AIMS Mathematics, 6(11): 12085-12103.
AIMS Mathematics DOI: 10.3934/math.2021701
%5 Received: 19 June 2021

o Accepted: 17 August 2021
http://www.aimspress.com/journal/Math Published: 19 August 2021

Research article

Global well-posedness to the Cauchy problem of 2D inhomogeneous
incompressible magnetic Bénard equations with large initial data and
vacuum

Zhongying Liu*
College of Mathematics, Changchun Normal University, Changchun 130032, China

* Correspondence: Email: liuzy757@163.com.

Abstract: In this paper, we are concerned with the Cauchy problem of inhomogeneous incompressible
magnetic Bénard equations with vacuum as far-field density in R?. We prove that if the initial density
and magnetic field decay not too slowly at infinity, the system admits a unique global strong solution.
Note that the initial data can be arbitrarily large and the initial density can contain vacuum states and
even has compact support. Moreover, we extend the result of [16,17] to the global one.

Keywords: magnetic Bénard equations; global solution; large initial data; vacuum
Mathematics Subject Classification: 35Q35, 35B65, 76D03

1. Introduction

In this paper, we consider the Cauchy problem of the following 2D density-dependent magnetic
Bénard equations
o +u-Vp=0,

pu;+pu-Vu+Vp=uAu+b-Vb+ pbe,,

P0; + pu - VO = kA0 + pu - e;, (1.1)
b;+u-Vb=vAb+b-Vu,

divu = divb = 0.

which is equipped the following initial conditions and far-field behavior:

(p7pu7p9a b)(x9 O) = (pOapu()’pHOa bO)(x) for x € RZ,
(p9 u, 0, b)(x’ ) - (0’ 09 09 0)’ as |X| — 0,

(1.2)

where p, u, 6, b and p denote the density, velocity, temperature, magnetic field, and pressure of the fluid,
respectively. u > 0 is the viscosity coefficient, k > 0 is the heat conductivity coefficient, and v > 0 is
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the magnetic diffusivity acting as a magnetic diffusion coefficient of the magnetic field. e, = (0, 1),
where 7 is the transpose.

The magnetic Bénard equations (1.1) illuminates the heat convection phenomenon under the
dynamics of the velocity and magnetic fields in electrically conducting fluids such as plasmas
(see [10, 11] for details). If we ignore the Rayleigh-Bénard convection term u - e;, system (1.1)
recovers the inhomogeneous incompressible MHD equations (i.e., 8 = 0). Let us review some previous
works about the standard incompressible MHD equations. In the absence of vacuum, Abidi-Paicu [1]
established the local and global (with small initial data) existence of strong solutions in the framework
of Besov spaces. Chen et al. [2] proved a global solution for the global well-posedness to the
3D Cauchy problem for the bounded density. In the presence of vacuum, imposing the following
compatibility condition,

—pAug + Vpo — by - Vby = +Jpog (1.3)

for some (po, g) € H' x L*. Chen et al. [3] obtained the unique local strong solutions to the 3D Cauchy
problem with general initial data. Song [13] studied the local well-posedness of strong solutions
without additional compatibility condition (1.3), which extended the main result of [3]. Recently,
Gao-Li [4] shown the global strong solutions with vacuum in bounded domain, provided that initial
data is suitable small. Later on, Zhang-Yu [15] extended this result to the whole space. For the 2D
case, Huang-Wang [5] investigated the global existence of strong solution with general large data in
bounded domain provided that the compatibility condition (1.3) holds. Recently, Lv et al. [8] showed
the global existence of strong solutions to the 2D Cauchy problem with the large data and vacuum.

Let us go back to the system (1.1). Very recently, by weighted energy method, Zhong [16] showed
the local existence of strong solutions to the Cauchy problem of (1.1) in R2. However, the global
existence of strong solution to the 2D Cauchy problem of (1.1) with vacuum and general initial data is
not addressed. In fact, this is the main aim of this paper.

Before stating the main results, we first explain the notations and conventions used throughout this
paper. For R > 0. Set

Bg := {x € R¥||x| < R}, ffdx:ffdx, u=xk=v=1.
RZ
Moreover, for 1 < r < oo and k > 1, the standard Sobolev spaces are defined as follows:
L = Lr(RZ), Wk,r — Wk,r(RZ), Hk — Wk,Z.

Without loss of generality, we assume that initial density p, satisfies

fpodx: 1, (1.4)

which implies that there exists a positive constant N, such that

1 1
> — = —. 1
fBNPodx—szodx . (1.5)

0

Throughout this paper, always denote
%= (e + |x?) 2 log" (e + |x?), (1.6)

with oy > 0 fixed. The main result of this paper is stated as the following theorem:
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Theorem 1.1. In addition to (1.4) and (1.5), assume that the initial data (py, uy, 6o, bo) satisfies for any
given numbers a > 1 and q > 2,

00 >0, ¥pye L' nH' n W, divuy = divh, = 0,
Vugy, VO, Vb() S Lz, \/p_()uo, \//)_090 S Lz, Xubo € LZ, (17)
b() S L4.

Then the problems (1.1) and (1.2) has a unique global strong solution (p > 0, u, 0, b, p) satisfying that
Jorany 0 < T < oo,

0<peC(0,T;L' n H' n W),

#pe L0, T;L' n H' n W),

vou, Vu, X 'u, Vt\jpu,, ViVp, ViViu € L*(0,T; L?),
VPO, V0,576, Nt \[pb,, VIV?0 € L*(0,T; L?),

b,%2b, Vb, \tb,, \tV?b € L*(0,T; L?),

g+l (1.8)
Vu,V e L*(0,T; H)YN L« (0,T; Wh),
Vp e LX0,T; %) N L (0,T; L9),
ViVu, ViV € L*(0, T; W),
Vo, pw: € LA(R? x (0, T)),
VIx:Vb, \iVb,, ViVu,, ViVe, € [2(R? x (0, T)),
and
inf f p(x, Hdx > l, (1.9)
0<t<T By, 4

for some positive constant Ny depending only on +Jpouo, No, and T.

Remark 1.1. We remark that Theorem 1.1 is proved without any smallness on the initial data.
Moreover, the initial density can contain vacuum states and even has compact support. We also point
out that Theorem 1.1 extends the result of Zhong [16] to the global one. In particular, when b = 0,
the incompressible magnetic Bénard equations (1.1) reduces to the incompressible Bénard equations,
Theorem 1.1 also extends Zhong [17] to the global one.

We now make some comments on the key ingredients of the analysis in this paper. For the initial data
satisfying (1.7), Zhong [16] recently established the local existence and uniqueness of strong solutions
to the Cauchy problems (1.1) and (1.2) (see Lemma 2.1). Thus, to extend the local strong solution to
be a global one, we need to obtain global a priori estimates on strong solutions to (1.1) and (1.2) in
suitable higher norms. However, due to critically of Sobolev’s inequality in R?, it seems difficult to
bound ||ul|z» just in term of || yjoul|;> and ||Vul|;> for any p > 2. Moreover, compared with [9], for the
systems (1.1) and (1.2) here, the strong coupling terms and Rayleigh-Bénard convection terms, such
as u - Vb, pu - e, and pbe,, will bring out some new difficulties.

To overcome these difficulties mentioned above, some new ideas are needed. First, using the
structure of the 2D magnetic equations, we multiply (1.1), by 4|b|*b and thus obtain the useful a priori
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estimate on L*(R?x (0, T))-norm of |b||Vh| (see (3.5)), which is crucial in deriving the L>(0, T; L*(R?))-
norm of Vu, VO and Vb. Next, in order to derive the estimates on L*(0, T; L>*(R?))-norm of Vu, V6,
motivated by [9], multiplying (1.1), and (1.1); by it := u, + u - Vu and 6 := 6, + u - V6 instead of usual
u; and 6, respectively, we deduce that the key point to obtain the estimate on the L*(0, T'; L>(R?))-norm
of the gradient of the velocity u and temperature 6 is to bound the terms

L = fpﬁjuiaiujdx.

We find I in fact can be bounded by [[Vpll.2[|Vull?, (see (3.8)), since ;u'du’ € H' due to the fact
that divu = 0 and V* - Vu = 0 (see Lemma 2.4). Moreover, the usual L>*(R? X (0, T))-norm of b,
cannot be directly estimated due to the strong coupled term u - Vb. Thus, we multiplying (1.1), by
Ab instead of usual b,, the coupled term can be controlled after integration by parts. Thirdly, to tackle
the difficulty caused by the lack of the Sobolev inequality, motivated by [8, 16, 17], by introducing a
weighted function to the density, as well as a Hardy-type inequality in [7] by Lions, the ||o"v||, (7 > O,
o > max{2, %}) is controlled in term of || 4/ov[|;> and [|[Vv][;2 (see (3.18)), which plays an important
role in bounding the Rayleigh-Bénard convection terms pu - e, and pfe,, and deriving the estimates
on the L*(0, T; L*(R?)) of ¢ vpou; and Vi \pY,. Finally, with these a priori estimates on the velocity,
temperature and magnetic field at hand, some useful spatial weighted estimates on both b, Vu and V@
are derived, which yields the bounded of L°(0, T'; L(R?))-norm of VV?b (see Lemma 3.7).

The rest of the paper is organized as follows. In Section 2, we collect some elementary facts and
inequalities which will be needed in later analysis. Section 3 is devoted to the a priori estimates.
Finally, we give the proof of Theorem 1.1 in Section 4.

2. Preliminaries

In this section, we will recall some known facts and elementary inequalities which will be used
frequently later.
We start with the local existence of strong solutions whose proof can be found in [16].

Lemma 2.1. Assume that (pg, ug, 6y, by) satisfies (1.7). Then there exists a small time T > 0 and a
unique strong solution (p, u, 6, b, p) to the problems (1.1) and (1.2) in R? x T satisfying (1.8) and (1.9).

Next, the following Gagliardo-Nirenberg inequalities will be stated, which see [12] for the detailed
proof.

Lemma 2.2. For all v € Cy(R"), integer j, 0 < j <m, 1 < r,q < oo, and i < ¥ < 1, there exists a
positive constant C depending only on j, m, n, p’, q, and r such that

IVl < CIV™IE AV 2.1)
where

i:1+ﬂ(%—%)+(l—ﬂ)é,

and m — j — % is not a nonnegative integer. If 1 < r < oo and m — j—“ is a nonnegative integer, (2.1)
holds with 9 € [ £, 1).
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As a key technical ingredient for our approach, we need the following weighted bounds for functions
in the space D'2(R?) 2 {v € H! (R?) : Vv € L*(R?)}, whose proof can be found in [6, Lemma 2.4].

loc

Lemma 2.3. Let i be as in (1.6). Assume that p € L' N L™ be a non-negative function satisfying
f pdx =My, llpllpinre < Mo,
By,

with M, M, > 0 and By, C R? (N; > 1). Then there exists C = C(M,, M», Ny) > 0 such that
Ivx Iz < C>IVpvllz2 + 1IVVlI2), ¥ ve DY®R). (2.2)
Moreover, for any n > 0 and o > max{2, 7—27}, there exits C = C(o,n, M, M, Ny) > 0 such that

wx e < ClVovllz + IVVIl2), ¥ v e DR (2.3)

Finally, let H' and BMO stand for the usual Hardy and BMO spaces (see [14, Section 4]). Then
the following well-known facts play a key role in the proof of Lemma 3.2, whose proof can be found
in [9].

Lemma 2.4. (i) There is a positive constant C such that
IE - Blig < CIIEN2l1Bl|2, (2.4)
forall E € L* and B € L? with
divE=0, V'B=0 inD'.
(ii) There is a positive constant C such that for all v € 51’2(R2), it holds

IVllemo < CIlIVVI|z2.
3. A priori estimates

In this section, we will establish some necessary a priori bounds for strong solutions (p, u, 8, b, p) to
the Cauchy problems (1.1) and (1.2) to extend the local strong solution. Thus, let 7 > 0O be a fixed time
and (p, u, 8, b, p) be the strong solution to (1.1) and (1.2) on R? x (0, T] with initial data (oo, uo, 89, bo)
satisfying (1.4)—(1.6). In what follows, we will use the convention that C denotes a generic positive
constant depending on initial data and 7.

We begin with the following standard energy estimate and the estimate on the L¥(0,T; L' N L™)-
norm of the density.

Lemma 3.1. Under the assumption of Theorem 1.1, it holds that

sup (lollzinzs + | Voully, + 1 vpoll7. + 1b117.)

0<t<T

T
+ f (IVull7, + IVl + IVBI.)dr < C. (3.1
0
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Proof. First, it follows from the transport equation (1.1); and making use of (1.1), (see Lions [7,
Theorem 2.1]) that

sup [|pllpinzs < C. (3.2)

0<t<T

Next, multiplying the Egs (1.1),34 by (u, 6, b) and integrating by parts over R?, one obtains by using
divu = divb = 0,

1d

5 2 (INBUIR: +1INROIE: + BI:) + IV, + V6, + VB

< CfPIMIIHIdx < CllVpully, + Cll Vool (3.3)
which together with Gronwall’s inequality yields (3.1) and completes the proof of lemma. O

Lemma 3.2. Under the assumption of Theorem 1.1, it holds that

sup (I1blly. + IVully, + IVOIIZ, + 1VBII7)

0<t<T

T
+f (I Voullz, + 11 VPoHIIZ, + IV2bI,)dt
0

T
+ f (IV2ully, + IV?6l17,)dt < C. (3.4)
0

Proof. (1). Multiplying (1.1), by 4|b|*b and integrating the resulting equation over R?, one has

d
- f Ibl*dx + 12 f |bl*|Vb|*dx

< CIIVull 2 IBPI
< CIIVull 2 6PN V1P 2
< IBIVBIIE, + CIIVullL|Ibll;

14°

which together with Gronwall’s inequality and (3.1) yields that

T
sup b1l +f IBIIVBIIZ.de < C. (3.5)
0

0<t<T

(2). Multiplying (1.1), by i := u, + u - Vu and integrating by parts over R?, we find that

1d 5 )
2dtf‘Wul dx+fp|u| dx
:fAu-(u-Vu)dx—pr-udx+fb-Vb-udx
4
+fp9e2-udx:ZIi. (3.6)
i=1
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It follows from integration by parts and Holder’s inequality that
I =- f O O O’ dx < Cl|Vull2,|IVull 2, 3.7)
Notice that div(0;u) = 0;divu = 0 and V* - (Vu/) = 0, we infer from Lemma 2.4 that
Il < | f pouiduida| < Clipllswolldu'datlu < CIV pli2IVul. (3.8)

In view of (1.1),, Holder’s and Gagliardo-Nirenberg inequalities, we deduce after integrating by

parts that
d
I = —Efb.prbdx%rfb,-Vu-bdx+fb.Vu-b;dx

+fb-Vb-(u-Vu)dx
d
:—Efb-Vu~bdx+f(Ab—u~Vb+b~Vu)-Vu~bdx
+ f b-Vu-(Ab—u-Vb+b-Vu)dx — f b'0u’d u b*dx
- fbiujﬁ,-ajukbkdx
d
:—Efb-Vu-bdx+f(Ab+b-Vu)-Vu-bdx
+ f b-Vu-(Ab+b - Vu)dx — f 'O’ 0 u* b dx
d
< fb - Vu - bdx + 0||V*bl[;, + ClIBIIVulll?,
d
S f b - Vu - bdx + 8|IV?blI7, + ClIbII7 IVl 21Vl 2
d
< f b - Vu - bdx + 8||IV?blI7, + CIIVull 2| Vull 2. (3.9)

For the estimates of 1, we derive

Iy < Cllpill2ll Vobll.2 < ell vpidly, + C.

Combining the above estimates yields

1d
EE(HVMHB + N(@) + 1 Vpillz
< SIV2BIIZ, + CUIVull2 + IV pll)(IVull + IV2ull7,), (3.10)

where N(7) := 2 f b - Vu - bdx. We get by direct computations
1
IN@)| < ClIVull2lIBIZ < ClVull 2 1B 2MIVBI 2 < EIIVulliz + c1l|VbII7,.
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(3). Multiplying (1.1); by 6 := 6, + u - V6 and integrating by parts over R2, one has

1d ,

—— | |VoP 2

2dtf| 6| a’x+fp|6’| dx

= - f@,-@ﬁ,»ujﬁjedx + fpu - ey - Odx

< ClIVull2IVOIIZ, + Cll Vbl |l voull 2
< kI Vpéll7. + ClIVull 2Vl 2NIV?6ll 2 + C. (3.1

(4). Multiplying (1.1), by Ab and integrating by parts over R?, we infer from Holder’s inequality,
Gagliardo-Nirenberg inequality, and (3.5) that

1d 2 27,12
2dtf|vzo| dx+f|Vb| dx

<C f IVull Vbl dx + f bV ullVbldx
< ClIVull 2|1V, + ClIblI+ IVl 4 VBl 2
< ClIVull 2 IVl 2[V?Bll 2 + CIIVMIII%}IIVZMIIL%Z||V2b||L2
< SIV2DI, + CIVUllLIIVBI, + CIIVZull 2| Vull 2. (3.12)
(5). It follows from the standard L” -estimates of Stokes equations that for any p’ € [2, 00),
IVully +[IVpll < Clioil,y + ClloBeall,y + IIBIIVBII- (3.13)

which combined with (3.1) gives

IV2ull2 + IV pll> < CliNpidlz2 + ClIBIVAIL: + Cll Vool 2
< Cll+/pullz + CllIDIIVbIl| 2 + C. (3.14)

On the other hand, in view of the standard estimate of elliptic system, one obtains
IV?6ll,> < Cllobli2 + Cllou - el 2. (3.15)

Adding (3.10) + (¢; + %) X (3.12) + (3.11) altogether for enough large constant ¢; > 0, it follows
from (3.14) and (3.15) that

%(nwniz + VIR + IV6I12.) + 41l Vpicll7. + 4l Vb2 +4(cy + %)Hvzbniz

< ellvpill2, + nll VPOl + SIVZDI1Z, + CIIVUllZ VDI, + ClIVull 21Vl 211V 62
+ C(IV2ullz2 + IV pll2)(IVullz2 + IVull?,) + C

< ellVpull?, + «ll Vooli;. + SlIV2bI7, + ellVully, + «IIV>6ll.
+ ClIVull>,(IVully, + VI, + V67, + C

< ClIVullz,(IVull2, + IVBIL, +1IVEI,) + CllIBIVAIIL,
+ &ll pilly, + «ll VoOIl7. + SlIV>blI7. + C,
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which together with (3.1), (3.5), Gronwall’s inequality, and choosing &, «, 6 small enough, one obtains

0<t<T

T
sup (IVull}, + IVOI[7. + [IVBII7,) + f (I V7, + 1 VoOII7, + IV?blI7.)de < C. (3.16)
0
(6). It follows from [9, Lemma 3.4] and (1.5) that

1
sup ||Xplly < C,  inf f pdx > —, (3.17)
0 By, 4

0<t<T <t<T

which along with (3.1) and (2.3) entails that for any n > 0 and o > max{2, %}, there is a constant
C(o, 1) > 0 such that

_3a __3a
o™Vl < Ml X% || ag (VI3 [l 40
’7_% —a % -
< llpll"" x5 llvx™5 || 1o
< C, )l Vpvllz + IVVl2)  forallv e D' (3.18)
In particular, this together with (2.3) and (3.1) yields
llo"ullze + llo"0llre + lux ™|l + 10X7|e < C(1 + [[Vullz2 + [[VO|2). (3.19)

Thus, we infer from (3.14)-(3.16), (3.5) and (3.1), Holder’s and and Garliardo-Nirenberg
inequalities that

T
f (I Voull2, + 1l VpoilI7.)dt
0
T
< Cf (I vpilly, + IRl Vullly, + | Vobll7, + Il Volul Vll7.)dt
0
T
< Cf (Il VoullplIVullzs + Nl Voull1IVOll )dr + C
0

T
< Cf (IV2ully, +1IV26l17,)dr + C
0

T
< Cf (I Vpilz. + 1| VoOIl7, + IBIIVABII,)dt + C
0
<C, (3.20)
(7). We infer from (3.14), (3.15), (3.19), (3.1), (3.4), and Gagliardo-Nirenberg inequality that

IV2ull7, +11V6ll7,
< Cllvpill7, + Cllvpbll7, + ClILIVAIE, + Cllvpbllz. + Cll vpull;.

< CliVpuiz, + CllVpoilly. + Cll plulVullz, + Cll vplul VO,
+ ClIBIIZIIVAINIV?Al 2 + C

1 3
< CliNpu iy, + ClINp8ill7. + Cll vpull Il Voull IV ull7 + 11V6117.)
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+ C|IV?bI2, + C
< Clivpullz. + ClINpG > + ClIVull21Vull2 + ClIVO V6,2
+ C|IV?bI2, + C

1
< E(IIVzulliz +IV?6II7,) + CllVpull7, + Clivpbilly, + CIIV?bIZ, + C,

which yields to

IV2ull?, +1IV26117, < Clivpully, + CliVob.I7. + CIIVII7, + C.

This together with (3.16) and (3.20) leads to

T
f (IV2ull?, + IV26)2,)dt < C.
0

(3.21)

(3.22)

Thus, it follows from (3.16), (3.20), and (3.22) that (3.4) holds. The proof of Lemma 3.2 is completed.

Lemma 3.3. Under the assumption of Theorem 1.1, it holds that
T
sup [IX“blI7, + f |x*Vbl7,dr < C.
0<1<T 0
Proof. Multiplying (1.1), by ¥*b and integrating by parts over R?, one has

1d a1 12 _ )
—— “ a\v
T xlbldx+fx| b|"dx

1 1
=3 f b Axdx + f b-vu-bxﬂa’x+E f |b|*u - V‘dx

=N+ N, + Nj.

It follows from (3.19), (3.4), Holder’s and Gagliardo-Nirenberg inequalities that

N, <C f b2 %1% 'V + | ' V2x)dx < C||x2b|]?

L2°

N> < ClI%2D|2, IV ull 2

< CIE2D| 2 (1F2B] 2 + |X2 Vb|| 2| X VE| 1)
1

IA

X2 Vb2, + ClI%2blI?

120

3 1
Y iux ¢ log!' " (e + |x*)dx

=
IA

0
=

[\)
4
)

3
(152 B[ 4] | %2 b | 2[00 E 3 ||+

_a _a _a 1=
IX2bll2 (X2 Vol 2 + [IX2 Bl 21X VX )

IANIA
A, O O O K

IA

IX2 VDI, + ClIEbII;

12

O

(3.23)

(3.24)
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where we use the fact that X~' V¥ and ™! V2x are uniformly bounded on R? since |x~' Vx| < C/(1 + |x|)
and |x7'V2x| < C/(1 + |x]*), and (e + y) ™ log(e + y) < ! fora > 0 and y > 0.
Substituting N; — Nj into (3.24), we obtain that

d a —a —a
E”)_Czb”iz + 12 VbIl;, < ClIZ2bI; (3.25)

120
which together with Gronwall’s inequality yields (3.23). The proof of Lemma 3.3 is completed. O

Lemma 3.4. Under the assumption of Theorem 1.1, it holds that
T
sup #(|| viouill7. + | Vobillz. + 11bI7.) + f t(IVuli7, + IVEZ. + IVhI7.)de < C. (3.26)
0<t<T 0
Proof. Firstly, differentiating (1.1),, (1.1); with respect to ¢ respectively, we have
puy +pu-Vu, — Au, + Vp, = —p,(u; + u - Vu) — pu, - Vu + (p8e;), + (b - Vb),, (3.27)
pen +pu * VQ, - Agt = _pt(et +Uu- V@) —pl/tt * VH + (pu * €2)t. (3.28)
Multiplying (3.27), (3.28) by u,, 6, respectively, and integrating it by parts over R, it implies
1d
2dt
= fpqu,'u,dx—fput~Vu-utdx—fpu-V(u-Vu'u,)dx

(I Vo7, + 11 VROHIIZ.) + IVullZ, + IV6,II7,

+ f(b -Vb), - udx + f(erz), s udx + fpu -V6,0,dx — fput - V00,dx
- fpu -V(u-V66,)dx + f(pu - e),8,dx

< Cfplullu,IIVutldx +C prMIIZIVuldx + CflthIVutllbIdx

+C fplul(lu,lqulz + [ul|V?ul + |u||Vul|Vu,))dx + C fplutllVGHQ,ldx

+C fP(IQzIIMzI + |ul[VOllu,| + |ulll|Vu,)dx + C fPIMIIVQzIIGzIdx

+Cfp|u|(|VullV9ll9z|+ ullV26116,] + ullV6IIV6;))dx

9
+C fp(luzlletl + ullVullf] + lul* VO dx =: Z Z;. (3.29)

i=1

By using Holder’s, Gagliardo-Nirenberg inequalities, (3.1), (3.4), (3.18), and (3.19), one gets

Zy < Cllvpullsll Voulp | Va2
1 1
< Cll Voullzsll voudl 7N Vioull Vel 2
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1 1 1
< ClIVull2ll ol VBl + Va2

1
< Euw,niz + Cll Vpudl?»,

Z, < ClIVullz |l Vous

3 1
< ClIVull2ll ypudl vl

3 3 1
< CAIVuLZ, + 1Nl vl

1

< E”VU:”IZ} +Cf \/Eul”ib

Z3 < ClIVugll2|lbil| 4111 s

1 1
< ClIVugll 2 DAL IV DAl

120

1
< EIIVutlliz +6l[Vh/|I7, + ClibilI7

1
Zy < Cllvpull sl Vol IVul7 + Cllo® ull} ol Voull 1V ull 2

+ ClIVul 21l Voullys 1Vl 4
1 1 1
< Cllvpudll 2 Voud 1Vl 2 + ClI Va2 Vull

1 1 1
< CUIvpullz + I Voull IVl 2)IV2ull 2 + ClIVugll 2Vl

1
< E”V”t”iz + Cll Vpu iy, + ClIV?ull}, + C,

Zs < Cllpudl sl Vool VOll 2

1 1
< ClVpudlzz + IVullr2)l Vbl + | Vool LIV} ,)

1 1
< E”V”t”iz + gIIVGIIIiz + Cllvou iy, + ClINPOL.,

Zs < CllNpule2ll Vobilr2 + Cll Vpullsll Voull IVl 2

+ ClIVudll 2l Voullsll Vool s
1 1
< CllVpudl2ll Vpbiizz + Cll Vpudl LIl Vouil
1 1
+ ClIVudll2(ll Voullz + IV ullz2)l Vool 11 Vool

1
< E”V”t”%z +Cl \/ﬁut”iz + (| \/Egz”iz +C,

Z7 < CllNpullsl Vobil 11311V .2

< ClIvpullzz + IVall 2l Voo LI Vool IVl 2
1 1
< CIVpOiIz2 + 1 NPO LIV NV 12

1
< gIIVGtIIiz + Cll Vil

Zg < CllVpullsll VO 31V ul 4 VOl 4

1 1 1 1 1 1
< Cll VPO IINDE LIVl IVl VI V26l
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1 1 1 1
< CUINPOI2 + INDEL IO DIV6NL 9%l
1
< SIV6IE, + ClIROIE, + CIVul, + CIVIL.

Zy < ClINpOlle2ll Vpudlzz + Cll voullsll Vool s IV ull 2
+ Cll Vioull 31l Vioull sV 6|2

1 1
< ClIVPOlI2ll Vioudlz + ClVpullzz + IVulle2)I Vool Vool o
1 3
+ Cllvpull, (I Voull2 + [IVull2)2IVO |l 2

< SIVBIE. + Cll Bl + CINBAIR: +C.
Putting all above estimates into (3.29), we thus obtain
dit(ll Voull, + 11VR6ilIT) + 1IVully, + V6,7,
< 26\IVbI7, + CUINPOIIT, + I Vou iy, + 117, + 1V2617, + IV2ull7,) + C. (3.30)
Next, differentiating (1.1), with respect to ¢ gives
by—b;-Vu—>b-Vu, +u,- Vb +u-Vb, = Ab,. (3.31)

Multiplying (3.31) by b,, and integrating it by parts over R?, one has

1d
Ed—tllbtlliz +IVhilI7

:fb-Vu,-btdx+fbt-Vu-btdx+fut-Vb,-bdx

< ClIVull 2Bl 1Bl + ClVull 2 1ol + CIVBl 2l 1512
1 1 a a
< CIVull 2B IV DAL, + CUIV D2l 31122 B2 11 s
+ CllbA| 21Vl 2

1
< EIIVbzlliz + ool VulI7, + coll Vpuill?»,
which leads to

d
E”btlliz + VD7 < el Vil + coll Vw7 (3.32)
for enough large constant ¢, > 0.

Moreover, multiplying (3.30) by ¢, + 1 and adding the resulting inequality with (3.32), and
choosing ¢ suitable small, one obtains
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d
d_t((c2 + DIl vpullz, + (c2 + DIVROIlT + I1bl17.)
+IVully, + (c2 + DIVEIE, + VA1,
< CUIVpully, + INpPOIIIT, + b7, + V26117, + IV2ull},) + C
< CUINpullZ, + 1NPOHIIZ: + 1B, + IV?BI1.) + C. (3.33)

Multiplying (3.33) by ¢, we obtain (3.26) after using Gronwall’s inequality, (3.5), (3.4) and (3.16). The
proof of Lemma 3.4 is completed. O

Lemma 3.5. Under the assumption of Theorem 1.1, it holds that

T 1 ) el
sup ol + f (IV%ull,g +IV%6l,8 +1IVpll 5 )t
0<<T 0
T
+ f t(IV2ullz, + IV iz, +1IV267,)dr < C. (3.34)
0

Proof. First, it follows from the mass equation (1.1), that |Vp|" satisfies for any r > 2,
(IVpl"); + div(IVpl'u) + rIVpl (Vo) Vu(Vp) = 0, (3.35)
which together with integrating by parts over R? implies
d
EIIVPIIU < ClIVull=IVpllL: (3.36)

Next, one gets from Gagliardo-Nirenberg inequality that

IVull~ < CIIVMIIZ(“ 1)IIVZ IIZ(” U (3.37)
On the one hand, it is easy to check that

IV2ulls + 11V plize < Cllowdlzs + llow - Vatllpa + 116 - Vblira + llobes o)

2D 1) #-2

< Clivpull 5 |Iput||" "+ Clipull 2/ Vull 24
+ ClIbll 261V DIl 20 + Cllpbl| Lo

2(:1 1) 112 -2q

g-1
< Cllvoulls llewl !, o+ CIIVMII"ZIIVZMIILZ

+ C”b”qz”Vb”Lz”VZb” e

2g- 1) -2
< Cllx/ﬁutll IVutII"Z o+ Cllx/‘ufllu
+ C||V2u|| + C||V2b|| e (3.38)
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which together with (3.4) and (3.26) implies that

g+1

T g+1 g+l
9+ 1917 Ja
0

-1 (@=2g+1)
< C sup (1| \//_?MzHLZ)‘f(‘fZ*Z) t £ (tIVull2) 22 dt

0<t<T

g+l

Voul,5 dt + C (||V2u|| +||V2b|| )dt+C

+C

||
T q3+q2 —2g-2
< Cf [ PP dt + cf (||\/ﬁut||i2 +[IV2ull2, + IV2BII7,)dt + C
0
<C. (3.39)
On the other hand, it follows from (3.4) and (3.26) that

T
f (I1V2ullf, + IV pliF, )dt
’ T
<C f t(lloulzs + Cllou - Vully, +11b - VIl + lloblly,)dt
T
< cf | Voull7,dt + cfo V|2, dt

+ Cf (IV2ull2, + IV?blI;.)dt + C
0
<C. (3.40)
Thanks to (3.37), (3.39) and (3.40), we immediately obtain

T
f IVull~dr < C. (3.41)
0
Thus, applying Gronwall’s inequality to (3.36) gives
sup [[Vpll2ae < C. (3.42)
0<t<T

Finally, similar to (3.39) and (3.40), we obtain from (1.1); by L?-estimates to elliptic equations that

g+l
f (V26115 + V63, )dr < C, (3.43)
0

which together with (3.39), (3.40), and (3.42) yields (3.34) and completes the proof of lemma. O

Next, the following high order weighted estimates on the density has been proven in [9, Lemma 3.6].
We omit the detailed proof here for simplicity.

Lemma 3.6. Under the assumption of Theorem 1.1, it holds that

sup [|IX“pllpinmiawts < C. (3.44)
0<t<T
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Lemma 3.7. Under the assumption of Theorem 1.1, it holds that
a T a
sup #([|IX2VBIL, + IV°BI17,) + f 112 VDI, dt < C. (3.45)
0<t<T 0

Proof. First, multiplying (1.1), by X*Ab and integrating by parts over R? lead to
ld _. _a
EEIIXZVbIIiz + |2 AD|I7,
<C f [VD||b||Vul|[Vi‘ldx + C f Vb |ul|VX*|dx

+CflVbIIAbIIV)’c“Idx+CflblquIIAbI)'c”dx

5
+ CfquIIVblzfc“dx =: Z 0. (3.46)
i=1

By using Holder’s inequality, Gagliardo-Nirenberg inequality, (3.23), (3.4) and (3.19), one obtains

Q1 < ClIEE bl alIVul| 311 X2 Vb |2 | V[
< CIEEBIZ, (15 bl,» + 155 VBl 215 V)2
IVl 1Vl 2 | VBl
< CIVull, + ClIX2 VB2, + C,
Qs < CIIVEP 55| 1475 sl I VDI |
< CIIE VAL ¥ Vb
< C||x3Vb|;, + CIIVBIL,
< ClIX2VbI2, + CIIV?BIL, + C,
Qs < ClIX2VbI|p2]|%2 V2Dl 2| V&
< ZIE VDI, + CIEVIE,
Q4 < ClIXE bVl 411 X2 V2B
< CIT Bl (1 VA, + 115 Bl 1) V)
Va2 1Vl 2, 12 VBl
< %uxﬁvzbn; + CIIV?ull?, + ClIX2 Vb3, + C,
Qs < C||Vull~||1¥ VDI,

g+l
< C(1+1IV2ullj )IxVal;

12°

Substituting the above estimates into (3.46), we have
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ld, . _a
EEII)'CZVbIIiz + 12 V2hI[7,
< C( +IVull g IIEE VDI, + ClIVully, + CIIV?bI, + C

g+l

< C( +IVull g HIIEE VDI, + Cll Vpull;, + CIV?BI, + C,

due to the following fact that

2

|2 V2|2, = f *|AbPdx — f X0,0;b - 0;p% " log' " (e + |xI*)dx
+ f x0,0ib - ;bx ' log' " (e + |x*)dx
a 1 a a
< Cllx>Abll;, + §||x5vzb||§2 + C|IX2 Vb3,

Thus, multiplying (3.47) by ¢, we deduce from Gronwall’s inequality, (3.4) and (3.34) that

T
sup #Ix2 Vb2, + C f 1X2V2bl7,dt < C.
0

0<t<T

Next, it follows from (1.1),, (3.19), (3.4), and Gagliardo-Nirenberg inequality that

IV2bII7, < CllbdI7, + ClllullVbIIZ. + ClIbIVulll;,

< ClIbly + Cllux 25 1%2 Vb 211Vl + ClbIEIVull,

< CllbAl3, + CIIE2 VDI, + CIVBI Vbl + ClIVull2 IV ull 2

1

< S|IV2bli7, + CIREVBI, + Clibl, + CIIV2ully, + C

=

< ZIIV2bli7, + CIZEVBI, + Clibl7. + Cll Vouil;. + C,

which together with (3.26) and (3.49) yields that (3.45) and completes the proof of lemma.

4. Proof of Theorem 1.1

With a priori estimates in Section 3 at hand, we are ready to prove Theorem 1.1.

(3.47)

(3.48)

(3.49)

(3.50)

Proof of Theorem 1.1. By Lemma 2.1, there exists a 7., > 0 such that the problems 1.1 and 1.2 has a
unique strong solution (p, u, 8, b, p) on R? x (0, T,]. Now, we will extend the local solution to all time.

Set

T" = sup{T | (o, u, 0, b, p) is a strong solution on R? x 0, T]}.

4.1)

First, forany 0 < 7 < T, < T < T* with T finite, one deduces from (3.1), (3.4), (3.26), (3.34) and (3.45)

that for any ¢ > 2,

Vu,V6,Vb,b e C([r,T]; L* N L9),

4.2)
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where one has used the standard embedding
LY(t,T; HYNH' (t,T; H") < C(r,T; L?) for any g € (2, o).
Moreover, it follows from (3.34) and (3.44) and [7, Lemma 2.3] that
peC(0,T; L' n H' n W), (4.3)
Finally, if T* < oo, it follows from (4.2), (4.3), (3.1), (3.4), (3.34) and (3.45) that
(o, u,0,b)(x, T") = tl_i)r%(p, u,0,b)(x,1)

satisfies the initial condition (1.7) at ¢ = T*. Thus, taking (o, u, 8, b)(x, T™) as the initial data, Lemma 2.1
implies that one can extend the strong solutions beyond 7. This contradicts the assumption of 7
in (4.1). The proof of Theorem 1.1 is completed. |

5. Conclusions

In this paper, we are concerned with the Cauchy problem of inhomogeneous incompressible
magnetic Bénard equations with vacuum as far-field density in R?. Using the weighted function to
the density, as well as the Hardy-type inequality, we have successfully established the time-uniform a
priori estimates of solutions. Thus, we can extend the local strong solutions to the global one.
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