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1. Introduction

Since 1950s, people have begun to study discrete-time zero-sum stochastic games. The first work
on this research topic is completed by Shapley in [1], in which Shapley considers the discount criteria
of two-person zero-sum stochastic games with finite state space and action space. The results show
that both of players have optimal policies. Then, Maitra extends the discount game to the case that the
state space and the action space are uncountable in [2] and proves the existence of the optimal policies
through the fixed point theorem. For the research on the relationship between the action space and the
current state, we can refer to Parthasarathy [3]. In [2, 3], it is required that the state space be compact,
which is relaxed in [4, 5]. The above work is carried out under the assumption that the state space is
the Borel space, and Nowak [6] makes an in-depth study on the more common types of measurable
policies in the context of stochastic games. Most of the articles mentioned above involve that the reward
function is bounded or has only upper bound or only lower bound, which seems to be the first problem
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we consider in stochastic games. That is , when the state space is Borel space, the reward function
can have neither upper bound nor lower bound, but it is limited by the drift condition. Interested
readers can also refer to [7–10]. Such as, Guo et al. [8] studied the two-person zero-sum game of
continuous time Markovian jump process under the discount criterion, in which the reward function
is unbounded. By adding conditions to the initial data of the game, they guaranteed the existence of
the solution of Shapley equation and obtained the existence of the optimal policies. Minjárez-Sosa and
Luque-Vásquez [9] study the discount compensation criteria for zero-sum semi-Markov games with
unbounded reward function.

The existing work on stochastic games can be roughly divided into the following four categories.
(1) Discrete-time Markov game: the state process of the game is a discrete-time Markov chain, the

dwell time of adjacent states is a fixed constant, and the decision time is the time of state transition (i.e.
equidistant fixed discrete time point), see [6, 7];

(2) Continuous-time Markov game: the state process of the game is a continuous time Markov
chain, the trajectory of the system state is constant step by step, the state dwell time follows exponential
distribution, and the decision time is any time point, see [8, 11];

(3) Semi-Markov game: the state process of the game is a semi Markov process, the state trajectory
of the system is constant step by step, the state dwell time can obey any probability distribution, and
the decision time is the random time point of state transition, see [9];

(4) Stochastic differential game: the state process of the game can be described by a stochastic
differential equation.

As is well known, the discounted criterion of stochastic games with a constant discount factor
have been widely studied as an important class of stochastic control problems. However, in financial
systems, the discount is understood as 1/(1 + ρ), where the interest rate ρ is usually not a constant,
but depends on the states or actions of a underlying system, which is random in nature. Also, in
investment, volatility is usually introduced into the stochastic discount factor as a state variable. Due
to this interesting observation in practice, it is understandable to consider the varying discount factors,
see, for example, Schäll [12], González-Hernández et al. [13, 14], Zhang [15] and their references
therein.

Therefore, in this paper, we mainly discuss the discrete-time Markov games, with Borel state space
and action space, unbounded reward function and state-dependent discount factors, give the expected
discount criteria for two-person zero-sum Markov games. We construct two-person zero-sum Markov
games model with varying discount factors, and give the expected discount criteria of the model. As far
as we know, different from the existing literature, we consider the fact that the discount factor depends
on the state of the system, which is more in line with the real world. This is also a generalization of
the study of variable discount factor in MDPs model [16].

This paper contains two main contributions:
(a) We study the discrete-time two-person zero-sum stochastic games with Borel state space, and

obtain the existence of optimal value and optimal policy pairs under suitable conditions, which provides
a solid theoretical basis for us to calculate them.

(b) The discount factors are state-dependent, i.e., the discount factors α(x) is a state-dependent
measurable function from the state space to [0, 1), which is a generalization of the case of a constant
discount factor.

This paper is organized as follows. In Section 2, we introduce the two-person zero-sum stochastic
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game model and its expected discount criterion. In Section 3, under suitable conditions, we prove
the main result on the existence of optimal policy pairs. Finally, we give an example for reservoir
operations to illustrate the existence results in Section 4.

2. Discrete-time stochastic game model and expected discount criterion

Before introducing the model of this paper, we first introduce the symbols throughout this paper.
Given a Borel space X, that is, a subset of Borel of a complete separable metric space, we use B(x)
to denote its Borel σ- algebra, and P(X) to denote a probability measure on X and give it a weakly
convergent topology. For any measurable function ω : X → [1,∞), we call the function u defined on
X ω-bounded, If its ω-norm is finite, where ω-norm is defined as

||u||ω := sup
x∈X

|u(x)|
ω(x)

.

Such a function ω can be considered as a weight function. In addition, for convenience, let Bω(X) be a
Banach space composed of all ω-bounded measurable functions defined on X.

Two-person zero-sum stochastic game model can be represented by the following model:

{X, A, B, (A(x), B(x), x ∈ X), q(·|x, a, b), α(x), r(x, a, b)}, (2.1)

where,

• X is a state space, which is Borel space, and its Borel σ-algebra is B(X).
• A and B represent the action spaces of player 1 and player 2 respectively, which are Borel spaces,

and their Borel σ- algebras are B(A) and B(B) respectively.
• A(x) and B(x) are the Borel subsets of A and B respectively, representing the allowed action sets

of player 1 and player 2 in the state x ∈ X. Let

K := {(x, a, b)|x ∈ X, a ∈ A(x), b ∈ B(x)},

be a measurable Borel subset of X × A × B.
• The transition probability q(·|x, a, b) is the random kernel on X given K, that is to say, for any

D ∈ B(X), q(D|x, a, b) is the Borel function defined on X, and then for any x ∈ X, a ∈ A(x) and
b ∈ B(x), q(·|x, a, b) is the probability measure on K.
• The discount factor, α(x) is a state-dependent measurable function from X to [0, 1).
• r(x, a, b) is a real valued measurable function defined on K, which is the reward that the player

1 gets (i.e., the player 2 pays) when the current state is x, the player 1 takes action as a, and the
player 2 takes action as b.

Next, we will give the definition of related policy classes.

Definition 1. The random kernel sequence π1 := (π1
t , t = 0, 1, 2, . . .) is called a randomized Markov

policy of player 1, if

π1
t (A(x)|x) = 1, ∀ x ∈ X.

Let Π1 be a collection of all randomized Markov policies of player 1.

AIMS Mathematics Volume 6, Issue 10, 11516–11529.



11519

Definition 2. If there is a probability measure π1(·|x) ∈ P(A(x)) such that

π1
t (·|x) = π1(·|x) ∀ x ∈ X , t ≥ 0,

Then, we call that the randomized Markov policy π1 := (π1
t , t ≥ 0) is stationary.

We denote all the stationary policies of player 1 as Πs
1.

By replacing A(x) in the above two definitions with B(x), we can similarly define the randomized
Markov policy class Π2 and the stationary policy class Πs

2 of player 2.
For any initial state x ∈ X and (π1, π2) ∈ Π1 × Π2, by the famous Tulcea theorem (see [17]), there

exists a unique probability space (Ω,F ,Pπ
1,π2

x ) and the random process {(xt, at, bt), t ≥ 0} such that,
for each D ∈ B(X) and t ≥ 0, it holds that

Pπ
1,π2

x (xt+1 ∈ D|ht, at, bt) = q(D|xt, at, bt), ∀ht = (x, a0, b0, · · · , xt−1, at−1, bt−1, xt) ∈ Ht,

where, H0 := X and Ht := Kt × X = K × Ht−1, xt, at and bt represent the state variables and action
variables of player 1 and player 2 at time t, respectively. Moreover, The expectation operator of Pπ

1,π2

x

is given as Eπ
1,π2

x .

Remark 1. As mentioned above, each player selects actions independently, then, for any policy pair
(π1, π2) ∈ Π1 × Π2 and the initial state x ∈ X, the action processes at and bt are conditionally
independent, that is,

Pπ
1,π2

x (at ∈ C, bt ∈ E|ht) = π1
t (C|ht)π2

t (E|ht),∀ht ∈ Ht,C ∈ B(A), E ∈ B(B).

Now, we give the expected discount compensation criteria for two-person zero-sum stochastic
games.

Definition 3. for any (π1, π2) ∈ Π1 × Π2, x ∈ X, and the discount factor α(x) ∈ [0, 1), the expected
discount criteria of player 1 and player 2 are defined as follows:

Vα(x, π1, π2) := Eπ
1,π2

x

[
r(x0, a0, b0) +

∞∑
t=1

t−1∏
s=0

α(xs)r(xt, at, bt)
]
. (2.2)

In addition, we call the functions defined on X as follow

L(x) := sup
π1∈Π1

inf
π2∈Π2

Vα(x, π1, π2) and U(x) := inf
π2∈Π2

sup
π1∈Π1

Vα(x, π1, π2)

as the lower value and the upper value of the discount compensation game, respectively. It is clear that
L(x) ≤ U(x) for all x ∈ X. And, if L(x) = U(x) for all x ∈ X, then we call it as the optimal value of a
stochastic game, denoted as V∗α(x).

Definition 4. If the stochastic game have the optimal value V∗α(x), then we call the policy π∗1 as the
optimal policy of player 1, if

inf
π2∈Π2

Vα(x, π∗1, π
2) = V∗α(x), ∀x ∈ X.

Similarly, we call the policy π∗2 as the optimal policy of player 2, if

sup
π1∈Π1

Vα(x, π1, π∗2) = V∗α(x), ∀x ∈ X.

If π∗k are the optimal policies of player k (k = 1, 2), then we call (π∗1, π
∗
2) as the optimal policy pair.
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3. The existence of optimal policy pairs

In this section, inspired by [18], we will give sufficient conditions for the existence of optimal policy
pairs in two-person zero-sum stochastic games. Some necessary symbols are given as follow.

for any x ∈ X, h : K → R, and the probability measures φ ∈ P(A(x)) and ψ ∈ P(B(x)), let

h(x, φ, ψ) :=
∫

B(x)

∫
A(x)

h(x, a, b)φ(da)ψ(db),

and then,

r(x, φ, ψ) :=
∫

B(x)

∫
A(x)

r(x, a, b)φ(da)ψ(db), (3.1)

q(D|x, φ, ψ) :=
∫

B(x)

∫
A(x)

q(D|x, a, b)φ(da)ψ(db), ∀D ∈ B(X). (3.2)

Similarly, for any π1 = (π1
t (·|x)) ∈ Π1, π2 = (π2

t (·|x)) ∈ Π2, we write

r(x, π1
t , π

2
t ) :=

∫
B(x)

∫
A(x)

r(x, a, b)π1
t (da|x)π2

t (db|x), (3.3)

and

q(D|x, π1
t , π

2
t ) :=

∫
B(x)

∫
A(x)

q(D|x, a, b)π1
t (da|x)π2

t (db|x), ∀D ∈ B(X). (3.4)

In particular, if π1 and π2 are stationary, then (3.3) and (3.4) can be write as r(x, π1, π2) and
q(D|x, π1, π2), respectively.

Because the reward function r(x, a, b) may be unbounded, in order to guarantee the finiteness
of Vα(x, π1, π2), we need to give the following assumptions, which is the so-called “expected growth”
condition (see Assumption 3.1 in [18]).

Assumption 1. (a) There exists a constant α ∈ (0, 1) such that supx∈X α(x) ≤ α.
(b) There exist nonnegative constants β and γ (with γα < 1), and a weight function ω(x), such that

for all (x, a, b) ∈ K, we have

|r(x, a, b)| ≤ βω(x), (3.5)

and ∫
X
ω(y)q(dy|x, a, b) ≤ γω(x). (3.6)

Remark 2. By Assumption 1(a), it holds obviously for the case that the discount factor is constant.
Assumption 1(b) shows that the reward function r(x, a, b) can have neither upper bound nor lower
bound. In addition, the purpose of (3.6) is to ensure that the Shapley operator (i.e. (3.8)) is a
contractive operator.
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In order to guarantee the existence of optimal policies, we also need to give the following famous
continuous-compact conditions, which can be referred to [1, 8, 11, 17, 19] and their references.

Assumption 2. (a) For each x ∈ X, A(x) and B(x) are compact;
(b) For each x ∈ X, r(x, a, b) is continuous on (a, b) ∈ A(x) × B(x);
(c) For each x ∈ X and any bounded measurable function u(x) on X,

∫
y∈X

u(y)q(y|x, a, b) is
continuous on (a, b) ∈ A(x) × B(x), and so is the weight function ω(x).

Now, for any u ∈ Bω(X) and (x, a, b) ∈ K, we define

H(u, x, a, b) := r(x, a, b) + α(x)
∫

X
u(y)q(dy|x, a, b), (3.7)

Tαu(x) := sup
φ∈P(A(x))

inf
ψ∈P(B(x))

H(u, x, φ, ψ), x ∈ X, (3.8)

and

Tπ1,π2u(x) := H(u, x, π1, π2), ∀(π1, π2) ∈ Πs
1 × Πs

2. (3.9)

Before stating our main conclusion, we need to give some lemmas to prove our main conclusion.

Lemma 1. (a) Suppose that Assumptions 1 and 2 hold, then for any u ∈ Bω(X), we have Tαu ∈ Bω(X),
Tπ1,π2u ∈ Bω(X), and

Tαu(x) := max
φ∈P(A(x))

min
ψ∈P(B(x))

H(u, x, φ, ψ), x ∈ X. (3.10)

In addition, there exists a policy pair (π∗1, π
∗
2) ∈ Πs

1 × Πs
2 such that

Tαu(x) = H(u, x, π∗1, π
∗
2) = max

π1∈P(A(x))
H(u, x, π1, π∗2) (3.11)

= min
π2∈P(B(x))

H(u, x, π∗1, π
2).

(b) Both Tα and Tπ1,π2 are contraction operators.

Proof. (a) By Assumption 1, for any u ∈ Bω(X), (x, a, b) ∈ K, we have

|H(u, x, a, b)| ≤ βω(x) + α||u||ω

∫
X
ω(y)q(dy|x, a, b)

≤ βω(x) + αγ||u||ωω(x).

Since Tαu and Tπ1,π2u are measurable, then we obtain that Tαu ∈ Bω(X) and Tπ1,π2u ∈ Bω(X). On
the other hand, by Assumption 2, H(u, x, a, b) is continuous on (a, b) ∈ A(x) × B(x), which yields
that H(u, x, φ, ψ) is continuous on (φ, ψ) ∈ P(A(x)) × P(B(x)). Moreover, by Fan’s Minimax Theorem
in [20], we have (3.10) holds. Furthermore, by Measurable Selection Theorem in [21], there exist
π∗1 ∈ Πs

1 and π∗2 ∈ Πs
2 such that (3.11) holds.
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(b) First, we show that Tπ1,π2 is a contraction operator. By Assumption 1, for all x ∈ X and
u, v ∈ Bω(X), we can get

|Tπ1,π2u(x) − Tπ1,π2v(x)| = |H(u, x, π1, π2) − H(v, x, π1, π2)| (3.12)

= |α(x)
∫

X
(u(y) − v(y))q(dy|x, π1, π2)|

≤ |α(x)|
∫

X
||u − v||ω · ω(y)q(dy|x, π1, π2)

≤ γα||u − v||ω · ω(x),

which yields that

||Tπ1,π2u − Tπ1,π2v||ω ≤ γα||u − v||ω.

Thus, Tπ1,π2 is a contraction operator.
On the other hand, by (3.12), we have

Tπ1,π2u(x) ≤ Tπ1,π2v(x) + γα||u − v||ω · ω(x),

which yields that

max
π1∈P(A(x))

min
π2∈P(B(x))

Tπ1,π2u(x)

≤ max
π1∈P(A(x))

min
π2∈P(B(x))

Tπ1,π2v(x) + γα||u − v||ω · ω(x),

that is,

Tαu(x) ≤ Tαv(x) + γα||u − v||ω · ω(x).

Similarly, we can also obtain that

Tαv(x) ≤ Tαu(x) + γα||v − u||ω · ω(x),

and then,

|Tαu(x) − Tαv(x)| ≤ γα||u − v||ω · ω(x).

Furthermore, we can get

||Tαu − Tαv||ω ≤ γα||u − v||ω,

that is, Tα is also a contraction operator. �

Remark 3. Since Tα and Tπ1,π2 are contraction operators, by Banach fixed point theorem, there exist
unique functions v∗ and v∗

π1,π2 in Bω(X), such that, for all x ∈ X, we have Tαv∗(x) = v∗(x) and
Tπ1,π2v∗

π1,π2(x) = v∗
π1,π2(x).

Lemma 2. For any (π1, π2) ∈ Πs
1 × Πs

2, the expected discount criteria Vα(·, π1, π2) is the only fixed
point of the operator Tπ1,π2 on Bω(X).
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Proof. It needs only prove that Vα(x, π1, π2) = Tπ1,π2Vα(x, π1, π2) for all x ∈ X. In fact,

Vα(x, π1, π2) = Eπ
1,π2

x

[
r(x0, a0, b0) +

∞∑
t=1

t−1∏
s=0

α(xs)r(xt, at, bt)
]

= r(x, π1, π2) + Eπ
1,π2

x

[ ∞∑
t=1

t−1∏
s=0

α(xs)r(xt, at, bt)
]

= r(x, π1, π2) + Eπ
1,π2

x

[
α(x)Eπ

1,π2

x [r(x1, a1, b1) +

∞∑
t=2

t−1∏
s=1

α(xs)r(xt, at, bt)|h1]
]

= r(x, π1, π2) + Eπ
1,π2

x

[
α(x)Vα(x1, π

1, π2)
]

= Tπ1,π2Vα(x, π1, π2),

where the second and third equalities are due to the properties of conditional expectation, and the last
equality is derived from the strong Markov property. �

Lemma 3. Suppose that Assumptions 1 and 2 hold, then for π1 and π2, x ∈ X and t = 0, 1, . . ., we
have

(a) Eπ
1,π2

x [ω(xt)] ≤ γtω(x),
(b) lim

t→∞
Eπ

1,π2

x
[∏t−1

s=0 α(xs)u(xt)
]

= 0, ∀ u ∈ Bω(X).

Proof. (a) When t = 0, it holds obviously. Then, when t = 1, by (3.6), we can obtain

Eπ
1,π2

x [ω(x1)] =Eπ
1,π2

x
[
Eπ

1,π2

x (ω(x1))|x, a0, b0
]

= Eπ
1,π2

x
[ ∫

X
ω(y)q(dy|x, a0, b0)

]
≤ Eπ

1,π2

x [γω(x)] = γω(x).

When t > 1, we have

Eπ
1,π2

x [ω(xt)] = Eπ
1,π2

x

[
Eπ

1,π2

x (ω(xt))|ht−1, at−1, bt−1

]
= Eπ

1,π2

x

[ ∫
X
ω(y)q(dy|xt−1, at−1, bt−1)

]
≤ γEπ

1,π2

x [ω(xt−1)].

By the mathematical induction method and the iteration, part (a) holds.
(b) By Assumption 1(a) and Lemma 3(a), we can get∣∣∣∣∣Eπ1,π2

x
[ t−1∏

s=0

α(xs)u(xt)
]∣∣∣∣∣ ≤ αtEπ

1,π2

x |u(xt)| ≤ αt||u||ωEπ
1,π2

x [ω(xt)]

≤ (αγ)t||u||ωω(x).

Note that αγ < 1, and let t → ∞ in the equality above, then part (b) holds. �
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Theorem 1. Suppose that Assumptions 1 and 2 hold, then
(a) The optimal value V∗α of two-person zero-sum stochastic game exists and satisfies the following

equation

V∗α(x) = TαV∗α(x), ∀x ∈ X. (3.13)

In addition, V∗α is the unique solution of the above equation (3.13) on Bω(X).
(b) The stationary policy pair (π∗1, π

∗
2) ∈ Πs

1×Πs
2 is optimal if and only if Vα(·, π∗1, π

∗
2) is the solution

of equation (3.13).

Proof. (a) By Lemma 2, we can suppose Vα is a fixed point of Tα on Bω(X), and then

Vα(x) = TαVα(x).

By Lemma 1, there exists a stationary policy pair (π∗1, π
∗
2) ∈ Πs

1 × Πs
2 such that

Vα(x) = H(Vα, x, π∗1, π
∗
2) = max

π1∈P(A(x))
H(Vα, x, π1, π∗2) = min

π2∈P(B(x))
H(Vα, x, π∗1, π

2),

which shows that Vα is also a fixed point of Tπ∗1,π
∗
2

on Bω(X). Thus, by Lemma 2,

Vα(x) = Vα(x, π∗1, π
∗
2), ∀ x ∈ X.

Next, we will state that Vα is the optimal value of the two-person zero-sum stochastic game, and
(π∗1, π

∗
2) is the optimal policy pair. To do this, we just need to prove, for any (π1, π2) ∈ Π1 × Π2 and

all x ∈ X, it holds that

Vα(x, π∗1, π
2) ≥ Vα(x, π∗1, π

∗
2) ≥ Vα(x, π1, π∗2). (3.14)

Here we only prove the second inequality of (3.14) and the first inequality can be similarly derived.
By (2.2), we have

Vα(x, π1, π∗2) = E
π1,π∗2
x

[
r(x0, a0, b0) +

∞∑
t=1

t−1∏
s=0

α(xs)r(xt, at, bt)
]
.

From the nature of conditional expectation, for t ≥ 1 and ht ∈ Ht, we can conclude that

E
π1,π∗2
x

[ t∏
s=0

α(xs)Vα(xt+1, π
∗
1, π

∗
2)|ht, at, bt

]
=

t∏
s=0

α(xs)E
π1,π∗2
x

[
Vα(xt+1, π

∗
1, π

∗
2)|ht, at, bt

]
=

t∏
s=0

α(xs)
∑
y∈X

Vα(y, π∗1, π
∗
2)q(y|xt, π

1
t (ht), π∗2(xt))

=

t−1∏
s=0

α(xs)
{
α(xt)

∑
y∈X

Vα(y, π∗1, π
∗
2)q(y|xt, π

1
t (ht), π∗2(xt))
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+ r(xt, π
1
t (ht), π∗2(xt)) − r(xt, π

1
t (ht), π∗2(xt))

}
≤

t−1∏
s=0

α(xs)
[
Vα(xt, π

∗
1, π

∗
2) − r(xt, π

1
t (ht), π∗2(xt))

]
.

Then, we have
t−1∏
s=0

α(xs)Vα(xt, π
∗
1, π

∗
2) − Eπ

1,π∗2
x

[ t∏
s=0

α(xs)Vα(xt+1, π
∗
1, π

∗
2)|ht, at, bt

]
≥

t−1∏
s=0

α(xs)r(xt, π
1
t (ht), π∗2(xt)).

Choose t = 0, and then

Vα(x0, π
∗
1, π

∗
2) − Eπ

1,π∗2
x

[
α(x0)Vα(x1, π

∗
1, π

∗
2)
]
≥ r(x0, π

1
0(x0), π∗2(x0)).

Take expectations Eπ
1,π∗2

x and sum t from 0 to T , we have

Vα(xt, π
∗
1, π

∗
2) − Eπ

1,π∗2
x

[ t∏
s=0

α(xs)Vα(xT+1, π
∗
1, π

∗
2)
]

≥ E
π1,π∗2
x

[
r(x0, a0, b0) +

T∑
t=1

T−1∏
s=0

α(xs)r(xt, at, bt)
]

Let T → ∞, and by Lemma 3(b), we can obtain that Vα(x, π∗1, π
∗
2) ≥ Vα(x, π1, π∗2). Then, part (a) holds.

(b) Firstly, we prove the ‘only if’ part. Suppose that (π∗1, π
∗
2) ∈ Πs

1×Πs
2 is a optimal policy pair, then

for any x ∈ X, π1 ∈ Π1 and π2 ∈ Π2, we have

Vα(x, π∗1, π
2) ≥ Vα(x, π∗1, π

∗
2) ≥ Vα(x, π1, π∗2). (3.15)

Now, fix x ∈ X, and for any ψ ∈ P(B(x)), we can define π̂ = (π̂t) as follow: π̂0 = ψ and π̂t = π∗2, ∀t ≥ 1.
Then, by the first inequality in (3.15), we can get

Vα(x, π∗1, π
∗
2) ≤Vα(x, π∗1, π̂)

=

∫
B(x)

∫
A(x)

[
r(x, a, b) + α(x)

∫
X

Vα(y, π∗1, π
∗
2)q(dy|x, a, b)

]
π∗1(da)ψ(db),

which yields that

Vα(x, π∗1, π
∗
2) ≤ H(Vα, x, π∗1, ψ).

Thus, by Lemma 1(a), we obtain

Vα(x, π∗1, π
∗
2) ≤ TαVα(x, π∗1, π

∗
2).

For the same reason, we have

Vα(x, π∗1, π
∗
2) ≥ TαVα(x, π∗1, π

∗
2).

Then, Vα(x, π∗1, π
∗
2) = TαVα(x, π∗1, π

∗
2).

On the other hand, the ‘if’ part holds from the proof of part (a). �
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4. An example for reservoir operations

Example 1. As is well known, the reservoir systems have multiple purposes such as water supply
for land irrigation, industrial or domestic use, hydropower generation, flood control, etc., which in
some cases may be in conflict. If there is a well-defined priority between the purposes, the conflicting
situation can be modeled as a constrained control optimal problem (with respect the purpose with the
highest priority and imposing constraints to hedge the systems against the unsatisfied demand for the
others). However, in many cases such a priority is very difficult or even impossible to establish. The
game modeling provides an alternative to overcome this disadvantage of the control model formulation.

Here, we study a single reservoir system with infinite capacity and two purposes modeled as a
zero-sum game, in the sense that the water used for one purpose can be considered as water lost for
the other. In addition, it is natural to include the economic state into the model, so that the discount
factor is automatically state-dependent. Therefore, we model the reservoir as a zero-sum game in the
following way. The inflows happen at nonnegative random times Tt, t = 0, 1, 2, . . ., with T0 := 0. Let
Zt be the inflow at time Tt (t = 1, 2, . . .) and assume it is a nonnegative random variable. At each
time Tt the decision maker observes the stored water volume yt ∈ [0,∞) =: R+ and the economic state
it ∈ {1, 2, . . . ,N} (here N is an arbitrarily fixed positive integer), and chooses the consumption rate
at ∈ A := [0, a] for purpose 1 and the consumption rate bt ∈ B := [b, b] for purpose 2, where a, b
and b are fixed positive constants. These consumption rates remain fixed until the next inflow time Tt+1

occurs whenever the water available at the beginning of the period has not been depleted. If this is the
case, the total withdrawal during the period (Tt,Tt+1] is (at + bt)Lt, where Lt := Tt+1 − Tt. When the
storage process reaches the zero volume it continues there until a positive inflow arrives.

The storage process {yt} evolves on R+ according to the recursive equation

yt+1 = max
{
[yt − (at + bt)Lt] + Zt, 0

}
, t = 0, 1, 2, . . . , (4.1)

where y0 is the initial water volume. Moreover, the economic state process is a time-homogeneous
discrete-time Markov chain in {1, 2, . . . ,N} with the initial state i0 and the one-step transition
probability pi j. Suppose that the stored water volume is independent of the economic state, and we
take the state space to be X = [0,∞) × {1, 2, . . . ,N}. Below in this example the generic denotation
x = (y, i) ∈ X is in frequent use, and the system starts with the initial state x0 = (y0, i0). Obviously, for
each ((y, i), a, b) ∈ K and (z, l) ∈ R+×R+, it holds that the function max{y− (a+b)l+z, 0} is continuous
in ((y, i), a, b) for all (z, l) ∈ R+ × R+.

To obtain the properties in the other assumptions we impose the following conditions:
(i) The sequences {Zt} and {Lt} are independent and each one of them is formed by independent and

identically distributed random variables. Let ρ1(·) be the density of {Zt} and ρ2(·) be the density of {Lt}.
Thus, denoting ρ∗ the joint density of (Lt,Zt), we have ρ∗(·, ·) = ρ1(·)ρ2(·).

(ii) {Zt} and {Lt} have continuous bounded densities ρ1 and ρ2, respectively.
(iii) We also assume that the mean values of inflow and the interarrival times are finite and also that

they satisfy the inequality E(Zt) < bE(Lt).
At each stage t, player 1 receives a payoff r(xt, at, bt) from player 2, and the game jumps to a new

state xt+1 according to the transition law determined by (4.1):

q(D × { j}
∣∣∣(y, i), a, b) := Prob(xt+1 ∈ D × { j}

∣∣∣xt = (y, i), at = a, bt = b)
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= pi j

"
R+×R+

1D
{
max{y − (a + b)l + z, 0}

}
ρ∗(z, l)dzdl, ∀D × { j} ∈ B(X),

where 1D{·} denotes the indicator function of the set D. The goal of player 1 (player 2, resp.) is to
maximize (minimize, resp.) his/her reward flow (cost flow, resp.) r(x0, a0, b0), r(x1, a1, b1), . . . over an
infinite horizon. Suppose that the discount factor α(x) = α(y, i) := α(i) is a measurable function from
X to [0, 1), which depends on the economic state i, and then a discounted expected reward (or cost)
criterion is well-defined as in section 2.

Now, we define the function

R(s) = E exp(s(z − bl)) =

"
R+×R+

exp(s(z − bl))ρ∗(z, l)dzdl

and observe that R′(0) = E(Zt) − bE(Lt) < 0 by condition (iii). Note that R(0) = 1, and then there
exists s0 ∈ (0, 1) such that γ0 := R(s0/2) < 1.

In addition, for the discount factor and reward function, we impose the following conditions:
(iv) Suppose that there exists a constant α ∈ (0, 1

γ0+1 ) such that supx∈X α(x) ≤ α.
(v) The reward function r(x, a, b) is measurable on X × A × B and continuous on A(x) × B(x), and

satisfies that
|r((y, i), a, b)| ≤ β exp(s0y/2), ∀(y, i) ∈ X, (a, b) ∈ A(x) × B(x),

where β is a positive constant.

Proposition 1. Under the above conditions of (i)-(v), Example 1 satisfies Assumptions 1 and 2 in
Theorem 1, then there exist the optimal policies of the two-person zero-sum stochastic game.

Proof. It is clear that Assumption 1(a) holds. Now, let ω(x) = ω(y, i) := exp(s0y/2) for each x ∈ X,

A1 :=
{
(z, l) ∈ R+ × R+

∣∣∣y − (a + b)l + z ≤ 0
}

and Ac
1 := R+ × R+ − A1, then we have

∫
X
ω(x̂)q(dx̂|(y, i), a, b)

=E
[
ω(xt+1)

∣∣∣xt = (y, i), at = a, bt = b
]

=

N∑
j=1

{"
A1

ω(0, j)ρ∗(z, l)dzdl +

"
Ac

1

ω(y − (a + b)l + z, j)ρ∗(z, l)dzdl
}

pi j

≤

N∑
j=1

{
ω(0, j) + exp(s0y/2)

"
Ac

1

exp
{ s0

2
[z − (a + b)l]

}
ρ∗(z, l)dzdl

}
pi j

≤

N∑
j=1

{
1 + exp(s0y/2)

"
Ac

1

exp
{ s0

2
(z − bl)

}
ρ∗(z, l)dzdl

}
pi j

≤

N∑
j=1

{
1 + γ0ω(x)

}
pi j

≤(1 + γ0)ω(x),
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which shows that Assumption 1(b) holds when γ := γ0 + 1, and by condition (iv) it holds that αγ < 1.
Note that, the joint density ρ∗(·, ·) is continuous and bounded by conditions (i) and (ii), and for any

bounded measurable function u ∈ B(X), we have∫
X

u(x̂)q(dx̂|(y, i), a, b) = E
[
u(xt+1)

∣∣∣xt = (y, i), at = a, bt = b
]

=

N∑
j=1

{"
A1

u(0, j)ρ∗(z, l)dzdl +

"
Ac

1

u(y − (a + b)l + z, j)ρ∗(z, l)dzdl
}

pi j,

which is obviously continuous on (a, b) ∈ A(x) × B(x), and so is the weight function ω(x).
Therefore Assumptions 1 and 2 hold, by Theorem 1, there exist the optimal policies. �

5. Conclusions

This article considers two-person zero-sum Markov games with Borel state space and action space,
unbounded reward function and varying discount factors and proves the existence of a value and
associated equilibrium policies in these games. The relevant theories in this paper provide a solid
theoretical basis to study the calculation of optimal value and optimal policy pairs. However, it does
not give the complete algorithms to calculate the optimal value and optimal policy pairs of two-person
zero-sum stochastic games, which is our important research work in the future.
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