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Abstract: In this paper, the representations of meromorphic solutions for three types of non-linear
difference equations of form

f n(z) + Pd(z, f ) = u(z)ev(z),

f n(z) + Pd(z, f ) = p1eλz + p2e−λz

and
f n(z) + Pd(z, f ) = p1eα1z + p2eα2z

are investigated, where n ≥ 2 is an integer, Pd(z, f ) is a difference polynomial in f of degree d ≤ n − 1
with small coefficients, u(z) is a non-zero polynomial, v(z) is a non-constant polynomial, λ, p j, α j ( j =

1, 2) are non-zero constants. Some examples are also presented to show our results are best in certain
sense.
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1. Introduction

In 1964, Hayman [6, P69] extended and improved the results of Tumura [16] and Clunie [1], and
obtained the following theorem.

Theorem 1.1. (See [6]) Suppose that f (z), g(z) are non-constant meromorphic function and satisfy the
equation

f n(z) + Qd(z, f ) = g(z), (1.1)
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where Qd(z, f ) is a differential polynomial in f of degree d ≤ n − 1. If

N(r, f ) + N
(
r,

1
g

)
= S (r, f ), (1.2)

then g(z) = (γ0(z) + f (z))n, where γ0(z) is a small function of f (z).

With the establishment of difference analogue of the lemma of the logarithmic derivative, the
Clunie and Mohon’ko lemmas, see Halburd and Korhonen [8], Chiang and Feng [5], more and more
researchers [2–4,13,15,17,20] come to study the properties of complex difference equations or complex
differential-difference equations. In particular, there has been a renewed interest [11, 12, 14, 17] in
solvability and existence for entire or meromorphic solutions of Eq (1.1). Replacing the differential
polynomial Qd(z, f ) in Eq (1.1) by a differential-difference polynomial, and satisfying the condition
(1.2), Chen et al. [4] proved the following result.

Theorem 1.2. (See [4]) Let n ≥ 2 be an integer. Suppose that f (z) is a non-constant finite order
meromorphic solution of

f n(z) + Qd(z, f ) = u(z)ev(z), (1.3)

where Qd(z, f ) is a differential-difference polynomial in f with degree d ≤ n − 2, u(z) is a non-zero
rational function, v(z) is a non-constant polynomial. If N(r, f ) = S (r, f ), then

u(z)ev(z) = f n(z) and Qd(z, f ) = 0.

Remark 1.1. With other conditions fixed, if Qd(z, f ) is a difference polynomial in f , the Theorem 1.2
is still valid. If the condition d ≤ n − 2 is omitted, then the Theorem 1.2 is impossible. For example,
f (z) = 1 + ez is an entire solution of equation f 2(z) − f (z + ln2) = e2z, where n = 2, d = n − 1 = 1.
So it’s natural to ask what will happen to the solutions of Eq (1.3) when d = n − 1? In this paper, we
study this problem and obtain the following result.

Theorem 1.3. Let n ≥ 2 be an integer, Pd(z, f ) be a difference polynomial in f of degree d ≤ n − 1
with polynomial coefficients, u(z) be a non-zero polynomial, v(z) be a non-constant polynomial. If f (z)
is a transcendental meromorphic solution of equation

f n(z) + Pd(z, f ) = u(z)ev(z) (1.4)

and N(r, f ) = S (r, f ), then σ( f ) = deg v(z), and one of the following holds:
(1) f n(z) = u(z)ev(z) and Pd(z, f ) = 0;
(2) If ϕ(z) = (u′(z) + u(z)v′(z)) f (z) − nu(z) f ′(z) . 0, then T (r, f ) = N1)

(
r, 1

f

)
+ S (r, f ). Furthermore,

if ϕ(z) is a non-zero polynomial, then f (z) = γ0(z) + p(z)eq(z), where γ0(z), p(z), q(z) are non-zero
polynomials satisfying pn(z) = u(z), nq(z) = v(z).

Example 1.1. f (z) = z + ez is a solution of the following difference equation

f 3(z) − z f (z) f (z + ln3) + z(z + ln3) f (z) − z3 = e3z.

Here, u(z) = 1, v(z) = 3z, n = 3, ϕ = (u′+ uv′) f −3u f ′ = 3(z−1). It implies that the solution satisfying
Theorem 1.3 does exist.
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If g(z) = p1eλz + p2e−λz and the condition (1.2) is not met, what will happen to the solutions of Eq
(1.1)? Li [11] obtained the following result.

Theorem 1.4. (See [11]) Let n ≥ 2 be an integer, Qd(z, f ) be a differential polynomial in f of degree
d ≤ n − 1, and let λ, p1, p2 be non-zero constants. If f (z) is a transcendental meromorphic solution of
the equation

f n(z) + Qd(z, f ) = p1eλz + p2e−λz (1.5)

and N(r, f ) = S (r, f ), then f (z) = c0(z) + c1e
λ
n z + c2e−

λ
n z, where c0(z) is small function of f (z), c j are

constants satisfying cn
j = p j, j = 1, 2.

It’s natural to ask: what will happen to the solutions of Eq (1.5) when Qd(z, f ) is a difference
polynomial in f of degree d ≤ n − 1? In this paper, we consider this problem and obtain the following
result.

Theorem 1.5. Let n ≥ 2 be an integer, Pd(z, f ) be a difference polynomial in f of degree d ≤ n − 1
with polynomial coefficients, λ, p1, p2 be non-zero constants. If f (z) is a transcendental meromorphic
solution of equation

f n(z) + Pd(z, f ) = p1eλz + p2e−λz (1.6)

and N(r, f ) = S (r, f ), then σ( f ) = 1, and one of the following holds:
(1) f (z) = c1e

λ
n z + c2e−

λ
n z;

(2) If ϕ(z) = λ2 f − n2 f ′′ . 0, then T (r, f ) = N2)

(
r, 1

f

)
+ S (r, f ). Furthermore, if ϕ(z) is a non-zero

polynomial, then f (z) = γ0(z) + c1e
λ
n z + c2e−

λ
n z, where γ0(z) is a non-zero polynomial, c j are constants

satisfying cn
j = p j, j = 1, 2.

Example 1.2. f (z) = z + ez + e−z is a solution of the following difference equation

f 2(z) + 2z f (z + iπ) − (3z2 + 2iπz + 2) = e2z + e−2z.

Here, λ = 2, n = 2, ϕ = λ2 f − n2 f ′′ = 4z. It implies that the solution satisfying Theorem 1.5 does exist.

If g(z) = p1eα1z + p2eα2z and the condition (1.2) is not met, what will happen to the solutions of
Eq (1.1)? Liu et al. [14] obtained the following result.

Theorem 1.6. (See [14]) Let n ≥ 2 be an integer, Qd(z, f ) be a differential polynomial in f of degree
d ≤ n − 1 with polynomial coefficients, and let p j, α j ( j = 1, 2) be non-zero constants satisfying

α1

α2
∈

{ t
n
,

n
t

: 1 ≤ t ≤ n
}
. (1.7)

If equation
f n(z) + Qd(z, f ) = p1eα1z + p2eα2z (1.8)

admits a meromorphic solution f (z) satisfying N(r, f ) = S (r, f ), then one of the following holds:
(1) f (z) = γ1(z) + c1eα1z, α1

α2
= n

t ,
(2) f (z) = γ2(z) + c2eα2z, α1

α2
= t

n , where γ j(z) are small functions of f (z), c j are constants satisfying
cn

j = p j, j = 1, 2.
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What will happen to the solutions of Eq (1.8) when Qd(z, f ) is a difference polynomial in f of
degree d ≤ n − 1? In this paper, we study this problem and obtain the following result.

Theorem 1.7. Let n ≥ 2 be an integer, Pd(z, f ) be a differential polynomial in f of degree d ≤ n − 1
with polynomial coefficients, and let p j, α j ( j = 1, 2) be non-zero constants satisfying the condition
(1.7). If f (z) is a meromorphic solution of equation

f n(z) + Pd(z, f ) = p1eα1z + p2eα2z (1.9)

and N(r, f ) = S (r, f ), then σ( f ) = 1 and T (r, f ) = N2)

(
r, 1

f

)
+ S (r, f ). If ϕ(z) = α1α2 f (z) − n(α1 +

α2) f ′(z) + n2 f ′′(z) is a non-zero polynomial and then one of the following holds:
(1) f (z) = γ0(z) + c1e

α1
n z, α1

α2
= n

t ;

(2) f (z) = γ0(z) + c2e
α2
n z, α1

α2
= t

n , where γ0(z) is a non-zero polynomial, c j are constants satisfying
cn

j = p j, j = 1, 2.

Remark 1.2. The condition (1.7) in Theorem 1.7 is necessary, see example 1.3.

Example 1.3. f (z) = ez + e2z is a solution of the following difference equation

f 2(z) −
1
2

f (z + ln2) + f (z) = e4z + 2e3z.

Here, α1 = 4, α2 = 3, n = 2, α1
α2

= 2n
n+1 .

Remark 1.3. The following examples 1.4 and 1.5 show that the solution satisfying Theorem 1.7 does
exist.

Example 1.4. f (z) = 1 + ez is a solution of the following difference equation

f 3(z) + 2 f (z) f (z + iπ) − 3 f (z) = e3z + e2z.

Here, α1 = 3, α2 = 2, n = 3, α1
α2

= n
n−1 , ϕ = α1α2 f − n(α1 + α2) f ′ + n2 f ′′ = 6.

Example 1.5. f (z) = 1 − ez is a solution of the following difference equation

f 3(z) − f (z + ln3) f (z) + f (z + iπ) − 1 = 2ez − e3z.

Here, α1 = 1, α2 = 3, n = 3, α1
α2

= n−2
n , ϕ = α1α2 f − n(α1 + α2) f ′ + n2 f ′′ = 3.

In this paper, we assume familiarity with the basic results and standard notations of Nevanlinna
theory [6, 9, 19]. f is meromorphic function in the whole complex plane C. In addition, we use
σ( f ) to denote the order of growth of f . For simplicity, we denote by S (r, f ) any quantify satisfying
S (r, f ) = o(T (r, f )), as r → ∞, outside of a possible exceptional set of finite logarithmic measure. A
meromorphic function ϕ defined in C is called a small function of f if T (r, ϕ) = S (r, f ). Let Nk)

(
r, 1

f

)
denote the counting function of those zeros of f (counting multiplicity) whose multiplicities are not
greater than k, and let N(k

(
r, 1

f

)
denote the counting function of those zeros of f (counting multiplicity)

whose multiplicities are not less than k.
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2. Some Lemmas

Lemma 2.1. (See [5, Corollary 2.6]) Let η1, η2 be two complex numbers such that η1 , η2 and let f (z)
be a finite order meromorphic function. Let σ be the order of f (z), then for each ε > 0, we have

m
(
r,

f (z + η1)
f (z + η2)

)
= O(rσ−1+ε).

Lemma 2.2. (See [7, Corollary 3.3]) Let f be a non-constant finite order meromorphic solution of

f n(z)P(z, f ) = Q(z, f ),

where P(z, f ) and Q(z, f ) are difference polynomials in f with small meromorphic coefficients, and let
c ∈ C, δ < 1. If the total degree of Q(z, f ) as a polynomial in f and its shifts is ≤ n, then

m(r, P(z, f )) = o
(
T (r + |c|, f )

rδ

)
+ o(T (r, f ))

for all r outside of a possible exceptional set E with finite logarithmic measure
∫

E
dr
r < ∞.

Using the same methods as in proof of [9, Lemma 2.4.2] and Lemma 2.1, we have a similar
conclusion as follows.

Lemma 2.3. Let f be a non-constant finite order meromorphic solution of

f n(z)P(z, f ) = Q(z, f ),

where P(z, f ) and Q(z, f ) are differential-difference polynomials in f with small meromorphic
coefficients. If the total degree of Q(z, f ) as a polynomial in f and its derivatives and its shifts is
≤ n, then

m(r, P(z, f )) = S (r, f )

for all r outside of a possible exceptional set with finite logarithmic measure.

Lemma 2.4. Suppose that α(z), β(z), ϕ(z) are non-zero polynomials and satisfy the differential equation

α(z) f (z) + β(z) f ′(z) = ϕ(z), (2.1)

where degϕ(z) ≥ degα(z) ≥ deg β(z). Then Eq (2.1) has a special solution γ0(z) which is a non-zero
polynomial.

Proof. Now we distinguish two cases below. Case 1: degα(z) = deg β(z); Case 2: degα(z) > deg β(z).
Case 1. In this case, we consider three subcases. Subcase 1.1. If α, β, ϕ are non-zero constants,

then γ0 =
ϕ

α
. Subcase 1.2. If α, β are non-zero constants, and ϕ is non-constant polynomial. Let

ϕ(z) = anzn + an−1zn−1 + · · · + a0, n ≥ 1,

where an(, 0), an−1, . . . , a0 are constants. Assuming

γ0(z) = bnzn + bn−1zn−1 + · · · + b0,
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and using the method of undetermined coefficients, it follows from Eq (2.1) that bn = an
α

;

b j =
a j−n β

αa j+1

α
, j = n − 1, n − 2, . . . , 0.

So, we get the expression of the special solution γ0(z) and deg γ0(z) = degϕ(z). Subcase 1.3. If
α, β are non-constant polynomials, then ϕ(z) must be non-constant polynomial. Using the method of
undetermined coefficients and Eq (2.1), similar to the proof of subcase 1.2, we can also obtain the
expression of the special solution γ0(z) and deg γ0(z) = degϕ(z) − degα(z).

Case 2. If degα(z) > deg β(z), then ϕ(z) must be are non-constant polynomials. By using the
method of undetermined coefficients and equation (2.1), similar to the proof of subcase 1.2, we can
also obtain the expression of the special solution γ0(z) and deg γ0(z) = degϕ(z) − degα(z).

�

Lemma 2.5. (See [3, Lemma 2.6]) Let n ≥ 1 be an integer, λ be a non-zero constant and ϕ(z) be a
non-zero polynomial. Then the differential equation

λ2 f (z) − n2 f ′′(z) = ϕ(z)

has a special solution γ0(z) which is a non-zero polynomial.

Lemma 2.6. Let n ≥ 2 be an integer, Pd(z, f ) be a difference polynomial in f of degree d ≤ n − 1 with
small meromorphic coefficients, and let p j, α j ( j = 1, 2) be non-zero constants satisfying α1 , α2. If
f (z) is a meromorphic solution of equation

f n(z) + Pd(z, f ) = p1eα1z + p2eα2z (2.2)

and N(r, f ) = S (r, f ), then σ( f ) = 1.

Proof. Set

Pd(z, f ) =
∑
µ∈I

aµ(z)
tµ∏

j=1

f (z + δµ j)lµ j , (2.3)

where I is a finite set of the index µ, tµ, lµ j (µ ∈ I, j = 1, . . . , tµ) are natural numbers, δµ j (µ ∈ I, j =

1, . . . , tµ) are distinct complex constants. Denote gµ j(z) := f (z+δµ j)
f (z) and substitute this equality into (2.3)

yields

Pd(z, f ) =
∑
µ∈I

aµ(z)
tµ∏

j=1

glµ j

µ j (z)

 f lµ(z) :=
d∑

k=0

bk(z) f k(z), (2.4)

where lµ =
tµ∑

j=1
lµ j, d = max

µ∈I
{lµ}, bk(z) =

∑
lµ=k

(
aµ(z)

tµ∏
j=1

glµ j

µ j (z)
)

(k = 0, . . . , d). By applying Lemma 2.1,

we get m(r, bk(z)) = S (r, f ) (k = 0, . . . , d). Differentiating (2.4) yields

P′d(z, f ) =
∑
µ∈I


a′µ(z) +

tµ∑
j=1

aµ(z)lµ j f ′(z + δµ j)
f (z + δµ j)

 tµ∏
j=1

glµ j

µ j (z)

 f lµ(z) :=
d∑

k=0

ck(z) f k(z). (2.5)
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By using Lemma 2.1 and the lemma of the logarithmic derivative, we get m(r, ck(z)) = S (r, f ) (k =

0, . . . , d). Noting that m(r, bk(z)) = S (r, f ) (k = 0, . . . , d) and by induction, we obtain

m(r, Pd(z, f )) ≤ dm(r, f ) + S (r, f ). (2.6)

Combining (2.2) and (2.6), and noting that N(r, f ) = S (r, f ), we get

T (r, p1eα1z + p2eα2z) = T (r, f n + Pd(z, f ))
= m(r, f n + Pd(z, f )) + S (r, f )
≤ nT (r, f ) + S (r, f ),

and

T (r, p1eα1z + p2eα2z) = T (r, f n + Pd(z, f ))
= m(r, f n + Pd(z, f )) + S (r, f )
≥ m(r, f n) − m(r, Pd(z, f )) + S (r, f )
≥ (n − d)T (r, f ) + S (r, f ).

From the above two inequalities, we have

(n − d)T (r, f ) + S (r, f ) ≤ T (r, p1eα1z + p2eα2z) ≤ nT (r, f ) + S (r, f ).

Then σ( f ) = 1.
�

Lemma 2.7. (See [14, Lemma 2.5]) Let n ≥ 1 be an integer, α1, α2 be non-zero constants satisfying
α1 , α2, and let ϕ(z) be a non-vanishing polynomial. Then the differential equation

α1α2 f (z) − n(α1 + α2) f ′(z) + n2 f ′′(z) = ϕ(z)

has a special solution γ0(z) which is a non-vanishing polynomial.

Lemma 2.8. (See [7, p.247]) Suppose that f (z) is a transcendental meromorphic function and K > 1.
Then there exists a set M(K) of upper logarithmic density at most δ(K) = min{(2eK−1−1)−1, (1 + e(K −
1))exp(e(1 − K))} such that for every positive integer k, we have

lim sup
r→∞

r<M(K)

T (r, f )
T (r, f (k))

≤ 3eK.

Remark 2.1. By Lemma 2.8, we see that if f is a transcendental meromorphic function, and if ϕ
satisfying T (r, ϕ(k)) = S 1(r, f ), then T (r, ϕ) = S 1(r, f ), where S 1(r, f ) is defined to be any quantity such
that for any positive number ε there exists a set E(ε) whose upper logarithmic density is less than ε,
and S 1(r, f ) = o(T (r, f )) as r → ∞, r < E(ε).

Lemma 2.9. (See [18, Theorem 1.51]) Suppose that f1, f2, . . . , fn(n ≥ 2) are meromorphic functions
and g1, g2, . . . , gn are entire functions satisfying the following conditions:

AIMS Mathematics Volume 6, Issue 11, 11708–11722.
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(1)
n∑

j=1
f jeg j ≡ 0.

(2) g j − gk are not constants for 1 ≤ j < k ≤ n.
(3) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, f j) = o(T (r, egh−gk)) (r → ∞, r < E),

where E ⊂ [1,∞) is finite linear measure
∫

E
dr < ∞ or finite logarithmic measure

∫
E

dr
r < ∞. Then

f j ≡ 0 ( j = 1, . . . , n).

Lemma 2.10. (See [10, Lemma 3]) Suppose that h is a nonconstant meromorphic function satisfying

N(r, h) + N
(
r,

1
h

)
= S (r, h).

Let f = a0hp + a1hp−1 + · · · + ap, g = b0hq + b1hq−1 + · · · + bq be polynomials in h with coefficients
a0, a1, . . . , ap, b0, b1, . . . , bq being small functions of h and a0b0ap . 0. If q ≤ p, then m(r, g/ f ) =

S (r, f ).

3. Proof of Theorem 1.3

Proof. Combining (1.4), (2.6) and N(r, f ) = S (r, f ), we get

T (r, u(z)ev(z)) = T (r, f n + Pd(z, f ))
= m(r, f n + Pd(z, f )) + S (r, f )
≤ nT (r, f ) + S (r, f ),

and

T (r, u(z)ev(z)) = T (r, f n + Pd(z, f ))
= m(r, f n + Pd(z, f )) + S (r, f )
≥ m(r, f n) − m(r, Pd(z, f )) + S (r, f )
≥ (n − d)T (r, f ) + S (r, f ).

From the above two inequalities, we get

(n − d)T (r, f ) + S (r, f ) ≤ T (r, u(z)ev(z)) ≤ nT (r, f ) + S (r, f ).

Then σ( f ) = deg v(z).
Denote Pd(z, f ) = P. By differentiating (1.4), we have

n f n−1 f ′ + P′ = (u′ + uv′)ev. (3.1)

Eliminating ev from (1.4) and (3.1), we have

f n−1ϕ = uP′ − (u′ + uv′)P, (3.2)

AIMS Mathematics Volume 6, Issue 11, 11708–11722.
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where
ϕ = (u′ + uv′) f − nu f ′. (3.3)

By Lemma 2.3, we have
m(r, ϕ) = S (r, f ).

Noting that N(r, f ) = S (r, f ), then T (r, ϕ) = S (r, f ). We consider two cases as follows.
Case 1. If ϕ ≡ 0, then (u′ + uv′) f = nu f ′, that is f ′

f = u′+uv′
nu = 1

n

(
u′
u + v′

)
. By integration,

we get f n = cuev (c , 0). Substituting this equality into (1.4) yields
(
1 − 1

c

)
f n = −P. If c , 1,

by Lemma 2.2, we have m(r, f ) = S (r, f ). Noting that N(r, f ) = S (r, f ), then T (r, f ) = S (r, f ),
a contradiction. Therefore c = 1, and f (z) = p(z)eq(z), where p(z), q(z) are non-zero polynomials
satisfying pn(z) = u(z), nq(z) = v(z).

Case 2. If ϕ . 0, and z0 is a multiple zero of f , it follows from (3.3) that z0 is a zero of ϕ. Then

N(2

(
r,

1
f

)
= S (r, f ). (3.4)

We claim that u′ + uv′ . 0, otherwise f ′ = −
ϕ

nu , then T (r, f ′) = S 1(r, f ), by Lemma 2.8, we have
T (r, f ) = S 1(r, f ), which is impossible. Rewrite (3.3) as 1

f = 1
ϕ

[
(u′ + uv′) − nu f ′

f

]
, by the lemma of the

logarithmic derivative and T (r, ϕ) = S (r, f ), we get

m
(
r,

1
f

)
≤ m

(
r,

1
ϕ

)
+ m(r, u′ + uv′) + m(r, nu) + m

(
r,

f ′

f

)
+ O(1) = S (r, f ). (3.5)

Combining (3.4) and (3.5), we get

T (r, f ) = m
(
r,

1
f

)
+ N

(
r,

1
f

)
+ O(1) = N1)

(
r,

1
f

)
+ S (r, f ).

If ϕ is a non-zero polynomial and deg(u′ + uv′) ≥ deg(nu), by Lemma 2.4, we have

f (z) = γ0(z) + p(z)eq(z), (3.6)

where γ0(z), p(z), q(z) are non-zero polynomials. Substituting (3.6) into (1.4), and using Lemma 2.9,
we get pn(z) = u(z), nq(z) = v(z).

This completes the proof of Theorem 1.3.
�

4. Proof of Theorem 1.5

Proof. Suppose that f is a transcendental meromorphic solution of finite order of Eq (1.6) and N(r, f ) =

S (r, f ), by Lemma 2.6, we get σ( f ) = 1. Denote Pd(z, f ) = P. Differentiating (1.6) gives

n f n−1 f ′ + P′ = λ(p1eλz − p2e−λz). (4.1)

Differentiating (4.1) yields

n(n − 1) f n−2( f ′)2 + n f n−1 f ′′ + P′′ = λ2(p1eλz + p2e−λz). (4.2)
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Combining (1.6) and (4.1), we get

λ2 f 2n − n2 f 2(n−1)( f ′)2 + 2λ2P f n − 2nP′ f n−1 f ′ + λ2P2 − (P′)2 − 4λ2 p1 p2 = 0. (4.3)

Combining (1.6) and (4.2), we get

λ2 f n − n(n − 1) f n−2( f ′)2 − n f n−1 f ′′ + λ2P − P′′ = 0. (4.4)

Eliminating ( f ′)2 from (4.3) and (4.4), we have

f 2n−1ϕ = Q(z, f ), (4.5)

where
ϕ = λ2 f − n2 f ′′ (4.6)

and

Q(z, f ) = [(n − 2)λ2P + nP′′] f n − 2n(n − 1)P′ f n−1 f ′ + (n − 1)[λ2P2 − (P′)2 − 4λ2 p1 p2], (4.7)

Q(z, f ) is a differential-difference polynomial in f of of degree 2n − 1. By Lemma 2.3, we have
m(r, ϕ) = S (r, f ). Noting that N(r, f ) = S (r, f ), then

T (r, ϕ) = S (r, f ). (4.8)

We distinguish two cases below:
Case 1. If ϕ ≡ 0, that is

λ2 f − n2 f ′′ = 0, (4.9)

which has two fundamental solutions f1(z) = e
λ
n z, f2(z) = e−

λ
n z. Then the general solution of Eq (4.9)

can be expressed as
f (z) = c1e

λ
n z + c2e−

λ
n z.

Substituting the above formula into (1.6), and applying Lemma 2.9, we obtain cn
j = p j, j = 1, 2.

Case 2. If ϕ . 0, and z0 is a multiple zero of f whose multiplicities are not less than 3, it follows
from (4.6) that z0 is a zero of ϕ. Then

N(3

(
r,

1
f

)
= S (r, f ). (4.10)

Rewriting (4.6) as 1
f = 1

ϕ

(
λ2 − n2 f ′′

f

)
, by the lemma of the logarithmic derivative and (4.8), we get

m
(
r,

1
f

)
≤ m

(
r,

1
ϕ

)
+ m(r, λ2) + m

(
r, n2 f ′′

f

)
+ O(1) = S (r, f ). (4.11)

It follows from (4.10) and (4.11) that

T (r, f ) = m
(
r,

1
f

)
+ N

(
r,

1
f

)
+ O(1) = N2)

(
r,

1
f

)
+ S (r, f ).

If ϕ is a non-zero polynomial, by Lemma 2.5, we have

f (z) = γ0(z) + c1e
λ
n z + c2e−

λ
n z, (4.12)

where γ0(z) is a non-zero polynomial, c j ( j = 1, 2) are constants. Substituting (4.12) into (1.6), and
using Lemma 2.9, we get cn

j = p j, j = 1, 2.
This completes the proof of Theorem 1.5.

�
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5. Proof of Theorem 1.7

Proof. Suppose that f is a transcendental meromorphic solution of finite order of Eq (1.9) and N(r, f ) =

S (r, f ), by Lemma 2.6, we get σ( f ) = 1. Denote Pd(z, f ) = P. Differentiating (1.9) gives

n f n−1 f ′ + P′ = α1 p1eα1z + α2 p2eα2z. (5.1)

Eliminating eα1z and eα2z from (1.4) and (4.1), respectively, we have

α1 f n − n f n−1 f ′ + α1P − P′ = (α1 − α2)p2eα2z, (5.2)

α2 f n − n f n−1 f ′ + α2P − P′ = (α2 − α1)p1eα1z. (5.3)

Differentiating (5.3) yields

nα2 f n−1 f ′ − n(n − 1) f n−2( f ′)2 − n f n−1 f ′′ + α2P′ − P′′ = α1(α2 − α1)p1eα1z. (5.4)

Eliminating eα1z from (5.3) and (5.4), we have

α1α2 f n − n(α1 + α2) f n−1 f ′ + n(n − 1) f n−2( f ′)2 + n f n−1 f ′′ = −Q(z, f ), (5.5)

where
Q(z, f ) = α1α2P − (α1 + α2)P′ + P′′ (5.6)

is a differential-difference polynomial in f of degree n − 1. It follows from (5.2) and (5.3) that

α1α2 f 2n − n(α1 + α2) f 2n−1 f ′ + n2 f 2n−2( f ′)2 = −(α1 − α2)2 p1 p2e(α1+α2)z − R(z, f ), (5.7)

where

R(z, f ) = (α1 f n − n f n−1 f ′)(α2P − P′) + (α2 f n − n f n−1 f ′)(α1P − P′) + (α1P − P′)(α2P − P′) (5.8)

is a differential-difference polynomial in f of degree 2n− 1. Eliminating ( f ′)2 from (5.5) and (5.7), we
have

f 2n−1ϕ = (n − 1)(α1 − α2)2 p1 p2e(α1+α2)z + T (z, f ), (5.9)

where
ϕ = α1α2 f − n(α1 + α2) f ′ + n2 f ′′, (5.10)

and
T (z, f ) = (n − 1)R(z, f ) − n f nQ(z, f ) (5.11)

is a differential-difference polynomial in f of degree 2n − 1. It follows from (1.9), (2.6) and N(r, f ) =

S (r, f ) that

O(T (r, ez)) ≥ T (r, p1eα1z + p2eα2z) = T (r, f n + Pd(z, f ))
= m(r, f n + Pd(z, f )) + S (r, f )
≥ m(r, f n) − m(r, Pd(z, f )) + S (r, f )
≥ (n − d)T (r, f ) + S (r, f ).

(5.12)
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It follows from (2.4), (2.5) and (5.2) that

T (r, eα2z) = m(r, eα2z)

≤ m

r, (α1 − n
f ′

f

)
f n +

d∑
k=0

(α1bk − ck) f k

 + O(1)

≤ nT (r, f ) + S (r, f ).

(5.13)

Combining (5.12) and (5.13), we have

S (r, f ) = S (r, ez). (5.14)

Substituting (2.4) into (1.9) yields

1
p1eα1z + p2eα2z − b0

+

d∑
k=1

bk

p1eα1z + p2eα2z − b0

(
1
f

)n−k

=

(
1
f

)n

. (5.15)

Without loss of generality, we assume that b0 = Pd(z, 0) . 0. Otherwise, we make the transformation
f̂ = f − c for a suitable constant c satisfying cn + Pd(z, c) . 0. Then (1.9) is changed to the form
( f̂ )n(z) + P∗d(z, f̂ ) = p1eα1z + p2eα2z, where P∗d(z, f̂ ) is a difference polynomial in f̂ of degree at most
n − 1 with polynomial coefficients, and P∗d(z, 0) = cn + Pd(z, c) . 0. Noting that b0 = Pd(z, 0) . 0, by
applying Lemma 2.10, it follows from (1.7) that

m
(
r,

1
p1eα1z + p2eα2z − b0

)
= S (r, ez),

m
(
r,

eα jz

p1eα1z + p2eα2z − b0

)
= S (r, ez), j = 1, 2.

(5.16)

It follows from (5.14) − (5.16) that

nm
(
r,

1
f

)
≤ (n − 1)m

(
r,

1
f

)
+ S (r, f ),

m
(
r,

eα jz

f n

)
≤ (n − 1)m

(
r,

1
f

)
+ S (r, f ), j = 1, 2,

then

m
(
r,

1
f

)
= S (r, f ), m

(
r,

eα jz

f n

)
= S (r, f ), j = 1, 2. (5.17)

Without loss of generality, if α1
α2

= t
n , for some t ∈ {1, 2, . . . , n − 1}, then∣∣∣∣∣∣e(α1+α2)z

f 2n−1

∣∣∣∣∣∣ =
|eα2z|

n+t
n

| f |n
n+t
n +n−1−t

=

∣∣∣∣∣eα2z

f n

∣∣∣∣∣ n+t
n 1
| f |n−1−t .

From (5.17) and the above equality, we have

m
(
r,

e(α1+α2)z

f 2n−1

)
= S (r, f ). (5.18)
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By applying Lemma 2.1 and the lemma of the logarithmic derivative, from (5.9), (5.17) and (5.18), we
get m(r, ϕ) = S (r, f ). Noting that N(r, f ) = S (r, f ), then T (r, ϕ) = S (r, f ).

We consider two cases as follows.
Case 1. If ϕ ≡ 0, that is α1α2 f −n(α1 +α2) f ′+n2 f ′′ ≡ 0. The corresponding characteristic equation

α1α2 − n(α1 + α2)λ + n2λ2 = 0 has two roots α1
n , α2

n , we get

f (z) = c1e
α1
n z + c2e

α2
n z, (5.19)

where c j ( j = 1, 2) are constants. Noting that f (z) is a transcendental meromorphic solution of equation
(1.9) and satisfies m(r, 1/ f ) = S (r, f ), then c1c2 , 0. Substituting (5.19) into (1.9) yields

(cn
1 − p1)eα1z + (cn

2 − p2)eα2z +

n−1∑
j=1

(
j
n

)
c j

1cn− j
2 e

( j
nα1+

n− j
n α2

)
z + Pd(z, f ) = 0.

From (1.7) and Lemma 2.9, at least one of
(

j
n

)
c j

1cn− j
2 e

( j
nα1+

n− j
n α2

)
z ( j = 1, . . . , n− 1) is zero, then c1c2 = 0,

which is impossible.
Case 2. If ϕ . 0, and z0 is a multiple zero of f whose multiplicities are not less than 3, it follows

from (5.10) that z0 is a zero of ϕ. Then

N(3

(
r,

1
f

)
= S (r, f ). (5.20)

It follows from (5.17) and (5.20) that

T (r, f ) = m
(
r,

1
f

)
+ N

(
r,

1
f

)
+ O(1) = N2)

(
r,

1
f

)
+ S (r, f ).

If ϕ is a non-zero polynomial, by applying Lemma 2.6, we have

f (z) = γ0(z) + c1e
α1
n z + c2e

α2
n z, (5.21)

where γ0(z) is a non-zero polynomial, c j ( j = 1, 2) are constants. Noting that f (z) is a transcendental
meromorphic solution of Eq (1.9) and satisfies m(r, 1/ f ) = S (r, f ), then c1, c2 are not complete zeroes.
If c1c2 , 0, substituting (5.21) into (1.9) yields

(cn
1 − p1)eα1z + (cn

2 − p2)eα2z +

n−1∑
j=1

(
j
n

)
c j

1cn− j
2 e

( j
nα1+

n− j
n α2

)
z +

n∑
j=1

(
j
n

)
γ

j
0(z)(c1e

α1
n z + c2e

α2
n z)n− j + Pd(z, f ) = 0.

From (1.7) and Lemma 2.9, at least one of
(

j
n

)
c j

1cn− j
2 e

( j
nα1+

n− j
n α2

)
z ( j = 1, . . . , n− 1) is zero, then c1c2 = 0,

which is impossible. Then we get f (z) = γ0(z) + c1e
α1
n z or f (z) = γ0(z) + c2e

α2
n z.

This completes the proof of Theorem 1.7.
�
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6. Conclusions

Using the Nevalinna theory of meromorphic functions, this paper study the meromorphic solutions
of three Clunie-Tumura types of non-linear difference equations and get the exact forms of the
meromorphic solutions of these difference equations with some added conditions. Improvements and
extensions of some results in the literature are presented.
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