
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(10): 11595–11609.
DOI: 10.3934/math.2021673
Received: 21 June 2021
Accepted: 27 July 2021
Published: 10 August 2021

Research article

Value functions in a regime switching jump diffusion with delay market
model

Dennis Llemit*and Jose Maria Escaner IV

Institute of Mathematics, University of the Philippines Diliman, Quezon City, 1101 Metro Manila,
Philippines

* Correspondence: Email: dennis arwind@yahoo.com.

Abstract: In this paper, we consider a market model where the risky asset is a jump diffusion
whose drift, volatility and jump coefficients are influenced by market regimes and history of the asset
itself. Since the trajectory of the risky asset is discontinuous, we modify the delay variable so that
it remains defined in this discontinuous setting. Instead of the actual path history of the risky asset,
we consider the continuous approximation of its trajectory. With this modification, the delay variable,
which is a sliding average of past values of the risky asset, no longer breaks down. We then use the
resulting stochastic process in formulating the state variable of a portfolio optimization problem. In this
formulation, we obtain the dynamic programming principle and Hamilton Jacobi Bellman equation.
We also provide a verification theorem to guarantee the optimal solution of the corresponding stochastic
optimization problem. We solve the resulting finite time horizon control problem and show that close
form solutions of the stochastic optimization problem exist for the cases of power and logarithmic
utility functions. In particular, we show that the HJB equation for the power utility function is a first
order linear partial differential equation while that of the logarithmic utility function is a linear ordinary
differential equation.
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1. Introduction

The classical Merton portfolio optimization problem, in its basic form, involves an investor who
is limited to investing to two types of assets-risky and non-risky. An investor’s goal is to determine
the optimal allocation strategy such that the wealth-dependent performance criterion is a maximum.
Under certain conditions, Merton found out that the optimal strategy is to keep a constant fraction of
the wealth in the risky asset [1] .
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Merton’s portfolio optimization problem belongs to a wider set of stochastic optimal control
problems which are known to be generally hard to solve and explicit solutions are rare. Despite this,
several authors have improved on Merton’s work by relaxing particular assumptions of the original
paper. For instance, Davis and Norman [8] incorporated proportional transaction costs and successfully
obtained optimal solutions from their formulation. In addition, they found out that the solution space
can be divided into three regions-no transaction, sell, and buy. Framstad, Oksendal and Sulem [2]
studied the case when the risky asset is a jump-diffusion in a portfolio problem with transaction costs.
Pagliarani and Vargiolu [12] examined the case when risky assets are defaultable Levy processes.

Meanwhile, the series of works involving Pang ([6, 7, 14]) considered portfolio problems that
incorporate the path history of the risky asset. These type of problems are called stochastic systems
with delay or memory. The rationale for considering delay stems from the tendency of market
participants to look at the past performance of assets and decide based on these information. While the
concept of stochastic systems with delay or memory seems to run counter to the Markovian nature of
dynamic programming, Larssen [4] provided the settings where dynamic programming still applies.

Bauerle and Rieder [11] considered a market model and portfolio problem where the drift and
volatility of the price process are driven by a continuous time Markov chain. The work of Valdez and
Vargiolu [13] provided a framework for dealing with a portfolio problem involving multidimensional
risky assets which are diffusions with switching coefficients. Azevedo et al. [9] considered Markov
switching jump-diffusions, thereby expanding the framework into discontinuous settings. The main
motivation for incorporating regime switching in portfolio optimization problems is to take into account
the effect of market regimes or states of the economy in the dynamics of asset prices.

Several tweaks and modifications have been made to the original Merton portfolio probem in order
to capture market realities. However, to the best of our knowledge, there has been no study, in the
context of the classical Merton portfolio optimization problem, that considered systems with delay and
regime switching in discontinuous models. This is due to the fact that the memory or delay variable,
as a time integral, becomes undefined in the face of jumps or discontinuities. Hence, this paper aims to
supplement this gap and provides a way to overcome the problem of the delay variable breaking down
in discontinuous settings.

2. Problem formulation

Let T > 0 be finite. Let (Ω,F,P) be a complete filtered probability space where the filtration
F = {Ft : t ∈ [0,T ]} satisfies all the usual conditions.

To model market regimes, we set {αt : t ∈ [0,T ]} to be a continuous time Markov chain defined on
a finite state spaceM = {a1, a2, · · · , an} with generator Q = (qi j)i, j∈M. Let

Ki j
t =

∑
0<s≤t

1{αs−=i}1{αs= j}

be a counting process that counts the number of jumps of the Markov chain αt from state i to state j up
to time t. Corresponding to this counting process is the intensity process

λ
i j
t = qi j1{αt−=i}
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such that the purely discontinuous, square-integrable process

Mi j
t = Ki j

t −

∫ t

0
λi j

s ds

is a martingale.
As in Larssen and Risebro [5] or in the case of Pang and Hussain [7], we define the delay variable,

which is a form of sliding average of past values, to be

Yt :=
∫ 0

−∞

eρuχt+udu (2.1)

where ρ ∈ R and χt is the continuous approximation of the path of the risky asset until time t.
With this definition (2.1) is defined even when the risky asset has discontinuities. The motivation
for considering (2.1) in our market model is to account for the tendency of market participants to look
at past performances of stocks before making investment decisions which in turn affect stock prices
[7].

The investment opportunities in our model are the non-risky asset Pt that follows

dPt = r(t,Yt, αt−)Ptdt (2.2)

and the risky asset Xt which is assumed to be a Levy process given by

dXt = Xt−

[
µ(t,Yt, αt−)dt + σ(t,Yt, αt−)dBt +

∫ +∞

−1
Γ(t,Yt, αt−, z)N(dt, dz)

]
, (2.3)

where r : [0,T ] × R × M → R, µ : [0,T ] × R × M → R, σ : [0,T ] × R × M → R and Γ :
[0,T ] × R × M × R → R are uniformly continuous functions representing the risk-free rate, drift,
volatility, and jump coefficient, respectively, where z = ∆Xt = Xt − Xt− is the jump size of the risky
asset. N(t, A) is the compensated Poisson random measure given by

N(t, A) = N(t, A) − tν(A)

where N(t, A) is the Poisson random measure that counts the number of jumps of the risky asset up to
time t and ν(A) is the Levy measure for each A ∈ B0, where B0 is a Borel σ-field generated by the open
subsets O of R0 = R \ {0} whose closure does not contain the zero element.

We assume that the Brownian motion Bt, the Markov chain αt and the compensated Poisson random
measure N(t, A) are all independent and adapted to the filtration F.

We also assume that

E

[ ∫ T

0

(
|σ(s, y, a)|2 +

∫ +∞

−1
|Γ(s, y, a, z)|2ν(dz)

)
ds

]
< ∞

for every (y, a) ∈ R ×M.
Let πt be F-progressively measurable and that for a fixed T > 0,∫ T

0
|πt|

2dt < ∞ a.s.
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This πt represents the proportion of wealth Wt invested by an agent in the risky asset while the balance
1 − πt is allocated to the non-risky asset. A self-financing portfolio resulting from these investments
evolves according to

dWt = Wt−

[
(1 − πt)r(t,Yt, αt−)dt + πtdRt

]
(2.4)

where

dRt = µ(t,Yt, αt−)dt + σ(t,Yt, αt−)dBt +

∫ +∞

−1
Γ(t,Yt, αt−, z)N(dt, dz). (2.5)

The corresponding state variable is the wealth processdWt = Wt−

[
r(t,Yt, αt−)

(
1 − πt

)
dt + πtdRt

]
Ws = w > 0, Ys = y, αs = a.

(2.6)

We define the performance criterion to be

Gπ(s,w, y, a) := Es,w,y,a

[
U

(
Wπ;s,w,y,a

T

)]
(2.7)

and the value function

V(s,w, y, a) := Gπ∗(s,w, y, a) = sup
π∈A[s,T ]

Es,w,y,a

[
U

(
Wπ;s,w,y,a

T

)]
, (2.8)

where U(·) is a utility function, Es,w,y,a[·] is the conditional expectation conditioned on the initial data
(s,w, y, a), and A[s,T ] is the set of admissible controls such that (2.6) has a unique strong solution
Wπ;s,w,y,a

t for every t ∈ [s,T ].

Lemma 2.1. Let Yt be defined as in (2.1). Then

dYt =
(
χt − ρYt

)
dt.

Proof: The proof follows [7]. We have

d
dt

Yt =
d
dt

[ ∫ 0

−∞

eρuχt+udu
]

=
d
dt

[ ∫ t

−∞

eρ(θ−t)χθdθ
]
, where θ = t + u

=
d
dt

[
lim
τ→−∞

∫ t

τ

eρ(θ−t)χθdθ
]

= χt − lim
τ→−∞

[
ρ

∫ t

τ

eρ(θ−t)χθdθ
]

= χt − ρ

[ ∫ 0

−∞

eρuχt+udu
]

= χt − ρYt.

Thus, the delay satisfies
dYt =

(
χt − ρYt

)
dt. (2.9)

The next result is the equivalent of Ito’s Lemma for the particular portfolio optimization problem.
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Lemma 2.2. Let V(s,w, y, a) such that V(·, ·, ·, a) ∈ C1,2,1
(
[0,T ] × R+ × R

)
for every a ∈ M. Then, we

have

V
(
T,Wπ

T ,YT , αT

)
= V

(
0,Wπ

0 ,Y0, α0

)
+

∫ T

0
A
(
s,w, y, a, πs

)
ds +

∫ T

0
L
(
s,w, y, a

)
dBs

+

∫ T

0
D
(
s,w, y, a

)
dMa j

s +

∫ T

0

∫ +∞

−1
Z
(
s,w, y, a, πs

)
N(ds, dz) (2.10)

where

A
(
s,w, y, a, πs

)
=

∂V
∂s

+ w
[
πsµ(s, y, a) + r(s, y, a)(1 − πs)

]∂V
∂w

+
1
2
π2

sw
2σ2(s, y, a)

∂2V
∂w2

+

∫ +∞

−1

(
V(s,w + πswΓ(s, y, a, z), y, a) − V(s,w, y, a) − πswΓ(s, y, a, z)

∂V
∂w

)
ν(dz)

+(χs − ρy)
∂V
∂y

+
∑
j,a

qa, j

(
V(s,w, y, j) − V(s,w, y, a)

)
, (2.11)

L
(
s,w, y, a

)
= σ(s, y, a)

∂V
∂w

, (2.12)

D
(
s,w, y, a

)
=

∑
j,a

(
V(s,w, y, j) − V(s,w, y, a)

)
, (2.13)

and
Z
(
s,w, y, a, πs

)
= V(s,w + πswΓ(s, y, a, z), y, a) − V(s,w, y, α). (2.14)

Proof: Applying the change of variable rules (see [18, 9]) and using Lemma (2.1) for the delay, we
get

dV(s,w, y, a) =
∂V
∂s

ds + w
[
πsµ(s, y, a) + r(s, y, a)(1 − πs)

]∂V
∂w

ds + πswσ(s, y, a)
∂V
∂w

dBs

+

∫ +∞

−1

[
V(s,w + πswΓ(s, y, a, z), y, a) − V(s,w, y, a)

]
N(ds, dz)

+

∫ +∞

−1

(
V(s,w + πswΓ(s, y, a, z), y, a) − V(s,w, y, a) − πswΓ(s, y, a, z)

∂V
∂w

)
ν(dz)ds

+
∂V
∂y

(
χs − ρy

)
ds +

∑
j,a

(
V(s,w, y, j) − V(s,w, y, a)

)
dMa j

s

+
∑
j,a

qa j

(
V(s,w, y, j) − V(s,w, y, a)

)
ds.

Combining all terms with ds, we get

A
(
s,w, y, a, πs

)
=

∂V
∂s

+ w
[
πsµ(s, y, a) + r(s, y, a)(1 − πs)

]∂V
∂w

+
1
2
π2

sw
2σ2(s, y, a)

∂2V
∂w2

+

∫ +∞

−1

(
V(s,w + πswΓ(s, y, a, z), y, a) − V(s,w, y, a) − πswΓ(s, y, a, z)

∂V
∂w

)
ν(dz)
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+(χs − ρy)
∂V
∂y

+
∑
j,a

qa, j

(
V(s,w, y, j) − V(s,w, y, a)

)
and setting the rest as

L
(
s,w, y, a, πs

)
= πswσ(s, y, a)

∂V
∂w

,

D
(
s,w, y, a

)
=

∑
j,a

(
V(s,w, y, j) − V(s,w, y, a)

)
,

and
Z
(
s,w, y, a, πs

)
= V(s,w + πswΓ(s, y, a, z), y, a) − V(s,w, y, a).

Thus,

dV(s,w, y, a) = A
(
s,w, y, a, πs

)
ds + L

(
s,w, y, a, πs

)
dBs + D

(
s,w, y, a

)
dMa j

s

+

∫ +∞

−1
Z
(
s,w, y, a, πs

)
N(ds, dz).

Integrating over [0,T ], we obtain

V
(
T,Wπ

T ,YT , αT

)
= V

(
0,Wπ

0 ,Y0, α0

)
+

∫ T

0
A
(
s,w, y, a, πs

)
ds +

∫ T

0
L
(
s,w, y, a, πs

)
dBs

+

∫ T

0
D
(
s,w, y, a

)
dMa j

s +

∫ T

0

∫ +∞

−1
Z
(
s,w, y, a, πs

)
N(ds, dz)

3. Dynamic programming

We employ dynamic programming to solve the particular portfolio optimization problem.

Theorem 3.1 (Dynamic programming principle). Assuming that the value function as given by (2.8)
is continuous over the space of controls A with the state variable (2.6), then for any (s,w, y, a) ∈
[0,T ] × R+ × R ×M, we have that

V(s,w, y, a) = sup
π∈A[s,T ]

Es,w,y,a

[
V(s + h,Wπ

s+h,Ys+h, αs+h)
]

(3.1)

for all s + h ∈ [s,T ].

Proof: For any (s,w, y, a) ∈ [0,T ) × R+ × R ×M and any arbitrary admissible control π, we have

Gπ(s,w, y, a) = Es,w,y,a

[
U

(
Wπ;s,w,y,a

T

)]
= Es,w,y,a

[
Es+h,Wπ

s+h,Ys+h,αs+h

[
U

(
Wπ;s,w,y,a

T

)]]
= Es,w,y,a

[
Gπ(s + h,Wπ

s+h,Ys+h, αs+h)
]

≤ Es,w,y,a

[
V(s + h,Wπ

s+h,Ys+h, αs+h)
]
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Taking supremum over admissible controls, we obtain

V(s,w, y, a) ≤ sup
π∈A[s,T ]

Es,w,y,a

[
V(s + h,Wπ

s+h,Ys+h, αs+h)
]
.

For the other direction, we follow Cartea et al. [23] by considering an ε-optimal control. Let ε > 0 and
take an admissible control πε ∈ A[s,T ] such that

V(s,w, y, a) ≥ Gπε (s,w, y, a) ≥ V(s,w, y, a) − ε

This is guaranteed because the value function is continuous over A[s,T ]. Next, we consider the
modification of the ε-optimal control

π̃ε = π1t≤s+h + πε1t>s+h, t ∈ [s,T ].

Then we have

Gπ̃ε (s,w, y, a) = Es,w,y,a

[
Gπ̃ε (s + h,W π̃ε

s+h,Ys+h, αs+h)
]

= Es,w,y,a

[
Gπε (s + h,Wπ

s+h,Ys+h, αs+h)
]

≥ Es,w,y,a

[
V(s + h,Wπ

s+h,Ys+h, α+h)
]
− ε.

Taking limits as ε → 0,

V(s,w, y, a) ≥ Es,w,y,a

[
V(s + h,Wπ

s+h,Ys+h, αs+h)
]
.

Taking supremum over admissible controls,

V(s,w, y, a) ≥ sup
π∈A[s,T ]

Es,w,y,a

[
V(s + h,Wπ

s+h,Ys+h, αs+h)
]
.

Since both inequalities are true for any arbitrary admissible control π, we conclude that

V(s,w, y, a) = sup
π∈A[s,T ]

Es,w,y,a

[
V(s + h,Wπ

s+h,Ys+h, αs+h)
]

for all s + h ∈ [s,T ].

Theorem 3.2 (Hamilton-Jacobi-Bellman equation). Assume that V(·, ·, ·, α) ∈ C1,2,1
(
[0,T ] × R+ × R

)
for every α ∈ M. Then for each α ∈ M, the value function V(·, ·, ·, α) defined on [0,T ] × R+ × R is the
solution to the Hamilton-Jacobi-Bellman (HJB) equation

∂V
∂t + supπ∈A[s,T ]H

(
t,W,Y, α, π, ∂V

∂W ,
∂2V
∂W2 ,

∂V
∂Y

)
= 0

V(T,Wπ
T ,YT , αT ) = U

(
Wπ;s,w,y,a

T

) , (3.2)

where the Hamiltonian function is defined to be

H

(
t,W,Y, α, π,

∂V
∂W

,
∂2V
∂W2 ,

∂V
∂Y

)
(3.3)
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= Wt

[
πtµ(t,Yt, α) + r(t,Yt, α)(1 − πt)

] ∂V
∂W

+
1
2
π2

t W2
t σ

2(t,Yt, α)
∂2V
∂W2

+

∫ +∞

−1

(
V(t,Wt + πtWtΓ(t,Yt, α, z),Yt, α) − V(t,Wt,Yt, α) − πtWtΓ(t,Wt,Yt, α, z)

∂V
∂W

)
ν(dz)

+(χt − ρYt)
∂V
∂Y

+
∑
j,α

qα, j

(
V(t,Wt,Yt, j) − V(t,Wt,Yt, α)

)
.

Proof: From the dynamic progamming principle (Theorem 3.1), we have that for s + h ∈ [s,T ],

V(s,w, y, a) ≥ Es,w,y,a

[
V(s + h,Wπ

s+h,Ys+h, αs+h)
]
.

Using Lemma 2.2, we have for t ∈ [s, s + h]

V(s,w, y, a) ≥ Es,w,y,a

V(
s,w, y, a

)
+

∫ s+h

s
A
(
t,Wπ

t ,Yt, αt, πt

)
dt +

∫ s+h

s
L
(
t,Wπ

t ,Yt, αt

)
dBt

+

∫ s+h

s
D
(
t,Wπ

t ,Yt, αt

)
dMα j

t +

∫ s+h

s

∫ +∞

−1
Z
(
t,Wπ

t ,Yt, αt, πt

)
N(dt, dz)


From the assumption on Mα j

t and from Davis [24] and Fleming and Soner [25] for Bt and N(t, z), it
follows that

0 = Es,w,y,a

[ ∫ s+h

s
L
(
t,Wπ

t ,Yt, αt

)
dBt

]
= Es,w,y,a

[ ∫ s+h

s
D
(
t,Wπ

t ,Yt, αt,
)
dMα j

t

]
= Es,w,y,a

[ ∫ s+h

s

∫ +∞

−1
Z
(
t,Wπ

t ,Yt, αt, πt

)
N(dt, dz)

]
.

We get,

0 ≥ Es,w,y,a

[ ∫ s+h

s
A
(
t,Wπ

t ,Yt, αt, πt

)
dt

]
.

Dividing by h, taking limits as h→ 0, and by Mean Value Theorem,

0 ≥ lim
h→0
Es,w,y,a

[1
h

∫ s+h

s
A
(
t,Wπ

t ,Yt, αt, πt

)
dt

]
.

We conclude that

0 ≥ A
(
t,Wπ

t ,Yt, αt, πt

)
=

∂V
∂t

+

[
Wt

[
πtµ(t,Yt, α) + r(t,Yt, α)(1 − πt)

] ∂V
∂W

+
1
2
π2

t W2
t σ

2(t,Yt, α)
∂2V
∂W2

+

∫
R

(
V(t,Wt + πtWtΓ(t,Yt, α, z),Yt, α) − V(t,Wt,Yt, α) − πtWtΓ(t,Yt, α, z)

∂V
∂W

)
ν(dz)
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+(χt − ρYt)
∂V
∂Y

+
∑
j,α

qα j

(
V(t,Wt,Yt, j) − V(t,Wt,Yt, α)

)]
=

∂V
∂t

+H

(
t,W,Y, α, π,

∂V
∂W

,
∂2V
∂W2 ,

∂V
∂Y

)
.

Taking supremum over all admissible controls, we get

0 =
∂V
∂t

+ sup
π∈A[s,T ]

H

(
t,W,Y, α, π,

∂V
∂W

,
∂2V
∂W2 ,

∂V
∂Y

)
.

Theorem 3.3 (Verification Theorem). Let V(·, ·, ·, α) ∈ C1,2,1
(
[0,T ] × R+ × R

)
for every α ∈ M. If

V(s,w, y, a) is the solution to the HJB Eq (3.2), then

V(s,w, y, a) ≥ Gπ(s,w, y, a)

holds for every π ∈ A[s,T ] and (s,w, y, a) ∈ [0,T ] × R+ × R ×M. Moreover, π∗ ∈ A[s,T ] is optimal
if and only if

∂V
∂t

+H

(
t,W,Y, α, π∗,

∂V
∂W

,
∂2V
∂W2 ,

∂V
∂Y

)
= 0

for a.e. t ∈ [s,T ].

Proof: For any π ∈ A[s,T ] and by Lemma 2.2, we have that

V(s,w, y, a) = Es,w,y,a

[
V(T,Wπ

T ,YT , αT ) −
∫ T

s
A
(
t,Wπ

t ,Yt, αt, πt

)
dt

]
= Es,w,y,a

[
U(Wπ;s,w,y,a

T )
]
− Es,w,y,a

[ ∫ T

s
A
(
t,Wπ

t ,Yt, αt, πt

)
dt

]
(3.4)

= Gπ(s,w, y, a) − Es,w,y,a

[ ∫ T

s

∂V
∂t

+H

(
t,W,Y, α, πt,

∂V
∂W

,
∂2V
∂W2 ,

∂V
∂Y

)
dt

]
.

By Theorem 3.2, the integral of the last line is at most zero for any π ∈ A[s,T ]. It follows that

V(s,w, y, a) ≥ Gπ(s,w, y, a).

For the second part, we assume that π∗ ∈ A[s,T ] is optimal. Then from the last equality of (3.4),

V(s,w, y, a) ≥ Gπ∗(s,w, y, a) − Es,w,y,a

[ ∫ T

s

∂V
∂t

+H

(
t,W,Y, α, π∗,

∂V
∂W

,
∂2V
∂W2 ,

∂V
∂Y

)
dt

]
0 ≥ −Es,w,y,a

[ ∫ T

s

∂V
∂t

+H

(
t,W,Y, α, π∗,

∂V
∂W

,
∂2V
∂W2 ,

∂V
∂Y

)
dt

]
.

Again, using the fact that the integral is at most zero by Theorem 3.2, it follows that

∂V
∂t

+H

(
t,W,Y, α, π∗,

∂V
∂W

,
∂2V
∂W2 ,

∂V
∂Y

)
= 0.
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4. Value functions

Before taking on a particular utility function, we consider at time s a portion of the HamiltonianH
that involves wealth w and control πs,

w
[
πsµ(s, y, a) + r(s, y, a)(1 − πs)

]∂V
∂w

+
1
2
π2

sw
2σ2(s, y, a)

∂2V
∂w2 (4.1)

+

∫ +∞

−1

(
V(s,w + πswΓ(s, y, a, z), y, a) − V(s,w, y, a) − πtwΓ(s, y, a, z)

∂V
∂w

)
ν(dz).

4.1. Power utility

Theorem 4.1. If the utility function is U(w) =
wγ

a
γa

, 0 < γa < 1, then the value function is

V(s,w, y, a) = ζa(s, y)
wγa

γa
, (4.2)

where ζa(s, y) is the solution to the boundary-value problem
∂ζa(s,y)
∂s +

∂ζa(s,y)
∂y (χs − ρy) + γaζa(s, y)F(π∗; s, y, a) +

∑
j,a qa, j(ζ j(s, y) − ζa(s, y)) = 0

ζa(T,YT ) = 1
(4.3)

with

F(π∗; s, y, a) =
[
π∗µ(s, y, a) + r(s, y, a)(1 − π∗)

]
−

1
2

(1 − γa)π∗2σ2(s, y, a)

+
1
γa

∫ +∞

−1

[
(1 + π∗Γ(s, y, a, z))γa − 1 − γaπ

∗Γ(s, y, a, z)
]
ν(dz).

Proof: With this value function (4.1) becomes

ζa(s, y)w
[
πsµ(s, y, a) + r(s, y, a)(1 − πs)

]
wγa−1 + ζa(s, y)

1
2
π2

sw
2σ2(s, y, a)(γa − 1)wγa−2

+ζa(s, y)
wγa

γa

∫ +∞

−1

[
(1 + πsΓ(s, y, a, z))γa − 1 − γaπtΓ(s, y, a, z)

]
ν(dz)

= ζa(s, y)wγa

{[
πsµ(s, y, a) + r(s, y, a)(1 − πs)

]
−

1
2

(1 − γa)π2
sσ

2(s, y, a)

+
1
γa

∫ +∞

−1

[
(1 + πsΓ(s, y, a, z))γa − 1 − γaπsΓ(s, y, a, z)

]
ν(dz)

}
= ζa(s, y)wγa F(πs; s, y, a). (4.4)

The HJB Eq (3.2) now becomes

0 =
∂ζa(s, y)
∂s

wγa

γa
+
∂ζa(s, y)
∂y

(χs − ρy)
wγa

γa
+ ζa(s, y)wγa

{
sup

π∈A[s,T ]
F(πs; s, y, a)

}
+

wγa

γa

∑
j,a

qa, j(ζ j(s, y) − ζa(s, y)). (4.5)
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Since wγa > 0, Eq (4.5) further becomes

0 =
∂ζa(s, y)
∂s

+
∂ζa(s, y)
∂y

(χs − ρy) + γaζa(s, y)
{

sup
π∈A[s,T ]

F(πs; s, y, a)
}

+
∑
j,a

qa, j(ζ j(s, y) − ζa(s, y)). (4.6)

By applying the first order condition on F(πs; s, y, a), we have

0 =
∂F
∂π

= µ(s, y, a) − r(s, y, a) − πs(1 − γa)σ2(s, y, a)

−

∫ +∞

−1

[
(1 + πsΓ(s, y, a, z))γa−1 − 1

]
Γ(s, y, a, z)ν(dz).

Solving for πs, we get

πs =
1

(1 − γa)σ2(s, y, a)

(
µ(s, y, a)−r(s, y, a)−

∫ +∞

−1

[
(1+πsΓ(s, y, a, z))γa−1−1

]
Γ(s, y, a, z)ν(dz)

)
. (4.7)

Since for every (s, y, a) ∈ [0,T ] × R ×M,

∂2F
∂π2 = −(1 − γa)σ2(s, y, a) −

∫ +∞

−1
(1 + πsΓ(s, y, a, z))γa−2Γ2(s, y, a, z)ν(dz) < 0,

it follows that (4.7) is a maximum and F(π∗; s, y, a) is optimal. Thus, (4.6) becomes

0 =
∂ζa(s, y)
∂s

+
∂ζa(s, y)
∂y

(χs − ρy) + γaζa(s, y)F(π∗; s, y, a) +
∑
j,a

qa, j(ζ j(s, y) − ζa(s, y)). (4.8)

Note that (4.8) is a first order linear partial differential equation. Hence, it is solvable and solutions
exist. To obtain a unique solution for (4.8) we impose the boundary condition

ζa(T,YT ) = 1 (4.9)

and also to be consistent with (3.2).

4.2. Logarithmic utility

Theorem 4.2. If the utility function is U(w) = ln(w), then the value function is

V(s,w, y, a) = ξa(s) ln w + %(y) ln w + ζa(s), (4.10)

where

%(y) = 1 − ξa(s) +

∫ T

s

∑
j,a

qa, j

(
ξ j(u) − ξa(u)

)
du (4.11)

and ζa(s) is the solution to the coupled ordinary differential equation terminal-value problem:ζ
′

a(s) +
∑

j,a qa, j(ζ j(s) − ζa(s)) +
[
ξa(s) + %(y)

]
F(π∗; s, y, a) = 0

ζa(T ) = 0, ξa(T ) = 1
2 , %(YT ) = 1

2

(4.12)
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with

F(π∗; s, y, a) =
[
π∗µ(s, y, a) + r(s, y, a)(1 − π∗)

]
−

1
2
π∗2σ2(s, y, a)

+

∫ +∞

−1

(
ln(1 + π∗Γ(s, y, a, z)) − π∗Γ(s, y, a, z)

)
ν(dz).

Proof: With this value function (4.1) becomes[
ξa(s) + %(y)

][
πsµ(s, y, a) + r(s, y, a)(1 − πs)

]
−

[
ξa(s) + %(y)

]1
2
π2

sσ
2(s, y, a)

+
[
ξa(s) + %(y)

] ∫ +∞

−1

(
ln(1 + πsΓ(s, y, a, z)) − πsΓ(s, y, a, z)

)
ν(dz)

=
[
ξa(s) + %(y)

]{[
πsµ(s, y, a) + r(s, y, a)(1 − πs)

]
−

1
2
π2

sσ
2(s, y, a)

+

∫ +∞

−1

(
ln(1 + πsΓ(s, y, a, z)) − πsΓ(s, y, a, z)

)
ν(dz)

}
=

[
ξa(s) + %(y)

]
F(πs; s, y, a). (4.13)

And the HJB Eq (3.2) now reads

0 = ξ
′

a(s) ln w + ζ
′

a(s) +
[
ξa(s) + %(y)

]{
sup

π∈A[s,T ]
F(πs; s, y, a)

}
+ %

′

(y)(χs − ρy) ln w

+ ln w
∑
j,a

qa, j(ξ j(s) − ξa(s)) +
∑
j,a

qa, j(ζ j(s) − ζa(s)). (4.14)

We split (4.14) into

ξ
′

a(s) ln w + ln w
∑
j,a

qa, j(ξ j(s) − ξa(s)) + %
′

(y)(χt − ρy) ln w = 0 (4.15)

and
ζ
′

a(s) +
∑
j,a

qa, j

(
ζ j(s) − ζa(s)

)
+

[
ξa(s) + %(y)

]{
sup

π∈A[s,T ]
F(πs; s, y, a)

}
= 0. (4.16)

For ln w , 0, (4.15) becomes

ξ
′

a(s) +
∑
j,a

qa, j(ξ j(s) − ξa(s)) = −%
′

(y)(χs − ρy). (4.17)

Since the delay is a function of time, we integrate (4.17) with respect to t to obtain

ξa(u)
∣∣∣∣T
s

+

∫ T

s

∑
j,a

qa, j(ξ j(u) − ξa(u))du = −%(Yu)
∣∣∣∣T
s
. (4.18)

We impose the terminal condition ξa(T ) = 1
2 = %(YT ) so that (4.10) remains consistent with (3.2).

Hence (4.18) becomes

1
2
− ξa(s) +

∫ T

s

∑
j,a

qa, j(ξ j(u) − ξa(u))du = −
1
2

+ %(y) (4.19)
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which can be expressed as

%(y) = 1 − ξa(s) +

∫ T

s

∑
j,a

qa, j

(
ξ j(u) − ξa(u)

)
du (4.20)

and which can be substituted into (4.16).
Similarly, by applying the first order condition on F(πs; s, y, a), we have

0 =
∂F
∂π

= µ(s, y, a) − r(s, y, a) − πsσ
2(s, y, a) −

∫ +∞

−1

πsΓ
2(s, y, a, z)

1 + πsΓ(s, y, a, z)
ν(dz).

Solving for πs, we get

πs =
1

σ2(s, y, a)

[
µ(s, y, a) − r(s, y, a) −

∫ +∞

−1

πsΓ
2(s, y, a, z)

1 + πsΓ(s, y, a, z)
ν(dz)

]
. (4.21)

Now, for every (s, y, a) ∈ [0,T ] × R ×M,

∂2F
∂π2 = −σ2(s, y, a) −

∫ +∞

−1

Γ2(s, y, a, z)(
1 + πsΓ(s, y, a, z)

)2 ν(dz) < 0.

It follows that (4.21) is a maximum and F(π∗; s, y, a) is optimal. Thus (4.16) becomes

ζ
′

a(s) +
∑
j,a

qa, j(ζ j(s) − ζa(s)) +
[
ξa(s) + %(y)

]
F(π∗; s, y, a) = 0. (4.22)

Since both the Markov chain αt and delay Yt are dependent on the time variable, (4.22) is a first
order linear ordinary differential equation. Thus, solutions exist for (4.22). We impose the terminal
condition

ζa(T ) = 0 (4.23)

in order for (4.22) to have a unique solution and to be consistent with (3.2).

5. Conclusions

We considered a portfolio optimization problem where the riskless asset and the coefficients of the
risky asset, represented by a Levy price process, depends on time t, delay Yt and Markov chain αt. We
formulated a finite time horizon Merton-type optimization problem and came up with a version of the
stochastic chain rule for the system we are working. This chain rule serves as the main machinery in
solving the optimization problem which generates a Hamilton-Jacobi-Bellman (HJB) equation bearing
the aforementioned variables. In the world of dynamic programming involving portfolio optimization,
the HJB equation we came up with is novel in the sense that it incorporated both the delay and regime
switching, a result deemed unlikely at first given the discontinuous nature of Levy processes. This
obstacle was overcame by fixing the delay variable in order for it to be defined even in stochastic
systems with jumps.
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The main results of this paper are the optimal portfolio π∗, which we obtained for logarithmic
and power utility functions, and the value functions which represent the solution to the portfolio
optimization problem. The optimal portfolio was found by invoking the first order condition on the
HJB equation. We found that for a logarithmic utility function, the solution consists of four functions,
three of which are interrelated via a coupled differential equation. The value function is simpler for
the case of a power utility in the sense that the solution is represented by the product of wealth and a
function which solves a first order linear partial differential equation.
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