtain

d
dt

(∥
√
ρut∥

2
L2 + ∥

√
ρθt∥

2
L2) + ∥∇ut∥

2
L2 + ∥∇θt∥

2
L2

≤ 2δ∥∇bt∥
2
L2 +C(∥

√
ρθt∥

2
L2 + ∥

√
ρut∥

2
L2 + ∥bt∥

2
L2 + ∥∇

2θ∥2L2 + ∥∇
2u∥2L2) +C. (3.30)

Next, differentiating (1.1)4 with respect to t gives

btt − bt · ∇u − b · ∇ut + ut · ∇b + u · ∇bt = ∆bt. (3.31)

Multiplying (3.31) by bt, and integrating it by parts over R2, one has

1
2

d
dt
∥bt∥

2
L2 + ∥∇bt∥

2
L2

=

∫
b · ∇ut · btdx +

∫
bt · ∇u · btdx +

∫
ut · ∇bt · bdx

≤ C∥∇ut∥L2∥bt∥L4∥b∥L4 +C∥∇u∥L2∥bt∥
2
L4 +C∥∇bt∥L2∥|ut||b|∥L2

≤ C∥∇ut∥L2∥bt∥
1
2
L2∥∇bt∥

1
2
L2 +C∥∇bt∥L2∥ut x̄−

a
4 ∥2L8∥x̄

a
2 b∥L2∥b∥L4

+C∥bt∥L2∥∇bt∥L2

≤
1
2
∥∇bt∥

2
L2 + c2∥∇ut∥

2
L2 + c2∥

√
ρut∥

2
L2 ,

which leads to

d
dt
∥bt∥

2
L2 + ∥∇bt∥

2
L2 ≤ c2∥∇ut∥

2
L2 + c2∥

√
ρut∥

2
L2 , (3.32)

for enough large constant c2 > 0.
Moreover, multiplying (3.30) by c2 + 1 and adding the resulting inequality with (3.32), and

choosing δ suitable small, one obtains
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d
dt
(
(c2 + 1)∥

√
ρut∥

2
L2 + (c2 + 1)∥

√
ρθt∥

2
L2 + ∥bt∥

2
L2

)
+ ∥∇ut∥

2
L2 + (c2 + 1)∥∇θt∥2L2 + ∥∇bt∥

2
L2

≤ C(∥
√
ρut∥

2
L2 + ∥

√
ρθt∥

2
L2 + ∥bt∥

2
L2 + ∥∇

2θ∥2L2 + ∥∇
2u∥2L2) +C

≤ C(∥
√
ρut∥

2
L2 + ∥

√
ρθt∥

2
L2 + ∥bt∥

2
L2 + ∥∇

2b∥2L2) +C. (3.33)

Multiplying (3.33) by t, we obtain (3.26) after using Gronwall’s inequality, (3.5), (3.4) and (3.16). The
proof of Lemma 3.4 is completed. □

Lemma 3.5. Under the assumption of Theorem 1.1, it holds that

sup
0≤t≤T
∥ρ∥H1∩W1,q +

∫ T

0

(
∥∇2u∥

q+1
q

Lq + ∥∇
2θ∥

q+1
q

Lq + ∥∇p∥
q+1

q

Lq

)
dt

+

∫ T

0
t(∥∇2u∥2Lq + ∥∇p∥2Lq + ∥∇

2θ∥2Lq)dt ≤ C. (3.34)

Proof. First, it follows from the mass equation (1.1)1 that |∇ρ|r satisfies for any r ≥ 2,

(|∇ρ|r)t + div(|∇ρ|ru) + r|∇ρ|r(∇ρ)tr∇u(∇ρ) = 0, (3.35)

which together with integrating by parts over R2 implies

d
dt
∥∇ρ∥Lr ≤ C∥∇u∥L∞∥∇ρ∥Lr . (3.36)

Next, one gets from Gagliardo-Nirenberg inequality that

∥∇u∥L∞ ≤ C∥∇u∥
q−2

2(q−1)

L2 ∥∇
2u∥

q
2(q−1)

Lq . (3.37)

On the one hand, it is easy to check that

∥∇2u∥Lq + ∥∇p∥Lq ≤ C(∥ρut∥Lq + ∥ρu · ∇u∥Lq + ∥b · ∇b∥Lq + ∥ρθe2∥Lq)

≤ C∥
√
ρut∥

2(q−1)
q2−2

L2 ∥ρut∥

q2−2q
q2−2

Lq2 +C∥ρu∥L2q∥∇u∥L2q

+C∥b∥L2q∥∇b∥L2q +C∥ρθ∥Lq

≤ C∥
√
ρut∥

2(q−1)
q2−2

L2 ∥ρut∥

q2−2q
q2−2

Lq2 +C∥∇u∥
1
q

L2∥∇
2u∥

q−1
q

L2

+C∥b∥
1
q

L2∥∇b∥L2∥∇2b∥
q−1

q

L2 +C

≤ C∥
√
ρut∥

2(q−1)
q2−2

L2 ∥∇ut∥

q2−2q
q2−2

L2 +C∥
√
ρut∥L2

+C∥∇2u∥
q−1

q

L2 +C∥∇2b∥
q−1

q

L2 +C, (3.38)
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which together with (3.4) and (3.26) implies that

∫ T

0

(
∥∇2u∥

q+1
q

Lq + ∥∇p∥
q+1

q

Lq

)
dt

≤ C sup
0≤t≤T

(t∥
√
ρut∥L2)

q2−1
q(q2−2)

∫ T

0
t−

q+1
2q (t∥∇ut∥L2)

(q−2)(q+1)
2(q2−2) dt

+C
∫ T

0
∥
√
ρut∥

q+1
q

L2 dt +C
∫ T

0
(∥∇2u∥

q2−1
q2

L2 + ∥∇
2b∥

q2−1
q2

L2 )dt +C

≤ C
∫ T

0
t−

q3+q2−2q−2
q3+q2−2q dt +C

∫ T

0
(∥
√
ρut∥

2
L2 + ∥∇

2u∥2L2 + ∥∇
2b∥2L2)dt +C

≤ C. (3.39)

On the other hand, it follows from (3.4) and (3.26) that∫ T

0
t
(
∥∇2u∥2Lq + ∥∇p∥2Lq

)
dt

≤ C
∫ T

0
t(∥ρut∥

2
Lq +C∥ρu · ∇u∥2Lq + ∥b · ∇b∥2L2 + ∥ρθ∥

2
Lq)dt

≤ C
∫ T

0
∥
√
ρut∥

2
L2dt +C

∫ T

0
t∥∇ut∥

2
L2dt

+C
∫ T

0
(∥∇2u∥2L2 + ∥∇

2b∥2L2)dt +C

≤ C. (3.40)

Thanks to (3.37), (3.39) and (3.40), we immediately obtain∫ T

0
∥∇u∥L∞dt ≤ C. (3.41)

Thus, applying Gronwall’s inequality to (3.36) gives

sup
0≤t≤T
∥∇ρ∥L2∩Lq ≤ C. (3.42)

Finally, similar to (3.39) and (3.40), we obtain from (1.1)3 by Lq-estimates to elliptic equations that∫ T

0

(
∥∇2θ∥

q+1
q

Lq + t∥∇2θ∥2Lq

)
dt ≤ C, (3.43)

which together with (3.39), (3.40), and (3.42) yields (3.34) and completes the proof of lemma. □

Next, the following high order weighted estimates on the density has been proven in [9, Lemma 3.6].
We omit the detailed proof here for simplicity.

Lemma 3.6. Under the assumption of Theorem 1.1, it holds that

sup
0≤t≤T
∥x̄aρ∥L1∩H1∩W1,q ≤ C. (3.44)
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Lemma 3.7. Under the assumption of Theorem 1.1, it holds that

sup
0≤t≤T

t(∥x̄
a
2∇b∥2L2 + ∥∇

2b∥2L2) +
∫ T

0
t∥x̄

a
2∇2b∥2L2dt ≤ C. (3.45)

Proof. First, multiplying (1.1)4 by x̄a∆b and integrating by parts over R2 lead to

1
2

d
dt
∥x̄

a
2∇b∥2L2 + ∥x̄

a
2∆b∥2L2

≤ C
∫
|∇b||b||∇u||∇x̄a|dx +C

∫
|∇b|2|u||∇x̄a|dx

+C
∫
|∇b||∆b||∇x̄a|dx +C

∫
|b||∇u||∆b|x̄adx

+C
∫
|∇u||∇b|2 x̄adx =:

5∑
i=1

Qi. (3.46)

By using Hölder’s inequality, Gagliardo-Nirenberg inequality, (3.23), (3.4) and (3.19), one obtains

Q1 ≤ C∥x̄
a
2 b∥L4∥∇u∥L4∥x̄

a
2∇b∥L2∥x̄−1∇x̄∥L∞

≤ C∥x̄
a
2 b∥

1
2
L2(∥x̄

a
2 b∥L2 + ∥x̄

a
2∇b∥L2∥x̄−1∇x̄∥L∞)

1
2

× ∥∇u∥
1
2
L2∥∇

2u∥
1
2
L2∥x̄

a
2∇b∥L2

≤ C∥∇2u∥2L2 +C∥x̄
a
2∇b∥2L2 +C,

Q2 ≤ C∥|∇b|2−
2
3a x̄a− 1

3 ∥
L

6a
6a−2
∥ux̄−

1
3 ∥L6a∥|∇b|

2
3a ∥L6a

≤ C∥x̄
a
2∇b∥

6a−2
3a

L2 ∥∇b∥
2
3a

L4

≤ C∥x̄
a
2∇b∥2L2 +C∥∇b∥2L4

≤ C∥x̄
a
2∇b∥2L2 +C∥∇2b∥2L2 +C,

Q3 ≤ C∥x̄
a
2∇b∥L2∥x̄

a
2∇2b∥L2∥x̄−1∇x̄∥L∞

≤
1
4
∥x̄

a
2∇2b∥2L2 +C∥x̄

a
2∇b∥2L2 ,

Q4 ≤ C∥x̄
a
2 b∥L4∥∇u∥L4∥x̄

a
2∇2b∥L2

≤ C∥x̄
a
2 b∥

1
2
L2(∥x̄

a
2∇b∥

1
2
L2 + ∥x̄

a
2 b∥L2∥x̄−1∇x̄∥L∞)

× ∥∇u∥
1
2
L2∥∇

2u∥
1
2
L2∥x̄

a
2∇2b∥L2

≤
1
4
∥x̄

a
2∇2b∥2L2 +C∥∇2u∥2L2 +C∥x̄

a
2∇b∥2L2 +C,

Q5 ≤ C∥∇u∥L∞∥x̄a∇b∥2L2

≤ C
(
1 + ∥∇2u∥

q+1
q

Lq

)
∥x̄a∇b∥2L2 ,

Substituting the above estimates into (3.46), we have
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1
2

d
dt
∥x̄

a
2∇b∥2L2 + ∥x̄

a
2∇2b∥2L2

≤ C(1 + ∥∇2u∥
q+1

q

Lq )∥x̄
a
2∇b∥2L2 +C∥∇2u∥2L2 +C∥∇2b∥2L2 +C

≤ C(1 + ∥∇2u∥
q+1

q

Lq )∥x̄
a
2∇b∥2L2 +C∥

√
ρut∥

2
L2 +C∥∇2b∥2L2 +C, (3.47)

due to the following fact that

∥x̄
a
2∇2b∥2L2 =

∫
x̄a|∆b|2dx −

∫
x̄a∂i∂ jb · ∂ jbx̄−1 log1+σ0(e + |x|2)dx

+

∫
x̄a∂i∂ib · ∂ jbx̄−1 log1+σ0(e + |x|2)dx

≤ C∥x̄
a
2∆b∥2L2 +

1
2
∥x̄

a
2∇2b∥2L2 +C∥x̄

a
2∇b∥2L2 . (3.48)

Thus, multiplying (3.47) by t, we deduce from Gronwall’s inequality, (3.4) and (3.34) that

sup
0≤t≤T

t∥x̄
a
2∇b∥2L2 +C

∫ T

0
t∥x̄

a
2∇2b∥2L2dt ≤ C. (3.49)

Next, it follows from (1.1)4, (3.19), (3.4), and Gagliardo-Nirenberg inequality that

∥∇2b∥2L2 ≤ C∥bt∥
2
L2 +C∥|u||∇b|∥2L2 +C∥|b||∇u|∥2L2

≤ C∥bt∥
2
L2 +C∥ux̄−

a
2 ∥2L8∥x̄

a
2∇b∥L2∥∇b∥L4 +C∥b∥2L4∥∇u∥2L4

≤ C∥bt∥
2
L2 +C∥x̄

a
2∇b∥2L2 +C∥∇b∥L2∥∇2b∥L2 +C∥∇u∥L2∥∇2u∥L2

≤
1
2
∥∇2b∥2L2 +C∥x̄

a
2∇b∥2L2 +C∥bt∥

2
L2 +C∥∇2u∥2L2 +C

≤
1
2
∥∇2b∥2L2 +C∥x̄

a
2∇b∥2L2 +C∥bt∥

2
L2 +C∥

√
ρut∥

2
L2 +C, (3.50)

which together with (3.26) and (3.49) yields that (3.45) and completes the proof of lemma. □

4. Proof of Theorem 1.1

With a priori estimates in Section 3 at hand, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.1, there exists a T∗ > 0 such that the problems 1.1 and 1.2 has a
unique strong solution (ρ, u, θ, b, p) on R2 × (0,T∗]. Now, we will extend the local solution to all time.

Set

T ∗ = sup{T | (ρ, u, θ, b, p) is a strong solution on R2 × (0,T]}. (4.1)

First, for any 0 < τ < T∗ < T ≤ T ∗ with T finite, one deduces from (3.1), (3.4), (3.26), (3.34) and (3.45)
that for any q > 2,

∇u,∇θ,∇b, b ∈ C([τ,T ]; L2 ∩ Lq), (4.2)
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where one has used the standard embedding

L∞(τ,T ; H1) ∩ H1(τ,T ; H−1) ↪→ C(τ,T ; Lq) for any q ∈ (2,∞).

Moreover, it follows from (3.34) and (3.44) and [7, Lemma 2.3] that

ρ ∈ C([0,T ]; L1 ∩ H1 ∩W1,q). (4.3)

Finally, if T ∗ < ∞, it follows from (4.2), (4.3), (3.1), (3.4), (3.34) and (3.45) that

(ρ, u, θ, b)(x,T ∗) = lim
t→T ∗

(ρ, u, θ, b)(x, t)

satisfies the initial condition (1.7) at t = T ∗. Thus, taking (ρ, u, θ, b)(x,T ∗) as the initial data, Lemma 2.1
implies that one can extend the strong solutions beyond T ∗. This contradicts the assumption of T ∗

in (4.1). The proof of Theorem 1.1 is completed. □

5. Conclusions

In this paper, we are concerned with the Cauchy problem of inhomogeneous incompressible
magnetic Bénard equations with vacuum as far-field density in R2. Using the weighted function to
the density, as well as the Hardy-type inequality, we have successfully established the time-uniform a
priori estimates of solutions. Thus, we can extend the local strong solutions to the global one.
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