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1. Introduction and preliminaries

Since Zadeh [24] introduced the notion of fuzzy sets in 1965, several different versions of fuzzy
metric spaces were studied by topological researchers. In particular, Kramosi and Michalek [11]
introduced the fuzzy metric spaces in 1975, basing on statistical metric spaces which introduced by
Menger [14] in 1942, Schweizer and Sklar [19] in 1960, respectively. Kaleva and Seikkala [10]
introduced the concept of fuzzy metric spaces and studied some fixed point theorems in these spaces
in 1984. Later, by modifying the fuzzy metric spaces concept of Kramosi and Michálek (usually
called KM-fuzzy metric spaces), George and Veeramani [4] introduced the notion of fuzzy metric
spaces in 1994 (usually called GV-fuzzy metric spaces), and defined Hausdorff topologies on these
spaces. In the last years, many authors devoted to study various types of generalizing fuzzy metric
spaces by different approaches. For instance, fuzzy pseudo-metric spaces [1], fuzzy quasi-metric
spaces [7, 8], fuzzy partial (pseudo-)metric spaces [6, 23], fuzzy cone metric spaces [17], fuzzy
b-metric spaces [16], fuzzy k-pseudometric spaces [22] (also called fuzzy metric type spaces in [18]),
etc.

Furthermore, since Grabiec extended fixed point theorems of Banach and Edelstein to KM-fuzzy
metric spaces [5], many researchers investigated the contractive mappings and obtained some
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interesting fixed point theorems concerning fuzzy metric spaces [2, 3, 9, 15, 20, 25–30].
In this paper, firstly, we introduce the concept of partial k-(pseudo-)metric spaces. By generalizing

the notion of fuzzy k-pseudo-metric spaces, we introduce the concept of partial fuzzy k-(pseudo-)
metric spaces and give some examples to support our results in these spaces. Moreover, we investigate
the relationships between (partial) k-pseudo-metric spaces and partial fuzzy k-pseudo-metric spaces.
Finally, we provide several fixed pointed theorems in partial fuzzy k-metric spaces.

We recall some basic notions and results that will be used in the following sections (see more details
in [12, 13, 21]). Throughout this paper, the letters R, R+, N+ always denote the set of real numbers, of
positive real numbers and of positive integers, respectively.

Definition 1.1. [13, 21] Let X be a nonempty set and the mapping pk : X × X → [0,+∞) satisfying
the following conditions for some number k ≥ 1: ∀x, y, z ∈ X,
(PK1) pk(x, x) ≤ pk(x, y);
(PK2) pk(x, y) = pk(y, x);
(PK3) pk(x, z) ≤ k[pk(x, y) + pk(y, z)] − pk(y, y);
(KP3) pk(x, z) ≤ k[pk(x, y) + pk(y, z)].

If pk satisfies the conditions (PK1)–(PK3), then pk is called a partial k-pseudo-metric. If pk satisfies
the conditions (PK1)–(KP3), then pk is called a k-pseudo-metric.

A (partial) k-pseudo-metric space with coefficient k ≥ 1 is a pair (X, pk) such that pk is a (partial)
k-pseudo-metric on X.

Furthermore, if pk satisfies (PK1)–(PK3) and the following condition:
(PK4) x = y⇔ pk(x, x) = pk(x, y) = pk(y, y) for all x, y ∈ X;

Then it is called partial k-metric [21] and the pair (X, pk) is called a partial k-metric space with a
coefficient k ≥ 1.

Particularly, a partial 1-metric (i.e. k=1) is called partial metric [13].

Example 1.2. Let X = {a, b, c}. Define pk: X × X → [0,+∞) as follows:
pk(a, a) = pk(a, b) = pk(b, a) = pk(b, c) = pk(c, b) = 2, pk(b, b) = pk(c, c) = 0, pk(c, a) = pk(a, c) = 6.
It is trivial to verify (X, pk) is a partial k-pseudo-metric space with a coefficient k = 2.

Definition 1.3. [19] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular
norm (briefly t-norm) if it satisfies the following conditions:
(1) ∗ is associative and commutative;
(2) ∗ is continuous;
(3) a ∗ 1 = a for all a ∈ [0, 1];
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

The following are the three basic t-norms: minimum, usual product and Lukasiewicz t-norm, which
are given by, respectively: a ∧ b = min{a, b}, a · b = ab and a ∗L b = max{0, a + b − 1}, ∀a, b ∈ [0, 1].

Definition 1.4. [11] A triple (X,M, ∗) is called a KM-fuzzy metric space if X is an arbitrary nonempty
set, ∗ is a continuous t-norm and M is a fuzzy set on X×X×[0,+∞), satisfying the following conditions:
∀x, y, z ∈ X and t, s > 0,
(1) M(x, y, 0) = 0;
(2) M(x, y, t) = 1 if and only if x = y;
(3) M(x, y, t) = M(y, x, t);
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(4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s);
(5) The function M(x, y, ·) : [0,+∞)→ [0, 1] is left-continuous.

We note that A. George and P. Veeramani [4] modified the concept of KM-fuzzy metric spaces and
defined a Hausdorff topology on this fuzzy space.

2. Partial fuzzy k-(pseudo)metric spaces

Definition 2.1. A triple (X,Mpk , ∗) is called a partial fuzzy k-metric space if X is an arbitrary nonempty
set, ∗ is a continuous t-norm and Mpk is a fuzzy set on X × X × [0,+∞), satisfying the following
conditions for some number k ≥ 1: ∀x, y, z ∈ X and t, s > 0,
(PFK1) Mpk(x, y, 0) = 0;
(PFK2) Mpk(x, x, t) ≥ Mpk(x, y, t);
(PFK3) Mpk(x, y, t) = Mpk(y, x, t);
(PFK4) Mpk(x, x, t) = Mpk(x, y, t) = Mpk(y, y, t) if and only if x = y;
(PFK5) Mpk(x, y, t) ∗ Mpk(y, z, s) ≤ Mpk(x, z, k(t + s));
(PFK6) The function Mpk(x, y, ·) : (0,+∞)→ [0, 1] is left-continuous.

If it only satisfies (PFK1)–(PFK3) and (PFK5)–(PFK6), then it is called a partial fuzzy
k-pseudometric space.

Example 2.2. Let X = Xa ∪ Xb ∪ Xc, where Xa = {a} × [0, 1], Xb = {b} × [0, 1], Xc = {c} × [0, 1]. We
denote x ∈ {a, b, c} × x̄, where x̄ ∈ [0, 1]. Define a fuzzy set on X × X × [0,+∞) as follows:

Mpk(x, y, t) =

 t
t+d(x,y) , t > 0;

0, t = 0.

where

d(x, y) =


|x̄ − ȳ|, x, y ∈ Xa or x, y ∈ Xb or x, y ∈ Xc ;

1, x ∈ Xa, y ∈ Xb or x ∈ Xb, y ∈ Xa ;
2, x ∈ Xa, y ∈ Xc or x ∈ Xc, y ∈ Xa ;
5, x ∈ Xb, y ∈ Xc or x ∈ Xc, y ∈ Xb .

Then (X,Mpk , ∗) is a partial fuzzy k-metric space with a coefficient k = 3, where x ∗ y = x ∧ y.
To verify this result, we have to check (PFK5).
(PFK5): Since the authors showed that d(x, z) ≤ 3[d(x, y) + d(y, z)] (see Example 7 in [26]). For any

x, y, z ∈ X and t, s > 0, without loss of generality, we assume that Mpk(x, y, t) ≤ Mpk(y, z, s). Namely,
t

t+d(x,y) ≤
s

s+d(y,z) , which implies that sd(x, y) ≥ td(y, z). Furthermore, we can deduce that(t + s)d(x, y) ≥
t[d(x, y) + d(y, z)].
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Thus, we have(t + s)[t + d(x, y)] ≥ t[(t + s) + (d(x, y) + d(y, z))]. Then

Mpk(x, z, 3(t + s)) =
3(t + s)

3(t + s) + d(x, z)

≥
3(t + s)

3(t + s) + 3[d(x, y) + d(y, z)]

=
t + s

t + s + d(x, y) + d(y, z)

≥
t

t + d(x, y)
= Mpk(x, y, t) = Mpk(x, y, t) ∧ Mpk(y, z, s),

for all x, y ∈ X, t, s > 0.

Remark 2.3. Let X be a nonempty set and pk be a partial k-metric with a coefficient k ≥ 1. Define a
fuzzy set on X × X × (0,+∞) as follows:

Mpk(x, y, t) =

 ltn
ltn+mpk(x,y) , t > 0;

0, t = 0.

for all x, y ∈ X, l,m > 0 and n ∈ N+. Then (X,Mpk , ∗) is a partial fuzzy k-metric space with a coefficient
k, where x ∗ y = x ∧ y.

Here we only check (PFK5).
In fact, a

a+c ≥
b

b+c if a ≥ b for all a, b, c > 0, and (t + s)n ≥ tn + sn for all s, t > 0 where n ∈ N+. Then,
for some number k ≥ 1, we have

lkn(t + s)n

lkn(t + s)n + mpk(x, z)
≥

ltn + lsn

ltn + lsn +
m[pk(x,y)+pk(y,z)]

kn−1 −
mpk(y,y)

kn

,

for all x, y ∈ X, t, s, l,m > 0, n ∈ N+. It is similar to the proof of Example 2.2.

Example 2.4. Let X be a nonempty set and pk be a partial k-metric with a coefficient k ≥ 1. Define a
fuzzy set on X × X × [0,+∞) as follows:

Mpk(x, y, t) =

e
−(pk (x,y))q

t , t > 0;
0, t = 0.

for all x, y ∈ X, t > 0 and q ≥ 1, where x ∗ y = x · y. Then (X,Mpk , ∗) is a partial fuzzy k-metric space
with a coefficient k(2k)(q−1).

To verify this result, we have to check (PFK5). First, we claim that (a + b)q ≤ 2q−1(aq + bq) for all
a, b ≥ 0 and q ≥ 1.

(PFK5): For all x, y, z ∈ X, t, s > 0, and some real number k ≥ 1, we can deduce
(pk(x, z))q

t + s
≤

(k[pk(x, y) + pk(y, z)] − pk(y, y))q

t + s

≤
(k[pk(x, y) + pk(y, z)])q

t + s

≤ kq · 2q−1[
(pk(x, y))q + (pk(y, z))q

t + s
]

≤ k(2k)(q−1)[
(pk(x, y))q

t
+

(pk(y, z))q

s
],
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for all q ≥ 1. Therefore, we have

Mpk(x, z, k(2k)(q−1)(t + s)) = e
−(Pk (x,z))q

k(2k)(q−1)(t+s)

≥ e
−(Pk (x,y))q

t · e
−(Pk (y,z))q

t

= Mpk(x, y, t) · Mpk(y, z, s),

for all x, y, z ∈ X, t, s > 0, q ≥ 1.

Example 2.5. Let X be a nonempty set and p be a partial metric. Define a fuzzy set on X×X× (0,+∞)
as follows:

Mpk(x, y, t) =

 t
t+p(x,y) , t > 0;

0, t = 0.

for all x, y ∈ X. Then (X,Mpk , ∗) is a partial fuzzy k-metric space with a coefficient k ≥ 1, where
x ∗ y = x ∧ y.

Indeed, k(t+s)
k(t+s)+p(x,z) ≥

t+s
t+s+[p(x,y)+p(y,z)] for all x, y ∈ X, t, s > 0, k ≥ 1. It is similar to the proof of

Example 2.2.

Apparently, if (X,Mpk , ∗) is a partial fuzzy k-metric space, then (X,Mpk , ∗) is not a KM-fuzzy metric
space. In fact, it can be illustrated by Example 2.4 for q = 2.

Proposition 2.6. Let X be a nonempty set. If (X,Mpk , ∗) is a partial fuzzy k-metric space with a
coefficient k ≥ 1 and (X, P, ∗) is a KM-fuzzy metric space, respectively. Define a fuzzy set on X × X ×
[0,+∞) as follows:

M(x, y, t) = P(x, y, t) ∗ Mpk(x, y, t)

for all x, y ∈ X and t ≥ 0. Then (X,M, ∗) is a partial fuzzy k-metric space with a coefficient k.

Proof. It is trivial to prove that (X,M, ∗) satisfied (PFK1)–(PFK3) and (PFK6). We verify condition
(FPK4) and (PFK5) in the following.

(PFK4): (⇒) Suppose that M(x, x, t) = M(x, y, t) = M(y, y, t) for all x, y ∈ X and t > 0. Then we
have

P(x, x, t) ∗ Mpk(x, x, t) = P(x, y, t) ∗ Mpk(x, y, t) = P(y, y, t) ∗ Mpk(y, y, t).

By Definition 1.4 (2), we have

Mpk(x, x, t) = P(x, y, t) ∗ Mpk(x, y, t) = Mpk(y, y, t).

Since 0 ≤ P(x, y, t) ≤ 1, it follows that P(x, y, t) ∗ Mpk(x, y, t) ≤ Mpk(x, y, t). Thus
Mpk(x, x, t) ≤ Mpk(x, y, t) and Mpk(y, y, t) ≤ Mpk(x, y, t). By (PFK2), we have Mpk(x, x, t) ≥ Mpk(x, y, t)
and Mpk(y, y, t) ≥ Mpk(x, y, t). Therefore, Mpk(x, x, t) = Mpk(x, y, t) = Mpk(x, y, t). So x = y by
Definition 2.1.

(⇐) First, we claim that P(x, x, t) = P(y, y, t) = 1 if P(x, y, t) = 1 for all x, y ∈ X and t > 0, where
(X, P, ∗) is a KM-fuzzy metric space. Suppose x = y. It is obvious that Mpk(x, x, t) = Mpk(x, y, t) =

Mpk(y, y, t) by the Definition 2.1, and P(x, y, t) = 1 by Definition 1.4 (2). Hence, P(x, x, t)∗Mpk(x, x, t) =

P(x, y, t)∗Mpk(x, y, t) = P(y, y, t)∗Mpk(y, y, t). Namely, M(x, x, t) = M(x, y, t) = M(y, y, t) for all x, y ∈ X
and t > 0.
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(PFK5): First, we claim that P(x, y, ·) is non-decreasing for all x, y ∈ X (see Lemma [15]). By
(PFK5), Definition 1.3 (4) and Definition 1.4 (4), we have

P(x, z, k(t + s)) ∗ Mpk(x, z, k(t + s))
≥ P(x, z, t + s) ∗ Mpk(x, z, k(t + s))
≥ P(x, y, t) ∗ P(y, z, s) ∗ Mpk(x, y, t) ∗ Mpk(y, z, s)
= M(x, y, t) ∗ M(y, z, s),

for all x, y, z ∈ X, t, s > 0. �

Proposition 2.7. Let X be a nonempty set. If (X,Mpk , ∗) is a partial fuzzy k-metric space with a
coefficient k ≥ 1, where x ∗ y = xy. Define a function p̂k : X × X → [0,+∞) as follows:

p̂k(x, y) =

− limε→0+

∫ 1

ε
ln Mpk(x, y, t)dt, t > 0;
0, t = 0.

for all x, y ∈ X.
Then p̂k is a partial k-pseudo metric with a coefficient 3k.

Proof. We verify the conditions (PK1)–(PK3) step by step.
(PK1) We prove it in the following two cases.
Case 1: If t = 0, then p̂k(x, y) = 0. It is not difficult to show that p̂k(x, x) = p̂k(x, y), for all x, y ∈ X.
Case 2: If t > 0 by the assumption, then we have limε→0+

∫ 1

ε
ln Mpk(x, y, t)dt. Moreover, by (PFK2),

we have ln Mpk(x, x, t) ≥ ln Mpk(x, y, t), which implies that

− lim
ε→0+

∫ 1

ε

ln Mpk(x, x, t)dt ≤ − lim
ε→0+

∫ 1

ε

ln Mpk(x, y, t)dt,

for all x, y ∈ X, t > 0. Namely, p̂k(x, x) ≤ p̂k(x, y).
(PK2): By (PFK3), it is clear that p̂k(x, y) = p̂k(y, x) for all x, y ∈ X.
(PK3): First, by (PK5), we claim that

Mpk(x, z, t) = Mpk(x, z, k(
t

2k
+

t
2k

)) ≥ Mpk(x, y,
t

2k
)Mpk(y, z,

t
2k

),

for all x, y, z ∈ X, t > 0, which implies that∫ 1

ε

ln Mpk(x, z, t)dt ≥
∫ 1

ε

ln Mpk(x, y,
t

2k
)dt +

∫ 1

ε

ln Mpk(y, z,
t

2k
)dt.

Furthermore, set u = t
2k . We can deduce that∫ 1

ε

ln Mpk(x, y,
t

2k
)dt = 2k

∫ 1
2k

ε
2k

ln Mpk(x, y, u)du

and ∫ 1

ε

ln Mpk(y, z,
t

2k
)dt = 2k

∫ 1
2k

ε
2k

ln Mpk(y, z, u)du.
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On the other hand, since p̂k(y, z) ≥ p̂k(y, y) by (PK1), we have

p̂k(x, z) = − lim
ε→0+

∫ 1

ε

ln Mpk(x, z, u)du

≤ −2k lim
ε→0+

∫ 1
2k

ε
2k

ln Mpk(x, y, u)du − 2k lim
ε→0+

∫ 1
2k

ε
2k

ln Mpk(y, z, u)du

≤ −2k lim
ε→0+

∫ 1

ε
2k

ln Mpk(x, y, u)du − 2k lim
ε→0+

∫ 1

ε
2k

ln Mpk(y, z, u)du

= 2k[ p̂k(x, y) + p̂k(y, z)] ≤ 3k[ p̂k(x, y) + p̂k(y, z)] − p̂k(y, y),

for all x, y, z ∈ X, u > 0. Hence, p̂k is a partial k-metric with a coefficient 3k. �

Lemma 2.8. Let X be a nonempty set and (X,Mpk , ∗) be a partial fuzzy k-metric space with a coefficient
k ≥ 1. If Mpk(x, y, t) = 1 for all x, y ∈ X and t > 0, then x = y. But the converse may not be true.

Proof. By (PFK2), we have Mpk(x, x, t) ≥ Mpk(x, y, t) and Mpk(y, y, t) ≥ Mpk(x, y, t). Suppose that
Mpk(x, y, t) = 1. It follows that Mpk(x, x, t) ≥ 1 and Mpk(y, y, t) ≥ 1, we can deduce that Mpk(x, x, t) =

Mpk(y, y, t) = 1. Namely, Mpk(x, x, t) = Mpk(y, y, t) = Mpk(x, y, t). Thus, we have x = y by (PFK5).
In addition, from Example 2.5, if x = y, then we have Mpk(x, x, t) = t

t+p(x,x) . Since the distance of a
point to itself may not be zero in partial metric spaces, so Mpk(x, x, t) may not be 1. �

3. Topological structures of partial fuzzy k-pseudo-metric spaces

In this section we begin by giving some basic notions that will be used in the following. First, we
know that each fuzzy metric M on X generates a topology TM on X with the basis
B = {B(x, r, t) : x ∈ X, 0 < r < 1, t > 0}, where the open ball B(x, r, t) = {y ∈ X : M(x, y, t) > 1 − r} for
all 0 < r < 1 and t > 0. Also, we call that TM is induced by the fuzzy metric M (see more details
in [4]).

Theorem 3.1. Let X be a nonempty set and (X,Mpk , ∗) be a partial fuzzy k-metric space with a
coefficient k ≥ 1. For any x ∈ X, 0 < r < 1 and t > 0, we define the open ball as follows:

B(x, r, t) = {y ∈ X : Mpk(x, y, t) > 1 − r}.

Then TMpk
= {V ⊂ X : for each x ∈ V, there exist 0 < r < 1, t > 0 such that B(x, r, t) ⊂ V} is a topology

on X.

Proof. It is similar to the proof of Theorem 2.1 [16]. �

Furthermore, we can define another type topological structure on X as follows: SMpk
= {V ⊂ X : for

each i ∈ I, there exist Bpk(xi, ri, ti) such that V =
⋃

i∈I Bpk(xi, ri, ti)}. Then we can deduce that SMpk
is a

suprartopology (see more details in [12]).

Theorem 3.2. Let X be a nonempty set and (X,Mpk ,∧) be a partial fuzzy k-pseudo-metric space with
a coefficient k ≥ 1. Define a function dα : X × X → [0,+∞) as follows:

dα(x, y) =
∧
{t > 0 : Mpk(x, y, t) ≥ α},∀x, y, ∈ X.
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Then the following statements hold:
(1) {dα : α ∈ (0, 1)} is non-increasing with respect to α.
(2) If dα(x, y) > t, then MPk(x, y, t) < α.
(3) {dα : α ∈ (0, 1)} is a k-pseudo-metric family on X.

Proof. By the Definition of dα, it is not difficult to prove (1) and (2).
(3) We verify the conditions (PK1), (PK2) and (KP3) step by step.
(PK1): By (PFK2), we have Mpk(x, x, t) ≥ Mpk(x, y, t) for all x, y ∈ X. Then

{t > 0 : Mpk(x, x, t) ≥ α} ⊂ {t > 0 : Mpk(x, y, t) ≥ α}, which implies that∧
{t > 0 : Mpk(x, x, t) ≥ α} ≥

∧
{t > 0 : Mpk(x, y, t) ≥ α}. Namely, dα(x, x) ≥ dα(x, y).

(PK2): It is trivial by (PFK3).
(KP3): Since Mpk(x, y, t) ∧ Mpk(y, z, s) ≤ Mpk(x, z, k(t + s)) by (PFK5), we have

k[dα(x, y) + dα(y, z)]

= k[
∧
{t > 0 : Mpk(x, y, t) ≥ α} +

∧
{s > 0 : Mpk(y, z, s) ≥ α}]

≥ k{
∧

(t + s) > 0 : Mpk(x, y, t) ≥ α,Mpk(y, z, s) ≥ α}

≥
∧
{k(t + s) > 0 : Mpk(x, y, t) ∧ Mpk(y, z, s) ≥ α}

≥
∧
{k(t + s) > 0 : Mpk(x, z, k(t + s)) ≥ α} = dα(x, z),

for all x, y, z ∈ X, t, s > 0. �

Theorem 3.3. Let X be a nonempty set and (X, dα) be a generating space of k-pseudo-metric family
for all α ∈ (0, 1) and some number k ≥ 1, where {dα : α ∈ (0, 1)} is a family of mapping from X × X →
[0,+∞) and (X, dα) satisfies the following conditions: ∀x, y, z ∈ X and for any α, β ∈ (0, 1),

(GPKP1) dα(x, x) ≤ dα(x, y);
(GPKP2) dα(x, y) = dα(y, x);
(GPKP3) dα∧β(x, z) ≤ k[dα(x, y) + dβ(y, z)];
(GPKP4) dα(x, y) non-increasing with respect to α.
Define a function MD : X × X × [0,∞)→ [0, 1] as follows:

MD(x, y, t) =

0, t = 0;∨
{α ∈ (0, 1) : dα(x, y) < t}, t > 0.

Then (X,MD,∧) is a partial fuzzy k-pseudo-metric space with a coefficient k ≥ 1.

Proof. We verify the conditions (PFK1)–(PFK3), (PFK5) and (PFK6) step by step.
(PFK1): It is clear that MD(x, y, 0) = 0.
(PFK2): By (GPKP1), we have dα(x, x) ≤ dα(x, y). Then

{α ∈ (0, 1) : dα(x, x) < t} ⊃ {α ∈ (0, 1) : dα(x, y) < t},

which implies that
∨
{α ∈ (0, 1) : dα(x, x) < t} ≥

∨
{α ∈ (0, 1) : dα(x, y) < t}. Namely, MD(x, x, t) ≥

MD(x, y, t).
(PFK3): By (GPKP2), it is easy to show MD(x, y, t) = MD(y, x, t).
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(PFK5): We prove MD(x, z, k(t + s)) ≥ MD(x, y, t) ∧ MD(y, z, s) as follows:
Case 1: If MD(x, y, t) = 0 or MD(y, z, s) = 0 for all t, s > 0, then MD(x, y, t) ∧ MD(y, z, s) = 0. It is

easy to see that the above relation holds.
Case 2: Suppose that MD(x, y, t) ∧ MD(y, z, s) > 0 for all s, t > 0, i.e., MD(x, y, t) > 0 and

MD(y, z, s) > 0. Set MD(x, y, t) = β and MD(y, z, s) = γ. For any ε > 0, where ε < β ∧ γ. Then there
exist α1, α2 ∈ (0, 1), such that α1 > β − ε, α2 > γ − ε, and dα1(x, y) < t, dα2(y, z) < s. By (GPKP4), we
have dβ−ε(x, y) < t, dγ−ε(y, z) < s. Furthermore, by (GPKP3), we can deduce

d(β−ε)∧(γ−ε)(x, z) ≤ k[dβ−ε(x, y) + dγ−ε(y, z)] < k(t + s).

Therefore, it follows that MD(x, z, k(t + s)) ≥ (β − ε) ∧ (γ − ε). From the arbitrariness of α,β and the
continuity of ∧, it follows that MD(x, z, k(t + s)) ≥ β ∧ γ, namely, MD(x, z, k(t + s)) ≥ MD(x, y, t) ∧
MD(y, z, s).

(PFK6): For any ε > 0, we have MD(x, y, t) − ε < MD(x, y, t). Then there exists α0 ∈ (0, 1),
such that dα0(x, y) < t and MD(x, y, t) − ε < α0. Furthermore, we have MD(x, y, t0) ≥ α0 whenever
dα0(x, y) < t0 < t. Therefore, it follows that MD(x, y, t) − MD(x, y, t0) ≤ MD(x, y, t) − α0 < ε. Hence,
MD(x, y, ·) is left-continuous. �

4. Fixed point theorem on partial fuzzy k-metric spaces

In this section, we investigate fixed point theorems for a self-mappings in partial fuzzy k-metric
spaces, following the method given by Shen Yonghong et al. [20].

Definition 4.1. Let X be a nonempty set and (X,Mpk , ∗) be a partial fuzzy k-metric space with a
coefficient k ≥ 1.

(1) A sequence {xn}n∈N+ in (X,Mpk , ∗) converges to a point x ∈ X if for any 0 < ε < 1 and t > 0, there
exists n0 ∈ N

+ such that Mpk(xn, x, t) > 1 − ε for all n > n0 (or equivalently for any open ball
B(x, r, t), there exists n0 ∈ N

+ such that xn ∈ B(x, r, t) for all n ≥ n0), we denote limn→+∞ xn = x.
(2) A sequence {xn}n∈N+ is called a Cauchy sequence if for any 0 < ε < 1 and t > 0, there exists

n0 ∈ N
+ such that Mpk(xn, xm, t) > 1 − ε for all n,m ≥ n0.

(3) (X,Mpk , ∗) is said to be complete if every Cauchy sequence {xn}n∈N+ in X converges to a point
x ∈ X.

Indeed, we can give another definition type of sequence convergence as follows: a sequence {xn} in
(X,Mpk , ∗) converges to a point x ∈ X if for any open set V containing x there exists n0 ∈ N

+ such that
xn ∈ V for all n ≥ n0 in SMpk

, we denote Limn→+∞xn = x.

Theorem 4.2. Let X be a nonempty set, (X,Mpk , ∗) be a partial fuzzy k-metric space with a coefficient
k ≥ 1 and {xn}n∈N+ be a sequence in X. Then limn→+∞ xn = x if and only if limn→+∞ Mpk(xn, x, t) = 1 for
all t > 0.

Proof. (⇒) Suppose that limn→+∞ xn = x. Then for any open ball B(x, r, t), there exists n0 ∈ N
+ such

that xn ∈ B(x, r, t) for all n > n0. Thus Mpk(xn, x, t) > 1 − r for all n > n0 and t, r > 0, namely,
1 − Mpk(xn, x, t) < r. Hence limn→+∞ Mpk(xn, x, t) = 1.

(⇐) Suppose that limn→+∞ Mpk(xn, x, t) = 1. Then for each t > 0, there exists n0 ∈ N
+ such that

1−Mpk(xn, x, t) < r for all n ≥ n0. Namely, Mpk(xn, x, t) > 1− r for all n > n0. Therefore, xn ∈ B(x, r, t)
for all n > n0. Thus limn→+∞ xn = x. �
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Corollary 4.3. Let X be a nonempty set, (X,Mpk , ∗) be a partial fuzzy k-metric space with a coefficient
k ≥ 1 and {xn}n∈N+ be a sequence in X. If limn→+∞ Mpk(xn, x, t) = 1 for all t > 0, then Limn→+∞xn =

limn→+∞ xn.

Proof. Indeed, by Definition 4.1 and Theorem 3.1, it is not difficult to see that Limn→+∞xn = x if
limn→+∞ xn = x. Then it is trivial by Theorem 4.2. �

Theorem 4.4. Let X be a nonempty set, (X,Mpk , ∗) be a partial fuzzy k-metric space with a coefficient
k ≥ 1 and {xn}n∈N+ be a sequence in X. If {xn} is convergent, then it is a Cauchy sequence.

Proof. Suppose that {xn} is convergent. By Definition 4.1 and Theorem 4.2, there exists n0 ∈ N
+ such

that Mpk(xn, x, t) > 1 − r for all n ≥ n0, t > 0 and some number k ≥ 1. Set s = t
2k . By (PFK5), we have

Mpk(xn, xm, t) = Mpk(xn, xm, k(
t

2k
+

t
2k

))

≥ Mpk(xn, x,
t

2k
) ∗ Mpk(x, xm

t
2k

),

for all n,m ≥ n0. Furthermore, since 0 < t
2k < t, we have Mpk(x, xm

t
2k ) > 1 − r. Set r0 = Mpk(x, xm

t
2k ).

Then r0 > 1 − r. By continuity of the t-norm, we can find some s > 0, such that r0 > 1 − s > 1 − r.
Thus, there exists 0 < r1 < 1, such that r1 ∗ r1 ≥ 1− s, from which, we can deduce that Mpk(xn, xm, t) ≥
r1 ∗ r1 ≥ 1 − s > 1 − r, for all n,m ≥ n0, t > 0. Therefore, {xn} is a Cauchy sequence. �

Theorem 4.5. Let X be a nonempty set and (X,Mpk , ∗) be a complete partial fuzzy k-metric space with
a coefficient k ≥ 1, and let T : X → X be a function satisfying the following conditions:

(1) ϕ(Mpk(T x,Ty, t)) ≤ λϕ(Mpk(x, y, t)) for all x, y ∈ X and x , y, where t > 0, λ ∈ (0, 1), and
ϕ : [0, 1]→ [0, 1] is a strictly decreasing and continuous mapping;

(2) ϕ(Mpk(x, y, t)) = 0 if and only if Mpk(x, y, t) = 1.
Then T has a unique fixed point.

Proof. We define a sequence in the following way : x0 = x, and xn+1 = T xn, fn(t) = Mpk(xn, xn+1, t) for
all n ∈ N+, t > 0, x ∈ X, and some number k ≥ 1.

Case 1: If xn+1 = xn for some n ∈ N+, then we have T xn = xn, which shows that xn is a fixed point.
Case 2: If xn+1 , xn, then we have ϕ( fn(t)) = ϕ(Mpk(xn, xn+1, t)) = ϕ(Mpk(Txn−1 ,Txn , t)). Since

ϕ(Mpk(Txn−1 ,Txn , t)) ≤ λϕ(Mpk(xn−1, xn, t)) = ϕ( fn−1(t)) by the condition (1), this follows that ϕ( fn(t)) <
ϕ( fn−1(t)) for all n ∈ N+ and t > 0. By assumption, ϕ is strictly decreasing, which implies that { fn(t)} is
an increasing sequence with respect to n for all t > 0. Furthermore, since 0 ≤ fn(t) ≤ 1 for all t > 0,
{ fn(t)} is bounded. Therefore, { fn(t)} is convergent. We denote limn→+∞ fn(t) = f (t). Namely, there
exists n0 ∈ N

+, such that fn(t) ≤ f (t) for all n ≥ n0 and t > 0. On the other hand, for all n ∈ N+ and
t > 0, we have ϕ( fn+1(t)) ≤ λϕ( fn(t)). It follows that limn→+∞ ϕ( fn+1(t)) ≤ limn→+∞ λϕ( fn(t)), which
implies that ϕ( f (t)) ≤ λϕ( f (t)). Thus (1 − λ)ϕ( f (t)) ≤ 0. So ϕ( f (t)) = 0 for all t > 0. Namely,
limn→+∞ Mpk(xn, xn+1, t) = 1.

To prove the existence and uniqueness of the fixed point, we consider the following steps:
Step 1: We claim that {xn} is a Cauchy sequence in (X,MPk , ∗). Otherwise, for some 0 < ε < 1, we

can find two sequences {in} and { jn}, such that Mpk(xin , x jn , t) ≤ 1 − ε, Mpk(xin−1, x jn−1, t) > 1 − ε and
Mpk(xin−1, x jn , t) > 1 − ε for all n ∈ N+ and t > 0, where in > jn ≥ n. Set g(in, jn)(t) = Mpk(xin , x jn , t). It is
not difficult to show that g(in, jn)(t) ≤ 1 − ε by (PFK5). Moreover, we have
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ϕ(g(in, jn)(t)) ≤ λϕ(g(in−1, jn−1)(t)) < ϕ(g(in−1, jn−1)(t)). Thus, g(in−1, jn−1)(t) < g(in, jn)(t) by the monotonicity of
ϕ, it follows that

1 − ε < g(in−1, jn−1)(t) < g(in, jn)(t) ≤ 1 − ε,

which is a contradiction. In addition, suppose for some n0 ∈ N
+, any p ∈ N+ and t > 0. We can

deduce that { fn0+p(t)} is convergent by the monotonicity of f . We denote limp→+∞ fn0+p(t) = fn0(t).
By assumption, we have ϕ( fn0+p(t)) ≤ λϕ( fn0+p−1(t)). By repeating the above process, it follows that
ϕ( fn0+p(t)) ≤ (λ)p fn0(t). Thus, we can deduce ϕ( fn0(t)) = 0. Namely, ϕ(Mpk(xn0 , xn0+1, t) = 0. By the
condition (2), we have Mpk(xn0 , xn0+1 , t) = 1. It is clear to see that xn0 = xn0+1 by Lemma 2.8, which is a
contradiction.

Therefore, {xn} is a Cauchy sequence in (X,MPk , ∗). By the completeness of (X,MPk , ∗), there exists
a point x∗ ∈ X, such that limn→+∞ xn = x∗.

Step 2: By Step 1, there exists a subsequence {xnk}, where xnk , xn for all n ∈ N+. Then we have

ϕ(Mpk(xnk+1,T x∗, t)) = ϕ(Mpk(T xnk ,T x∗, t)) < λϕ(Mpk(xnk , x
∗, t)),

for all nk ∈ N
+, t > 0. We can deduce that ϕ(Mpk(x∗,T x∗, t)) = 0. By the condition (2), we have

Mpk(x∗,T x∗, t) = 1. It is clear to see x∗ = T x∗ by Lemma 2.8.
Step 3: Suppose that x∗ , y∗, where Ty∗ = y∗. We have ϕ(Mpk(x∗, y∗, t)) = ϕ(Mpk(T x∗,Ty∗, t)) ≤

λϕ(Mpk(x∗, y∗, t)) < ϕ(Mpk(x∗, y∗, t)), which is a contradiction. Hence, x∗ = y∗. �

To conclude this section, we illustrate our result by the following examples.

Example 4.6. Let X = {1, 2, 3, · · · }. Define a fuzzy set set on X × X × [0,+∞) by Mpk(x, y, t) =
x∧y
x∨y

for all x, y ∈ X, t > 0, and Mpk = 0 when t = 0. It is trivial to verify that (X,Mpk , ∗) is a partial
fuzzy k-metric space with a ∗ b = ab for all a, b ∈ [0, 1]. Define mappings T : [0,+∞) → [0,+∞),
ϕ : [0, 1] → [0, 1], respectively, where T (v) =

√
v and ϕ(u) = 1 −

√
u. Set λ(t) = 1

1+t2 for all t > 0.
Thus, all the conditions of Theorem 4.5 are satisfied and obviously x = 1 is a fixed point of T .

Now, similar to the basic form of the functional equations in dynamic programming, which
investigated by Bellman and Lee [31], the existence and uniqueness of solution and common solution
for a functional equation and system of functional equations are discussed by using Theorem 4.5 as
follows.

Let X and Y be Banach spaces, S ⊂ X be the state space and D ⊂ Y be the decision space. B(S )
denotes the set of all real-valued bounded functions on S . Define u : S×D→ R, T : S×D→ S , H : S×
D×R→ R. Moreover, define a fuzzy set set on B(S )×B(S )× [0,+∞) as follows: Mpk(x, y, t) = e−

d(h,k)
t ,

for all h, k ∈ B(S ), t > 0 and Mpk(x, y, t) = 0 when t = 0, where d(h, k) =
∨

x∈S |h(x) − k(x)|,∀a, b, ∈ S ,
a ∗ b = a · b ,∀a, b ∈ [0, 1]. It is obvious that (X,Mpk , ∗) is a complete partial fuzzy k-metric space
by Example 2.4. Suppose that the following conditions hold: ϕ(e−

|H(x,y,g(ξ))−H(x,y,h(ξ))|
t ) ≤ λϕ(e−

|g(ξ)−h(ξ)|
t ), for

t > 0, λ ∈ (0, 1), where ϕ : [0, 1] → [0, 1] is a strictly decreasing and continuous mapping. In
fact, set the system of functional equations Ag(x) = opty∈D{u(x, y) + H(x, y, g(T (x, y))}, for all x ∈
S , g ∈ B(S ), where opt represents ∧ or ∨. For all g, h ∈ B(S ), x ∈ S , there exist y, z ∈ D such
that d(Ag, Ah) ≤ max{|H(x, y, g(T (x, y)))−H(x, y, h(T (x, y)))|, |H(x, z, g(T (x, z)))−H(x, z, h(T (x, z)))|}.
It implies that ϕ(e−

|Ag(ξ)−Ah(ξ)|
t ) ≤ ϕ(e−

|H(x,y,g(ξ))−H(x,y,h(ξ))|
t ). By the above condition, we have that ϕ(e−

d(Ag,Ah)
t ) ≤

λϕ(e−
d(g,h)

t ). Hence, ϕ(Mpk(Ag, Ah, t)) ≤ λϕ(Mpk(g, h, t)). Thus, Theorem 4.5 ensures that A has a unique
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common fixed pointed w ∈ B(S ). That is, the system of functional equations q(x) = opty∈D{u(x, y) +

H(x, y, g(T (x, y))} possesses a unique common solution w ∈ B(S ).

5. Conclusions

In this paper, by introducing the notion of weak partial-quasi k-metric spaces, we generalized and
unified weak partial metric spaces and partial k-metric spaces. Moreover, we provided some examples
of weak partial-quasi k-metric spaces, and illustrated the relationships between weak partial-quasi k-
metric spaces and weak partial metric spaces. Additionally, another purpose of this paper to obtain the
constitution of k-metric in weak partial-quasi k-metric spaces. In Section 4, we discussed the existence
of fixed point on partial fuzzy k-metric spaces, and presented application of the revealed fixed point
theorems.
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