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1. Introduction

We recall that for the spherically symmetric EYM equations, the Einstein metric is of the form

ds2 = −AC2dt2 + A−1dr2 + r2(dθ2 + sin2θdφ2), (1.1)

and the S U(2) Yang-Mills curvature 2-form is

F = w′τ1dr ∧ dθ + w′τ2 ∧ (sinθdφ) − (1 − w2)τ3dθ ∧ (sinθdφ). (1.2)

Here A,C and w are functions of r, and (τ1, τ2, τ3) form a basis for the Lie algebra S U(2). Using (1.1)
and (1.2), the spherically symmetric S U(2) EYM equations are

rA′ + (1 + 2w′2)A = 1 −
(1 − w2)2

r2 , (1.3)
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r2Aw′′ + [r(1 − A) −
(1 − w2)2

r
]w′ + w(1 − w2) = 0, (1.4)

and
C′

C
=

2w′2

r
. (1.5)

We should point out that (1.3) and (1.4) do not involve C.
Neither the vacuum Einstein equations nor the pure Yang-Mills equations have nontrivial static

globally regular solutions, so it is natural to conjecture that the coupled EYM equations also have no
nontrivial globally regular solutions. In 1988, Bartnik and McKinnon [1] presented numerical
evidence for the existence of a discrete family of globally regular solutions of the static EYM
equations: the gravitational attraction can balance the Yang-Mills (YM) repulsive force. This prompts
the mathematical theory of this conjecture came into being. However, until now, the behavior of the
solution in the case of spherical symmetry is still unclear. For example, in 2018, Baxter [2]
considered the case of spherical symmetry.

We note that Gross-Pitaevskii equation has been successfully used to deal with Bose-Einstein
condensation equation by applying Hirota’s method, Lie algebra structure and Backlund
transformations, bilinear transform, etc (refer to [3–5] and their references), but we have not seen an
example of applying these methods to Einstein-Yang-Mills equation.

In this paper, we mainly prove the following surprising properties of static spherically symmetric
solutions of the S U(2) Einstein-Yang-Mills equations.

Theorem 1.1. There are no any rational expression solutions for static spherically symmetric solutions
to the perturbed S U(2) Einstein-Yang-Mills equations

rA′ + (1 + 2w′2)A = 1 −
(1 − w2)2

r2 , (1.6)

r2Aw′′ + [r(1 − A) −
(1 − w2)2

r
]w′ + λw(1 − w2) = 0, (1.7)

except classical Schwarzschild solutions and Reissner-Nordstrom solutions. Here we add a perturbed
coefficient into (1.2), and we assume that λ is waving near 1.

In 1993, Smoller, Wasserman and Yau proved the existence of black hole solutions for the Einstein-
Yang-Mills equations (see [7–9]). In 1995, Smoller and Wasserman [6] provided a rigorous proof of
the existence and uniqueness of the solutions to the Einstein-Yang-Mills equations with gauge group
S U(2). After adding the perturbed term λ to (1.4), we discover that the perturbed equations have the
same properties as the original equations in existence and uniqueness, see [9].

Theorem 1.2. Let r̄ > 0 be given. Assume that A(r̄) = 0, and (w̄, β) satisfies

Φ(r̄)β + w̄(1 − w̄2) = 0,

where Φ(r̄) = r̄ − (1−w̄2)2

r̄ , 0. Then there exists a unique C2,α solution (A(r, w̄),w(r, w̄),w′(r, w̄)) of
(1.6), (1.7) with the initial conditions (A(r̄, w̄),w(r̄, w̄),w′(r̄, w̄)) = (0, w̄, β), defined on some interval
r̄ < r < r̄ + s(w̄). The solution is analytic on |r − r̄| < s(w̄), and the one-parameter family
(A(r, w̄),w(r, w̄),w′(r, w̄)) is continuous about r and w̄.

Theorem 1.3. There are no any rational analytic solutions for EYM equations except classical
Schwarzschild solutions or Reissner-Nordstrom solutions.
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2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Set

A =
anrn + an−1rn−1 + · · · + a1r + a0

bmrm + bm−1rm−1 + · · · + b1r + b0
, (2.1)

w =
csrs + cs−1rs−1 + · · · + c1r + c0

dtrt + dt−1rt−1 + · · · + d1r + d0
, (2.2)

where ai, bi, ci, di (i ∈ [1, n], n ≥ 1) are constants.
To obtain a simple form, we suppose

A =
q
p
, (2.3)

w =
k
h
, (2.4)

where p, q, h, k represent the corresponding polynomial of denominator and numerator. A and w are
simplified, i.e., q, p, h and k are irreducible. Without loss of generality, assuming λ ∈ (0.5, 2) and
λ , 1, then (1.6) and (1.7) can be simplified as

h4r3(q′p − p′q) + ph4r2q + 2pqr2(k′h − h′k)2 = p2h4r2 − p2(h2 − k2)2, (2.5)

r3h2q(k′′h3−h′′kh2−2k′h2h′+2hkh′2)+(k′h−kh′)[pr2h4−qr2h4− p(h2−k2)2] = λprkh3(k2−h2). (2.6)

In the remainder of this paper, we use p̃, q̃, h̃, k̃ to donate the corresponding highest degree of
p, q, h, k. Using L1 = h4r3(q′p − p′q), L2 = ph4r2q, L3 = 2pqr2(k′h − h′k)2, R1 = p2h4r2, R2 =

−p2(h2 − k2)2 to facilitate the writing of (2.5), and using L̃1, L̃2, L̃3, R̃1, R̃2 to donate the corresponding
highest degree of L1, L2, L3, R1, R2. Similarly, using L21 = r3h2q(k′′h3 − h′′kh2 − 2k′h2h′ + 2hkh′2),
L22 = (k′h − kh′)[pr2h4 − qr2h4 − p(h2 − k2)2], R21 = λprkh3(k2 − h2) to facilitate the writing of (2.6),
and using L̃21, L̃22, R̃21 to donate the corresponding highest degree of L21, L22, R21.

Lemma 2.1. If the solution of the perturbed EYM equations can be written as (2.1) and (2.2). Then

p̃ = q̃, h̃ ≥ k̃ (2.7)

or
p̃ < q̃, h̃ < k̃ (2.8)

holds. Moreover, if (2.7) holds, then an = bm. If (2.8) holds, then anbm < 0, q̃− p̃ = 2(k̃ − h̃) ≥ 2. Here
A is the form of (2.1).

Proof. It is obvious that p and h can not be zero. To prove this lemma, we start with the simple case
and move on to the general case.

When q=0, i.e., A ≡ 0, then, from (1.6) and (1.7), w ≡ 0, r = 1 or w2 ≡ 1, r = 0.
When k = 0, i.e., w ≡ 0, the solution is Reissner-Nordstrom Solution.
When q and p are constants, i.e., A is a constant, this case are included in the later discussion, where

we discuss the situation that p̃ = q̃, i.e., p = q, then A ≡ 1 and w2 ≡ 1.
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When h and k are constants, i.e., w is a constant, then w2 ≡ 1 from (1.6) and (1.7), which is
corresponding to Schwarzschild Solution.

Next, we discuss the case k , 0, q , 0, and A, w may not be constants. Before observing the highest
degree of (2.5) and (2.6) to each terms, we pick out some special cases as which have been discussed
above: If q′p − p′q ≡ 0, then A′ ≡ 0; If k′h − h′k ≡ 0, then w′ ≡ 0; If h2 = k2, then w2 ≡ 1. Then in the
following discussion, each terms in (2.5) can not be constant except R2. Noted that

L1 : 4h̃ + p̃ + q̃ + 2 ∼ 4h̃ + 3; L2 : 4h̃ + p̃ + q̃ + 2;
L3 : 2h̃ + 2k̃ + p̃ + q̃ ∼ p̃ + q̃ + 2; R1 : 4h̃ + 2p̃ + 2; R2 : max(4h̃, k̃) + 2 p̃ ∼ 2 p̃,

where the part on the right of colon means the highest degree.
Hint: If p̃ = q̃, then L̃1 < 4h̃ + p̃ + q̃ + 2. If p̃ , q̃, then L̃1 = 4h̃ + p̃ + q̃ + 2. If h̃ = k̃, then L̃3 <

2h̃ + 2k̃ + p̃ + q̃. If h̃ , k̃, then L̃3 = 2h̃ + 2k̃ + p̃ + q̃ and R̃2 = max(4h̃,k̃)+2p̃.
When p̃ = q̃, h̃ < k̃, then R̃2 > max(L̃1, L̃2, L̃3, R̃1), which leads to a contradiction; When p̃ = q̃,

h̃ ≥ k̃, then L̃2=R̃1 > max(L̃1, L̃3, R̃2) and an = bn, i.e., A = 1, as r → ∞.
When p̃ , q̃, h̃ = k̃, then L̃3 ≤ 4h̃+ p̃+ q̃−2 < L̃1=L̃2=4h̃+ p̃+ q̃+2, R̃2 ≤ 4h̃+2 p̃ < R̃1=4h̃+2 p̃+2.

If p̃ > q̃, then R̃1 > max(L̃1, L̃2, L̃3, R̃2), which leads to a contradiction. If p̃ < q̃, A and w as (2.1) and
(2.2), here n−m > 0 (an , 0, bm , 0, cs , 0, dt , 0), then the coefficient of highest degree in (L1 + L2)
is

d4
t anbm(n − m + 1) , 0,

hence ˜L1 + L2 = R̃1 and q̃ = p̃, which leads to a contradiction.
When p̃ , q̃ and h̃ , k̃, we have L̃1 = 4h̃ + p̃ + q̃ + 2, L̃2 = 4h̃ + p̃ + q̃ + 2, L̃3 = 2h̃ + 2k̃ + p̃ + q̃, R̃1 =

4h̃ + 2p̃ + 2, R̃2 = 4 max(h̃, k̃) + 2 p̃.
When k̃ > h̃, p̃ > q̃, then R̃2 > max(L̃1, L̃2, L̃3, R̃1), which leads to a contradiction.
When k̃ < h̃, p̃ > q̃, then R̃1 > max(L̃1,L̃2,L̃3,R̃2), which leads to a contradiction.
When k̃ < h̃, p̃ < q̃, then L̃3 < L̃1=L̃2=L̃1 + L̃2=4h̃ + p̃ + q̃ + 2 and L̃1 + L̃2 > R̃1=4h̃ + 2p̃ + 2 > R̃2.

It means that the highest degree of (L1+L2) can not be 4h̃ + p̃ + q̃ + 2 from (2.1) and (2.2), here n > m.
Calculating the coefficient of highest degree term in L1 and L2, one gets n − m = −1, which leads to a
contradiction.

When k̃ > h̃, p̃ < q̃, we consider k̃ = h̃+1 firstly. In this case, we have L̃1 = L̃2 = L̃3 = 4h̃+ p̃+ q̃+2,
R̃2 = 4h̃ + 2p̃ + 4 > R̃1. Letting

A =
anrn + an−1rn−1 + · · · + a1r + a0

bmrm + bm−1rm−1 + · · · + b1r + b0
,

w =
ct+1rt+1 + ctrt + · · · + c1r + c0

dtrt + dt−1rt−1 + · · · + d1r + d0
,

and calculating the coefficient of highest degree term in left, one sees that the result of coefficient can
not be 0, i.e., L̃1 = L̃2 = L̃3 = R̃2, thus q̃ − p̃ = 2. Solving the both sides of coefficient of highest
degree term, one gets anbm < 0. Next, if k̃ > h̃ + 1, one has L̃3=2h̃ + 2k̃ + p̃ + q̃=R̃2=4k̃ + 2 p̃, hence
q̃− p̃ = 2(k̃ − h̃) > 2. What’s more, since R2 < 0, the coefficient of highest degree term to pq in L2 and
L3 should be negative, i.e., anbm < 0.

Thus Lemma 2.1 holds. �
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Lemma 2.2. If k̃ > h̃, p̃ < q̃, then k̃ = h̃ + 1, q̃ = p̃ + 2.

Proof. In order to prove this lemma, we observe (2.6). Firstly, we consider some simple cases.
When h̃ = 0, k̃ = 1 and w = ar + b, a , 0, by using coefficient of variation method to (1.6), one can

see the expression of A as follows.
If a2 , 1

2 , then

A =
1 + 4ab − 2a2(b2 − 1)

2a2 + 1
−

a4

2a2 + 3
r2 −

4a3b
2a2 + 2

r −
4ab(b2 − 1)

2a2r
−

(b2 − 1)2

(2a2 − 1)r2 +
c

r2a2+1
,

where c is a constant. Then we generate the results into (1.7) and discover the fact that
( a5

2a2+3 − a5 − λa3)r3 + ( 4a4b
2a2+2 − 4a4b − 3λa2b)r2 + a( 2a2b2−4ab

2a2+1 − 4ab − 2a2b2 + 2a2 + λ − 3λb2)r +

a[ (b2−1)2

2a2−1 − (b2 − 1)2]r−1 − ac
r2a2 + λ(4a2 − 1)(b− b3) = 0. For ( a5

2a2+3 − a5 − λa3) = 0 has solutions, one has

λ ≤ 2 −
√

3 or λ ≥ 2 +
√

3, which leads to a contradiction.
If a2 = 1

2 , then

A =
2 + 4ab − b2

2
−

1
16

r2 −
2
3

abr −
4ab(b2 − 1)

r
−

(b2 − 1)2lnr
r2 +

c
r2 ,

where c is a constant. Then we generate the results into (1.7) and discover the fact that −a(3+8λ)
16 r3 −

b(4+9λ)
6 r2 + [(−1

2 −3λ)ab2−3b+ (1+λ)a]r +a(b2−1)2(ln r−1)r−1− ac
r +λ(b−b3) = 0. Let the coefficient

of r3 be 0, one gets λ = −3
8 , which leads to a contradiction.

When h̃ = 0, k̃ ≥ 2, then L̃21 = k̃ + q̃ + 1, L̃22 = 5k̃ + p̃− 1, R̃21 = 3k̃ + p̃ + 1. Through a comparative
analysis, one sees L̃22 > max(L̃21, R̃21), which leads to a contradiction.

When h̃ = 1, then L̃21 ≤ 6 + k̃ + q̃. If q̃ − p̃ ≥ 4, i.e., k̃ − h̃ ≥ 2, then L̃22=5k̃ + p̃, R̃21=3k̃ + p̃ + 4.
Through a comparative analysis, one gets L̃22 > max(L̃21,R̃21), which leads to a contradiction.

When h̃ ≥ 2, if q̃− p̃ ≥ 4, i.e., k̃−h̃ ≥ 2, then L̃21 ≤ 5h̃+1+k̃+q̃, L̃22=5k̃+h̃+ p̃−1,R̃21=3k̃+3h̃+ p̃+1.
By analysis, one has L̃22 > max(L̃21,R̃21), which leads to a contradiction.

Thus, Lemma 2.2 holds. �

Lemma 2.3. Let w = k
h = anrn+an−1rn−1+···+a1r+a0

bnrn+bn−1rn−1+···+b1r+b0
. If p̃ = q̃, h̃ ≥ k̃, then p̃ = q̃, h̃ = k̃, and a2

n = b2
n.

Proof. When k̃ = 0, h̃ = 1, then w = k
h = c

r+b , so L̃22 ≤ 5 + p̃ < L̃21=6 + p̃=R̃21. Solving both sides of
the coefficient of highest degree term, one gets that λ = −2, which leads to a contradiction.

When k̃ = 0, h̃ ≥ 2, then L̃22 ≤ 5h̃ + p̃, L̃21 ≤ 5h̃ + p̃ + 1=R̃21. Let k = 1, h = dnrn + dn−1rn−1 + · · · +

d1r + d0(n ≥ 2), A =
q
p = rs+as−1rs−1+...+a1r+a0

rs+bs−1rs−1+···+b1r+b0
. Then the coefficient of highest degree term in L21 is

n(n + 1)d5
n, (2.9)

and the coefficient of highest degree term in R21 is

− λd5
n. (2.10)

Solving the both sides of the coefficient of highest degree term, one has λ = −n(n+1) < 0, which leads
to a contradiction.

When k̃ = 1, h̃ = 1, then L̃21 ≤ 6 + p̃, L̃22 ≤ 5 + p̃. Let w = br+c
r+a , if b2 , 1, then R̃21=7 + p̃, which

leads to a contradiction. So b2 = 1, i.e., w2 = 1 (r → ∞).
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When k̃ = 1, h̃ ≥ 2, then L̃22 ≤ 5h̃ + p̃ + 1, L̃21 ≤ 5h̃ + p̃ + 2=R̃21. Let k = ar + c, h = dnrn + dn−1rn−1 +

· · · + d1r + d0 (n ≥ 2), then the coefficient of highest degree term in L21 is

n(n − 1)ad5
n, (2.11)

and the coefficient of highest degree term in R21 is

− λad5
n. (2.12)

Solving both sides of the coefficient of highest degree term, one gets λ = −n(n − 1), which leads to a
contradiction.

When k̃ ≥ 2, and w = k
h = anrn+an−1rn−1+···+a1r+a0

bmrm+bm−1rm−1+···+b1r+b0
(m ≥ n ≥ 2), considering h̃ > k̃ and m > n firstly,

then L̃22 ≤ 5h̃ + p̃ + k̃, L̃21 ≤ 5h̃ + p̃ + k̃ + 1=R̃21. The coefficient of highest degree term in L21 is

anb5
m[2m2 + n(n − 1) − 2nm − m(m − 1)], (2.13)

and the coefficient of highest degree term in R21 is

− λanb5
m. (2.14)

Solving both sides of the coefficient of highest degree term, one gets

λ = −[2m2 + n(n − 1) − 2nm − m(m − 1)]. (2.15)

In fact, by (2.13), one has

2m2 + n(n − 1) − 2nm − m(m − 1) = (m − n)(m − n + 1) > 0. (2.16)

So λ < 0, which leads to a contradiction. If h̃ = k̃, a2
n , b2

n, then L̃21 ≤ 6h̃ + p̃, L̃22 ≤ 6h̃ + p̃ − 1,
R̃21=6h̃ + p̃ + 1, which lead to a contradiction, i.e., w2 = 1 (r → ∞).

Thus, Lemma 2.3 holds. �

Lemma 2.4. The case p̃ = q̃, h̃ = k̃ can not happen.

Proof. When h̃ = k̃ = 1, w = r+b
r+a , then L̃22 < L̃21 = 6 + p̃ = R̃21, thus the coefficient of highest degree

term in L21 is
2(b − a), (2.17)

and the coefficient of highest degree term in R21 is

2λ(b − a). (2.18)

Solving the both sides of the coefficient of highest degree term, we discover λ = 1, which leads to a
contradiction. If let w = −r+b

r+a , also leads to a contradiction in a same way.
For h̃ = k̃ ≥ 2, let A = rm+cm−1rm−1+···+c1r+c0

rm+dm−1rm−1+···+d1r+d0
, w = rn+an−1rn−1+···+a1r+a0

rn+bn−1rn−1+···+b1r+b0
(w = −rn+an−1rn−1+···+a1r+a0

rn+bn−1rn−1+···+b1r+b0
also

leads to the same result). If an−1 , bn−1, then L̃22 ≤ 6h̃ + p̃ − 1 < L̃21=R̃21=6h̃ + p̃. Solving both
sides of the coefficient of highest degree term, one gets λ = 1, which leads to a contradiction. So,
an−1 = bn−1. If an−2 , bn−2, then L̃22 ≤ 6h̃ + p̃ − 2 < L̃21=R̃21=6h̃ + p̃ − 1. Solving both sides of the
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coefficient of highest degree term, one has λ = 3, which leads to a contradiction. So, an−2 = bn−2. This
reminds us that perhaps ai = bi(i ≤ n − 2). In the following, we use mathematical induction to prove
ai = bi. With the reduction to absurdity, assume ∃ ai , bi and ai+ j = bi+ j, j ≥ 1, 0 ≤ i < n − 2. So
w = k

h = rn+an−1rn−1+an−2rn−2+···+ai+1ri+1+airi+···

rn+an−1rn−1+an−2rn−2+···+ai+1ri+1+biri+···
. By (2.6), one has

L21 = (ai − bi)(i2 − i + n2 + n − 2ni)r5n+m+i+1 + · · · , (2.19)

L22 = (i − n)(ai − bi)(dm−1 − cm−1)r5n+m+i−2 + · · · , (2.20)

R21 = 2λ(ai − bi)r5n+m+i+1 + · · · . (2.21)

Solving both sides of the coefficient of highest degree term, one gets

n2 + n = 2ni + i − i2 + 2λ ≤ 2n(n − 2) + n − 2 − (n − 2)2 + 2λ = n2 + n + 2λ − 6. (2.22)

Thus λ ≥ 3, which leads to a contradiction. Then w ≡ 1, and contradicts the hypothesis. Here, if we
assume w = k

h = −rn+an−1rn−1+···+a1r+a0
rn+bn−1rn−1+···+b1r+b0

in the beginning, we will get the result that w ≡ −1, which is also
a contradiction.

Thus, Lemma 2.4 holds. �

Lemma 2.5. The case q̃ = p̃ + 2, k̃ = h̃ + 1 can not happen.

Proof. We consider h̃ ≥ 2 firstly. Let

w =
k
h

=
arn+1 + anrn + · · · + a1r + a0

rn + cn−1rn−1 + · · · + c1r + c0
,

A =
q
p

=
rm+2 + dm+1rm+1 + · · · + d1r + d0

brm + bm−1rm−1 + · · · + b1r + b0
,

and b < 0, then L̃21 ≤ 5h̃ + k̃ + q̃ + 1. By calculating, the corresponding coefficient of highest degree
term is 0, thus L̃21 ≤ 5h̃ + k̃ + q̃. What’s more, L̃22 ≤ 5h̃ + k̃ + q̃ + 1, and the coefficient of highest degree
term in 5h̃ + k̃ + q̃ + 1 is −(a + a5b) and R̃21 = 5h̃ + k̃ + q̃ + 1. The corresponding coefficient is λa3b.
Solving both sides of coefficient of highest degree term, one gets

a4b + λa2b + 1 = 0. (2.23)

From (2.5), one gets L̃1 = L̃2 = L̃3 = R̃2 = 4h̃ + 2p̃ + 4 > R̃1 = 4h̃ + 2p̃ + 2. Comparing the coefficient
of highest degree term in (L1 + L2 + L3)(3b + 2ba2) and R2 (−a4b2), one gets

a4b + 2a2 + 3 = 0. (2.24)

Calculating (2.23) and (2.24), one has

2
λ

a4 + (
2
λ

+ 2)a2 + 3 = 0. (2.25)

If (2.25) has solutions, then λ ≤ 2 −
√

3 or λ ≥ 2 +
√

3, which leads to a contradiction.
If h̃ = 0, then w = ar + b. This case has been discussed in the proof of Lemma 2.2. When h̃ = 1,

k̃ = 2, we suppose w = k
h = br2+b1r+b0

r+c , A = arm+2+am+1rm+1+···+a1+a0
rm+dm−1rm−1+···+d1r+d0

, (a , 0, b , 0). Solving the coefficient
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of highest degree term in L21, L22, R21 and observing (2.6), one gets L̃21 ≤ 10 + p̃. By calculating, the
coefficient of highest degree term is 0, thus L̃21 ≤ 9 + p̃. What’s more, L̃22 ≤ 10 + p̃, the corresponding
coefficient of highest degree term is −b(a + b4), R̃21 = 10 + p̃, the corresponding coefficient of highest
degree term is λb3, then one has

b4 + λb2 + a = 0. (2.26)

Observing (2.5), one gets L̃1 = L̃2 = L̃3 = R̃2 = 2m + 8 > R̃1 = 2m + 6. Comparing the coefficient of
highest degree term in (L1 + L2 + L3): (3a + 2ab2) and in R2: (−b4), one has

3a + 2ab2 + b4 = 0. (2.27)

Calculating (2.26) and (2.27), one can see that

2b4 + 2(1 + λ)b2 + 3λ = 0. (2.28)

Thus, when (2.28) has solutions, λ ≤ 2 −
√

3 or λ ≥ 2 +
√

3 holds, which leads to a contradiction.
Thus, the proof of Lemma 2.5 is completed. �

By Lemma 2.1–2.5, we complete the proof of Theorem 1.1.

Remark 2.6. If we consider the case that adding the perturbed coefficient into (1.4) for the first term
as follows:

ζr2Aw′′ + [r(1 − A) −
(1 − w2)2

r
]w′ + w(1 − w2) = 0, (2.29)

we can also get the same result as the conclusion in this paper. Here ζ ∈ (0.5, 2) and ζ , 1. The proof
of this result is similar to Theorem 1.1 if we add the perturbed coefficient λ into (1.4), so we omit here.

3. Proof of Theorem 1.2

In this section, we prove the existence and uniqueness of the perturbed EYM equations. The
reference [9] provides a rigorous proof of the existence and uniqueness of the solutions to the
Einstein-Yang-Mills equations with gauge group S U(2). After adding the perturbed term λ to (1.4),
we discover that the perturbed equations have the same properties as the original equations in
existence and uniqueness.

For the definitions of C2+α(r̄, r̄+ε), D1, D2, D3, X, d(·, ·), T , T1, T2 and T3, we still use the definitions
in [9]. The main work in [9] is to prove that T1,T2 and T3 are contract mappings. By analysis, to prove
our results, we just need to prove T2 is a contract mapping. Recalling u1, u2,w1,w2 in C2+α(r̄, r̄ + ε),
T2(w, z, A) = w′(r̄) −

∫ r

r̄
λuw+φz

s2A ds, and denoting θ = (w, z, A), then

T2(θ1) − T2(θ2) =

∫ r

r̄
[
λu2w2

s2A2
−
λu1w1

s2A1
+
φ2z2

s2A2
−
φ1z1

s2A1
]ds

=

∫ r

r̄
[
λ(u2w2 − ūw̄)

s2A2
−
λ(u1w1 − ūw̄)

s2A1
+
φ2z2 − φ̄z̄

s2A2

−
φ1z1 − φ̄z̄

s2A1
+

1
s2 (

1
A2
−

1
A1

)(λūw̄ + φ̄z̄)]ds.
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For convenience, denoting
∆ f := f1 − f2 ( f ∈ C1+α),

then
∆(
λuw − λūw̄

s2A
) =

λu2w2 − λūw̄
s2A2

−
λu1w1 − λūw̄

s2A1
,

and

‖T2(θ1) − T2(θ2)‖1+α =
∥∥∥∆(λuw − λūw̄

r2A
) + ∆(

φz − φ̄z̄
r2A

) − ∆(
1
A

)
1
r2 (λūw̄ + φ̄z̄

)∥∥∥
α

≤λ
∥∥∥∆(uw − ūw̄

r2A
)∥∥∥
α

+
∥∥∥∆(φz − φ̄z̄

r2A
)∥∥∥
α

+
∥∥∥∆( 1

A
) 1
r2

(
λūw̄ + φ̄z̄

)∥∥∥
α
.

Next, we estimate the above equation term by term.
For λ‖∆(uw−ūw̄

r2A )‖α, denoting %2 = r2 − r̄ and by lemma 5.3 in [9], one can get

λ
∥∥∥∆(uw − ūw̄

r2A
)∥∥∥
α

=
λ

r2

∥∥∥u2w2

A2
−

u1w1

A2
+

u1w1

A2
−

u1w1

A1
+

ūw̄
A1
−

ūw̄
A2

∥∥∥
α

≤
λ

cr̄2

[∥∥∥ 1
B2

∥∥∥
α

∥∥∥u2w2 − u1w1

%2

∥∥∥
∞

+
∥∥∥ 1

B2

∥∥∥
∞

∥∥∥u2w2 − u1w1

%2

∥∥∥
α

]
+
λ

r̄2

[
‖u1w1‖α

∥∥∥ 1
A2
−

1
A1

∥∥∥
∞

+ ‖u1w1‖∞

∥∥∥ 1
A2
−

1
A1

∥∥∥
α

+ ūw̄
∥∥∥ 1

A1
−

1
A2

∥∥∥
α

]
.

Due to u1, u2,w1,w2 in C2+α(r̄, r̄ + ε), (u1w1)(r̄) = (u2w2)(r̄), (u1w1)′(r̄) = (u2w2)′(r̄), (u1w1)′′(r̄) =

(u2w2)′′(r̄), then ‖∆(uw)
%2
‖α → 0, ‖∆(uw)

%2
‖∞ → 0. Hence,

∥∥∥ 1
B2

∥∥∥
α

∥∥∥u2w2 − u1w1

%2

∥∥∥
∞
→ 0,

∥∥∥ 1
B2

∥∥∥
∞

∥∥∥u2w2 − u1w1

%2

∥∥∥
α
→ 0, (3.1)

as ε→ 0. By ( 1
A2
− 1

A1
)(r̄) = 0, ( 1

A2
− 1

A1
)′(r̄) = 0, ‖u1w1‖∞ → 0 and ‖ūw̄‖∞ → 0, one has

‖u1w1‖∞

∥∥∥( 1
A2
−

1
A1

)∥∥∥
α
→ 0, ūw̄

∥∥∥ 1
A1
−

1
A2

∥∥∥
α
→ 0. (3.2)

as ε→ 0. Combining (3.1) and (3.2) to get

λ
∥∥∥∆(uw − ūw̄

r2A
)∥∥∥
α
→ 0 (ε→ 0). (3.3)

For ‖∆(φz−φ̄z̄
r2A )‖α, one has

∥∥∥∆(φz − φ̄z̄
r2A

)∥∥∥
α
≤
∥∥∥∆(φz − φ̄z

r2A
)∥∥∥
α

+
∥∥∥( φ̄z − φ̄z̄

r2A
)∥∥∥
α
.

It is easy to see ‖∆(φz−φ̄z
r2A )‖α → 0, as ε→ 0. For convenience, defining

n(r) =
φ̄z − d%φ̄ − φ̄z̄

cr2 ,
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one has ni(r) =
φ̄zi−d%φ̄−φ̄z̄i

cr2 , and∥∥∥∆( φ̄z − φ̄z̄
r2A

)∥∥∥
α

=
∥∥∥ n2

%B2
−

n1

%B1

∥∥∥
α
≤

∥∥∥ n2

%B2
−

n2

%B1

∥∥∥
α

+
∥∥∥ n2

%B1
−

n1

%B1

∥∥∥
α
. (3.4)

Because n2
%B2
−

n2
%B1

= n2
B1B2

( B1−B2
%

), one gets∥∥∥ n2

%B2
−

n2

%B1

∥∥∥
α
≤

∥∥∥ n2

B1B2

∥∥∥
∞

∥∥∥B1 − B2

%

∥∥∥
α

+
∥∥∥ n2

B1B2

∥∥∥
α

∥∥∥B1 − B2

%

∥∥∥
∞
.

Due to n2
B1B2
∈ C1+α, n2 =

φ̄

cr2 (z2 − d% − z̄), then

n2(r̄) =
φ̄

cr̄2 (z̄ − z̄ − d%).

Because of % = r̄ − r̄ = 0, n2(r̄) = 0,

n′2(r̄) =
φ̄

c
[

1
r2 (z′2 − d) −

2
r3 (z2 − d% − z̄)](r̄) =

φ̄

c
[

1
r̄2 (d − d) −

2
r̄3 (β − β − d%(r̄))] = 0.

Hence ( n2
B1B2

)(r̄) = 0, ( n2
B1B2

)′(r̄) = 0, furthermore∥∥∥ n2

B1B2

∥∥∥
∞
→ 0,

∥∥∥ n2

B1B2

∥∥∥
α
→ 0,

and ∥∥∥ n2

B1B2

∥∥∥
∞

∥∥∥B1 − B2

%

∥∥∥
α
→ 0,

as ε→ 0. Due to ( B2−B1
%

)(r̄) = 0, one has∥∥∥B2 − B1

%

∥∥∥
∞
≤ εα‖(B2 − B1)/%‖α ≤

εα

1 + α

∥∥∥B1 − B2

%

∥∥∥
1+α
,

and then ε→ 0, ∥∥∥ n2

B1B2

∥∥∥
α

∥∥∥B1 − B2

%

∥∥∥
∞
→ 0,

∥∥∥ n2

%B2
−

n2

%B1

∥∥∥
α
→ 0. (3.5)

For the last term in (3.4), denoting h(r) =
φ̄

B1r2c for convenience, then

∥∥∥ n2

%B1
−

n1

%B1

∥∥∥
α

=
∥∥∥ φ̄

B1r2c
(
z2 − d% − z̄ − z1 + d% + z̄

%
)
∥∥∥
α

=
∥∥∥h

z2 − z1

%

∥∥∥
α
.

Because h ∈ C1+α, h(r̄) =
φ̄

B(r̄)r̄2c , one has

h(r̄) =
c

B(r̄)c
=

1
1 + e

2c%(r̄)
= 1,

and (h − 1) ∈ C1+α, (h − 1)(r̄) = h(r̄) − 1 = 0, ‖h − 1‖∞ → 0. Moreover, 0 < δ < α, ‖h‖∞ ≤ 1 + δ, then∥∥∥ n2

%B1
−

n1

%B1

∥∥∥
α
≤ ‖h‖∞

∥∥∥z2 − z1

%

∥∥∥
α

+ ‖h‖α
∥∥∥z2 − z1

%

∥∥∥
∞
.

AIMS Mathematics Volume 6, Issue 11, 12065–12076.



12075

Due to the fact that (z2 − z1)(r̄) = 0 and ‖ z2−z1
%
‖ ≤ 1

1+α
‖z2 − z1‖1+α, then

∥∥∥ n2

%B1
−

n1

%B1

∥∥∥
α
≤ (1 + δ)

1
1 + α

‖z2 − z1‖1+α + ‖h‖α
∥∥∥z2 − z1

%

∥∥∥
∞
, (3.6)

and ∥∥∥z2 − z1

%

∥∥∥
∞
→ 0, ‖h‖α

∥∥∥z2 − z1

%

∥∥∥
∞
→ 0,

as ε→ 0. Let 0 < k = 1+δ
1+α

< 1, then∥∥∥ n2

%B1
−

n1

%B1

∥∥∥
α
≤ k‖z2 − z1‖1+α + O(ε). (3.7)

Furthermore, λūw̄ + φ̄z̄ = r̄2Āw̄′′ = 0, then

‖T2(θ1) − T2(θ2)‖1+α ≤ k‖z2 − z1‖1+α + O(ε). (3.8)

So T2 is a contract mapping. Thus, by Banach fixed-point theorem, in the interval r̄ ≤ r ≤ r̄ + ε, T has
a unique fixed point (A(r, w̄),w(r, w̄),w′(r, w̄))∈ X. This completes the proof of Theorem 1.2.

4. Conclusions

By Theorems 1.1 and 1.2, we can see that the local solution is unique. Moreover, this solution is
not rational solution, but C2+α solution. This means the results in Theorem 1.3 holds. Since the current
methods of finding ghost solitons are all based on the rational fraction solution, these results show that
there is no rational ghost soliton solution for the EYM equation.
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