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1. Introduction

Fractional calculus deals with the equations which involve integrals and derivatives of fractional
orders. The history of fractional calculus begins from the history of calculus. The role of fractional
integral operators is very vital in the applications of this subject in other fields. Several well known
phenomenas and their solutions are presented in fractional calculus which can not be studied in
ordinary calculus. Inequalities are useful tools in mathematical modelling of real world problems,
they also appear as constraints to initial/boundary value problems. Fractional integral/derivative
inequalities are of great importance in the study of fractional differential models and fractional
dynamical systems. In recent years study of fractional integral/derivative inequalities accelerate very
fastly. Many well known classical inequalities have been generalized by using classical and newly
defined integral operators in fractional calculus. For some recent work on fractional integral
inequalities we refer the readers to [1-6] and references therein.
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Our goal in this paper is to apply generalize Riemann-Liouville fractional integrals using a
monotonically increasing function. The Hadamard inequalities are proved for these integral operators
using strongly (a, m)-convex functions. Also error bounds of well known Hadamard inequalities are
obtained by using two fractional integral identities. In connection with the results of this paper, we
give generalizations and refinements of some well known results added recently in the literature of
mathematical inequalities.

Next, we like to give some definitions and established results which are necessary and directly
associated with the findings of this paper.

Definition 1. [7] A function f : [0,+c0) — R is said to be strongly (a, m)-convex function with
modulus ¢ > 0, where (a, m) € [0, 1], if

fxt+m(1 = 1)y) < t“f(x) + m(1 = @) — emt®(1 = )|y — x|, (1.1)
holds N x,y € [0, +c0) and t € [0, 1].

The well-known Hadamard inequality is a very nice geometrical interpretation of convex functions
defined on the real line, it is stated as follows:

Theorem 1. The following inequality holds:

X+y 1 Y S+ f(y)
f( . )sy_—xfxf(v)dvsT, (1.2)

for convex function f : I — R, where I is an interval and x,y € I, x < y.
The definition of Riemann-Liouville fractional integrals is given as follows:

Definition 2. Let f € Li[a, b]. Then left-sided and right-sided Riemann-Liouville fractional integrals
of a function f of order u where R(u) > 0 are defined by

I f(x) = r%m f x(x — ¥ f(ndt, x> a, (1.3)
and .
I f(x) = FL(M) f (t—x)"'f(o)dt, x<b. (1.4)

The following theorems provide two Riemann-Liouville fractional versions of the Hadamard
inequality for convex functions.

Theorem 2. [8] Let f : [a,b] — R be a positive function with 0 < a < b and f € Li[a,b]. If f is a
convex function on [a, b), then the following fractional integral inequality holds:

f(a+b)< I(u+1) f(a)+f(b)’

2 )T 2 -ay 7S ®) + 1 f@)] < =

(1.5)

with u > 0.
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Theorem 3. [9] Under the assumption of Theorem 2, the following fractional integral
inequality holds:

f(a + b) - 2P+ 1)

Fo SO+ 1 f@)] < OO,

T b-ar () ( 2 (1.6)

2
with u > 0.

Theorem 4. [8] Let f : [a,b] — R be a differentiable mapping on (a, b) with a < b. If |f’| is convex
on la, b], then the following fractional integral inequality holds:

‘ﬂm+fwx_np+n
2 2(b — a)*

<

2+ 1)

The k-analogue of Riemann-Liouville fractional integrals is defined as follows:

1
|1 1) + I fla)| @—EﬁﬂMHﬂwl (1.7)

Definition 3. [/0] Let f € Li[a,b]. Then k-fractional Riemann-Liouville integrals of order u where
R(u) > 0, k > 0, are defined by

1 * u
k15+f(x) = mf (x — t)rlf(t)dt, X >a, (1.8)
and ,
1 u
uwm=m@fuﬁwWMuxw, (19)

where T'y(.) is defined as [11]

(o] [k
Tu(p) = f e v dt.
0
The k-fractional versions of Hadamard type inequalities (1.5)—(1.7) are given in the
following theorems.

Theorem 5. [12] Let f : [a,b] — R be a positive function with O < a < b. If f is a convex function
on [a, b], then the following inequalities for k-fractional integrals hold:

f(a+b) - Te(u + k) fla)+ f(b)
2 )7 20b-a) 2

[l fB) + 1) f(@)] < (1.10)

Theorem 6. [I3] Under the assumption of Theorem 5, the following fractional integral
inequality holds:

f(a er b) < 25 T + k)

b
[kl"myf(b) + kl’gm)f(a)] SRACRFIO} (1.11)

(b - a)'f ( 2
Theorem 7. [I2] Let f : [a,b] — R be a differentiable mapping on (a,b) with 0 < a < b. If |f'| is
convex on |a, b], then the following inequality for k-fractional integrals holds:

f@+ fb) Ti(u+k

2 2b - a)t [klg+f(b) + klz,f(a)]

B 1 / /
< 20+ (1 - 2—,2) [f (@ + £ @)I]. (1.12)
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In the following, we give the definition of generalized Riemann-Liouville fractional integrals by a
monotonically increasing function.

Definition 4. [/4] Let f € L,[a,b]. Also let ¥ be an increasing and positive monotone function on
(a, b], having a continuous derivative ¥’ on (a, b). The left-sided and right-sided fractional integrals of
a function f with respect to another function  on [a, b] of order u where R(u) > 0 are defined by

ﬂfﬂw—lnnj“wammm vy it x> a, (1.13)

and i
1
LY = l"_(y)f W (O — ()Y f(ndr,  x <b. (1.14)
The k-analogue of generalized Riemann-Liouville fractional integrals is defined as follows:

Definition 5. [4] Let f € Li[a,b]. Also let  be an increasing and positive monotone function on
(a, b], having a continuous derivative ' on (a,b). The left-sided and right-sided fractional integrals
of a function f with respect to another function ¥ on [a,b] of order u where R(u) > 0, k > 0, are
defined by

klﬁ,‘iwf(X)—kr (ﬂ)fs//(t)(elf(X) YO fydt, x> a, (1.15)

and

_ -
W oo = kr(ﬂ)ft//()(t/'(t) Y0)) f(nde,  x <b. (1.16)

For more details of above defined fractional integrals, we refer the readers to see [15, 16].

Rest of the paper is organized as follows: In Section 2, we find Hadamard type inequalities for
generalized Riemann-Liouville fractional integrals with the help of strongly (a, m)-convex functions.
The consequences of these inequalities are listed in remarks. Also some new fractional integral
inequalities for convex functions, strongly convex functions and strongly m-convex functions are
deduced in the form of corollaries. In Section 3, the error bounds of Hadamard type fractional
inequalities are established via two fractional integral identities.

2. Main results

Theorem 8. Let f : [a,b] — R be a positive function with O < a < mb and f € L,[a, b]. Also suppose
that f is strongly (a, m)-convex function on [a, b] with modulus ¢ > 0,  is positive strictly increasing
function having continuous derivative ' on (a,b). If [a,b] C Range(y), k > 0 and (a,m) € (0,1]?,
then the following k-fractional integral inequality holds:

(a+mb) em(2¢ = 1)
f +
2 e+ Ky + 2K)

[+ oo -

Py (n% - mb)2 + 2uk(b - a) (ﬁ - mb)]

[ (u + k)

_— b
_2%M_@J 4 e W)W (b))
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+@ = DmEL (Fon (v (5]
U@ +m@ = D)l mkap(f®)+m2" — 1 (%))

= 29 + ka) i 202 + puak)
cmkau |(b — a)* + m(2* — 1) (b - %)2]
- 2e(u + ak)(u + 2ak) ’ @1
with u > 0.
Proof. Since f is strongly (a, m)-convex function, for x,y € [a, b] we have
¥ (x +2my) < fxo) + m(22§ - Dfy)  cm2° —2 2la)ly - XIZ. 2.2)

By setting x = ar+m(1 —1)b, y = (1 —1) + bt and integrating the resulting inequality after multiplying
with 7571, we get

k .(a+mb
ey
< o] [ s m - omiars mer - f 0+ br)
cm(2¥ = 1) 5 3 )
- 22aﬂ(ﬂ+k)(ﬂ+2k)[uk(y+k)(b—a) + 2% (;l—mb) b -a) (S -mb)| @3

Now, let u € [a, b] such that y(u) = at + m(1 — )b, that is, t = ”’Z_w(”) and let v € [a, b] such that
Y(v) = £(1 = 1) + br, that is, 1 = 52
the following inequality:

in (2.3), then multiplying % 7 after applying Definition 5, we get

f(a + mb)
2
: %[ Iy (2O (b)) + mE* Q2 = DU (F o w)(‘b_l (%))]
_ 22@(7?;(; 1+) T o - 2 + 20 (% - mb)2 + 24k = @) (% — mb)|. (2.4)

Hence by rearranging the terms, the first inequality is established. On the other hand, f is strongly
(a, m)-convex function, for ¢ € [0, 1], we have the following inequality:

Flat +m(1 = D)b) + m(2" - l)f(%(l —h+ bt)
< 1f(@) + m@" = DO+ m(1 = )| £6) + m@7 = 1f ()

a 2
— emt*(1 — ) [(b —a? +m2 = 1) (b - $) . (2.5)
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Multiplying inequality (2.5) with 15~ on both sides and then integrating over the interval [0, 1], we get

ftk f(m+m(1—t)b)dt+m(2“—1)f Ty (1—t)+tb)dt
0

sunu+nurﬁ—nfw»(ﬂf;a)

cmak® [(b —ay +m2 - 1)(b- W)z]

k*a
+m(fb) +m2 -1 ( )) 2.6
" (f 0) +m2" = 1f 2+ pak (1 + ak)(u + 2ak) 26
Again taking ¢(u) = at + m(1 — )b that is r = "2 w(”) and y(v) = &(1 — 1) + bt that is r = —— in (2.6),
then by applying Definition 5, the second 1nequa11ty can be obtalned. O

Remark 1. Under the assumption of Theorem 8, by fixing parameters one can achieve the
following outcomes:

(i)If« = m = 1in(2.1), then the inequality stated in [17, Theorem 9] can be obtained.
(ii)lfa=m=1,¢ =1and c =0in(2.1), then Theorem 5 can be obtained.

(iii)[fa=k=m= 1,y =1and c =0in (2.1), then Theorem 2 can be obtained.

(iv)Ifa = k =m = 1and ¢y = I in (2.1), then the inequality stated in [18, Theorem 2.1] can
be obtained.

W Ifa=u=k=m=1,¢y =1and c =0in (2.1), then the Hadamard inequality can be obtained.
(vi)Ifa =m = 1and c = 0in (2.1), then the inequality stated in [19, Theorem 1] can be obtained.
(vii) If a = m = k = 1and ¢ = 0 in (2.1), then the inequality stated in [20, Theorem 2.1] can
be obtained.

(viii) If a =k = 1 and Y = I in (2.1), then the inequality stated in [21, Theorem 6] can be obtained.
(ix) Ifa =u=m=k=1andy = I in (2.1), then the inequality stated in [22, Theorem 6] can
be obtained.

(x) If« =k =1,¢ = 1and c = 0in (2.1), then the inequality stated in [23, Theorem 2.1] can
be obtained.

(xi) If k = 1 and y = I in (2.1), then the inequality stated in [24, Theorem 4] can be obtained.

Corollary 1. Under the assumption of Theorem 8 with ¢ = 0 in (2.1), the following fractional integral
inequality holds:

f(a+mb) - Cp(u + k)

[ Y oW (mb)) + (27 - l)mkﬂklﬂ - ¥ (w_l (%))]

2 )7 2¢(mb - a)t
@+ m@ = D)l muak(fB)+m@" - DS (35))
= 2°(u + ka) " 22 + pak) '

Corollary 2. Under the assumption of Theorem 8 with k = 1 in (2.1), the following fractional integral
inequality holds:

a+ mb N cmu(2® — 1)
f 2 220y (u + 1)(u + 2)

[u(ﬂ )b —a)+2 (% - mb)2 + 2u(b - a) (% - mb)]
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@+ m@ = Df @y m{®)+m@ - DS (55)) ap

= 20(u + @) 20 (1 + pa)
2
cmay [(b —a)? +mQ2* - 1) (b - %) ]
B 20(u + @)(u + 2a)

Corollary 3. Under the assumption of Theorem 8 with W = I in (2.1), the following fractional integral
inequality holds:

a+ mb cm(2® —1)
f( 2 )+220‘(/J+k)(ﬂ+2k)

@W+mw—m2

+ 24 (2 - mb)2 + 2uk(b - a) (3 - mb)]

m

iu+k) [ 4 « il g [f(@) + m2* = 1)f(b)]u
= Sty — ayf [/ = D (m)] 20(u + ka)
mkap (f(b) +m(2* — Df (%)) cmkau [(b —a)’ +m2* = 1)(b - —2)2]
" 222 + pak) B 2(i + k) + 2ak)

Theorem 9. Under the assumption of Theorem 8, the following k-fractional integral inequality holds:

a+mb cmu(2® — 1)
f( 2 )+ 22042y + 2k)

[+ 00 - a7

; (% _ mb)2 G2 + Sku + 8K2) + 2u(u + 3K)(b — @)X (% _ mb)]

mwnw+@[
S mb-at L

+m%xy—1»ﬂ (s © W( (m»]

2m

<uwan+m@“—nﬂm1+m@%u+am—y)

(e A(f o)W (mb))

(1@ + =17 ()

- 22 (ak + p) 22y + ak)
_oomp[2%(u +20k) = (u+al)l (0 _ay
230y + ak)(u + 2ak) ((b @y +m (b mz) ) 2.7)

with u > 0.

Proof. Letx = § + m( = ) b,y== (27) %’ in (2.2) and integrating the resulting inequality over [0, 1]

1

after mu1t1p1y1ng with 7571, we get

k (a+mb
J737)

1y (', (at 21\, \ v,
. b ofa(2—1t\ bt\ s,
+m(2 —I)L f(% (T)'FE)I dl’]
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cm(2® - 1) 5 a 2, 5
—555@135LML+M®—a)k+k&;—m®(ﬁ-+ﬂy+8k)
+m4b—m(%—nmyy+3m4. 2.8)

Letu € [a,b], so that y(u) = % +m (%) b, thatis, r = 224 and v € [, b], so that y(v) = £ (5)+ 4,

that is, t = Z(wb(i—):ﬂ in (2.8), then by applying Definition 5, we get

a+mb
=)

mnw+@
b
< ey — e sy 0 O D)

+mEo— 1), Il“”amb (fo l//)(l//_( ))]

2m

cmu(2® - 1) ) 2 )
S|~ (- mb) st + 81)

Hence by rearranging terms, the first inequality is established. Since f is strongly (a,m)-convex
function with modulus ¢ > 0, for ¢ € [0, 1], we have following inequality

at 2—t N a(2-t\ bt £\* "
f(§+m(7)b)+m(2 —Df(a (T)+5)s(§) [f(a) + m(2* = 1) f(D)]

et @ = )| (b = a +m (b~ )|

a __ t(l’ N a
+—n1( _ )[f(b)—%in(Z - nf(5)|- = (2.10)
Multiplying (2.10) with 75! on both sides and integrating over [0, 1], we get
b (at 2- 4, " 2—t\ bt\ .,
fof(5+m( 5 )b)tk dt + m(2 —l)f ( (—) 2) dt
klf(a) + m2* = D) f(b)]
- 2%(ak + )
mk(2*(u + ak) — ,u)( ( a ))
b 2 - Dfl—
2 + k) f(b) +m( )fm2
a 2 _ 2
_ ka( (/J+ 2625) (ﬂ+ak))((b—a)2+m(b— %) ) (211)
Again taking y(u) = 4 + m(2 t)b that is, t = 22229 and so that Y(v) = (2 ’) + 2, that is,
t= M in (2.11), then by applying Definition 5, the second inequality can be obtained. O

Remark 2. Under the assumption of Theorem 9, one can achieve the following outcomes:
(i) Ifa =m = 11in(2.7), then the inequality stated in [17, Theorem 10] can be obtained.
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(ii)lfa=m=k=1,¢=1and c =0in(2.7), then Theorem 3 can be obtained.
(iii)l[fa=u=m=k=1,¢ =1and c=0in(2.7), then Hadamard inequality can be obtained.
(iv)Ifa =m=1,¢ = 1and c = 0in (2.7), then the inequality stated in [13, Theorem 2.1] can
be obtained.

(v)Ifa=m=1and c =0in(2.7), then the inequality stated in [17, corrollary 5] can be obtained.
(vi)lfa =k =1andy = 1in (2.7), then the inequality stated in [21, Theorem 7] can be obtained.
(vii) If k = 1 and = I in (2.7), then the inequality stated in [24, Theorem 5] can be obtained.

(viii) Ifa =m =k =1 and c = 0in (2.7), then the inequality stated in [25, Lemma 1] can be obtained.

Corollary 4. Under the assumption of Theorem 9 with ¢ = 0 in (2.7), the following fractional integral
inequality holds:

a+ mb
1+57)

_—k(;zkf“a;k)[ ey OO )+ @ = (row(v7(S))]

plf@+mQ* - Df®)]  mQp+ak) — ) o a
22(ak + ) T T 22t ak) (f(b) +m(2" = l)f(mz )) (2.12)

Corollary 5. Under the assumption of Theorem 9 with k = 1 in (2.7), the following fractional integral
inequality holds:

a+mb cmu(2® — 1)
f( 2 )+ 2020 + D +2)

+(% —mb)z(yz+5,u+8)+2,u(/1+3)(b—a)(% —mb)]
_ 2T )

[u(u + (b - ay

|1 0 @ by e 2 = 1 (F o (07 (2 )]

(mb — a)*
i [f(@) +m2* = DFB)] | ml2( +a) - p) . o
= (o + 1) T et ) (f (0) +m2" = Df (%))
emu(2®(u + 2a) — (u + @)) ) a \?
T ) X[(b_“) +m(b_ﬁ)]‘

Corollary 6. Under the assumption of Theorem 9 with = I in (2.7), the following fractional integral
inequality holds:

f(a + mb) cmu(2¢ — 1)

2 2202 + 2k) [“ (u + k)b - ay

; (n% - mb)2 (22 + Skiu + 8K2) + 2u(b — a)(u + 3k) (’% - mb)]

k w]"k(,u + k) k+1 @ u ﬁ
AL [ [ oy b))+ m1(27 - 1),<1(a+mb)_f(m)]
Lf@) + @~ DB m G+ k) - ) N
e (ak + 1) T De(u+ ak) (f 0) +m(2" = Df (m2 ))

cmu2%(u + 2ak) — (u + ak)] ) a \?
T Da(u + ak)(u + 2ak) ((b 4 +m(b_ %) )
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3. Error estimations of Hadamard type fractional inequalities for strongly («, m)-convex
function

In this section, we find the error estimations of Hadamard type fractional inequalities for strongly
(a, m)-convex functions by using (1.15) and (1.16) that gives the refinements of already proved
estimations. The following lemma is useful to prove the next results.

Lemma 1. Leta < b and f : [a,b] — R be a differentiable mapping on (a, b). Also, suppose that ' €
Lla, b), ¥ is positive strictly increasing function, having a continuous derivative ¥’ on (a, b). If [a, b] C
Range(y), k > 0, then the following identity holds for generalized fractional integral operators:

fla) + f(b) nm+m[
2 2b - a)f

b-—a (! TS I
= (1 -1)* —tk]f (ta + (1 —n)b)dt. 3.1
A

L oW O) + 1Y (f o (@)

Proof. We cosider the right hand side of (3.1) as follows:

1

f ((1=0F —1%) f'(ta + (1 - Db)dt

0

1 1
= f (1- t)%‘lf’(ta + (1 = b)dt - f "lf (ta+ (1 —t)b)dt
0 0
= I] - 12 (32)
Integrating by parts we get

f(b)
b —

I = f(l—t)_lf(ta+(1—t)b)dt "o )f(l NE fta + (1 = b)dt

We have v € [a, b] such that ¥(v) = ta + (1 — t)b, with this substitution one can have

11:

o W%wa»wj?IUow@»
b—a kb-a) () b—-a b—-a
_fb)  Tiu+k) o
- b_a (b a)”+1 ¢ Y(b)~

W' (v)dv

(f o )W ' (a)). (3.3)

Similarly one can get after a little computation

—f@ T+ 5 g

I
2= b—a (b a) b+l l// Ha)*

(f o)W~ (b)). (3.4)

Using (3.3) and (3.4) in (3.2), (3.1) can be obtained. O

Remark 3. (i) Ifk = 1 and y = I in (3.1), then the equality stated in [8, Lemma 2] can be obtained.
(ii) Foru =k =1 and y = I in (3.1), then the equality stated in [28, Lemma 2.1] can be obtained.
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Theorem 10. Let f : [a,b] — R be a differentiable mapping on (a,b) with 0 < a < b. Also suppose
that |f’| is strongly (a, m)-convex with modulus ¢ > 0,  is positive strictly increasing function having
continuous derivative ' on (a,b). If [a,b] C Range(yr), k > 0 and (a, m) € (0, 11%, then the following
k-fractional integral inequality holds:

'f(a) +f(b)  Ti(u+k)

it o F o007 B0+ 2%, o0 @)

2(b - )
la+%
1 u 1_(5) H b
2B 1_ 1l\l+ ———— — B 1,= 1 "|—
<5 |f(a)|( (2,a+ k+) Y (a+ T ))+mf m‘
[\ 1\ +Ete
( ) (3) ! Il 1-(3) ( H ))
-2B|=; Lo+l - +8B L+l
( ,1+1 i+1+@ (2a+ k+) %+1+a+ @+ 1,7+
b 2
cm(s — 1 - 1
— —( 2 ) (23(5,&’"‘ 1,% + 1)_20’4_(1 2F1(1 + 20“/’ _%’2(1 +Q’), E)
l_l%+a 1_l%+2(1
A U e S 39
E+l+a k L4142 k

with u > 0 and »F 1(1 +2a, -5, 2(1 + @); %) is regularized hypergeometric function.
Proof. By Lemma 1, it follows that

fl@+ fb) Ti(u+k) [
2 2b - a)t

b-a ! u u
—_— 1 —1)F —t*
N fo‘( :

Since |f’| is strongly (a, m)-convex function on [a, b] and ¢ € [0, 1], we have

Lo OGN+ I5Y (f o wxw‘l(b)]‘

|f’ (ta + (1 — 1)b]) dt. (3.6)

|f"(ta + (1 = )b)|
<1 f" (@ +m(1 —1%)

2
f (2)' —cmt®(1 —1%) (2 - a) ) (3.7
m m

Therefore (3.6) implies the following inequality

fl@+ fb) Ti(u+k) [
2 2(b — a)f

_b af‘(l—t)k—tk

2
—cemt*(1 —1%) (% - a) ]dt

Y F oW ) + L, (f o ;//)(z/fl(b)]‘

(i)
< b_a[lf’(a)l[f; (1 -0k —ti)dwf “(f - —t)’fi)dt)
-2 0 1

2

(t"lf (@l +m(1 - 1)
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1
+m|f | f(l—t) (1—t)k—t% dt+ﬁ(1—t“)(t’é_(1_t)i)dt)

b u la an (LK u
—cm(g—a) (f t(l—t)((l—t)k—tk)dt+j; r(l—r)(zk—(l—t)k)dt)]. (3.8)

0

In the following, we compute integrals appearing on the right side of the above inequality

1

: ‘g (1t
‘ﬁ:t «1—t)-—t)dt+b£ (¢ = (1= f)ar

1\e+E
1 7 1-(3) u
=2B|=; I,=+1|+———-8B I,=+1). 3.

(2’a+’k+)+a+‘;‘+l (a+’k+) (39)

f(l—t) (1—t)k—tk dt+f(1—t) tk—(l—t))
1+&+a
) (3 1 7 )
“
k

= + - 2Bl z;a+1,—-+1
E+1 +1+a (Za k
11+%+a
1-(3) p
—————+Bla+1,~ +1]). (3.10)
T+Hl+a k

f (1= (1 -0f —z’i)dHf (1= 1) (¢ = (1 =) ) dr

2 2

(l)1+%+(l
2

Q
k+1+01

1 U
=2B|;a+1,—-+ 1) -
[z

1+£+a
1\' &
1_(5)
+ -

M
Tt+tl+a

(l)1+%+2(l
2

H

k

o g M 1
— 204" F |1 + 20, —=,2(1 + @); = | +
@ “( &= & “)2) 1+ 2a

1 | 1+5+2a
-(3)

u
Bla+1.* +1) +B(2 +1,—+1). 3.11
(a k Ei1+2a T G-

Using (3.9), (3.10) and (3.11) in (3.8), we get the required inequality (3.5). O

Remark 4. Under the assumption of Theorem 10, one can achieve the following outcomes:

(i) Ifa = m = 11in(3.5), then the inequality stated in [17, Theorem 11] can be obtained.

(ii) Ifa =m = 1and c = 0in (3.5), then the inequality stated in [17, Corollary 10] can be obtained.
(iii) Ifa =m =1,y =1and c = 0in (3.5), then Theorem 7 can be obtained.

(v)lifa=m=k=1,¢ =1andc =0in(3.5), then Theorem 4 can be obtained.
(v)Ifa=k=1andy =1in(3.5), then the inequality stated in [21, Theorem 8] can be obtained.
(vi)lfa =u=m=k=1and ¥ = I in (3.5), then the inequality stated in [26, Corollary 6] can
be obtained.
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Corollary 7. Under the assumption of Theorem 10 with ¢ = 0 in (3.5), the following inequality holds:

'f(a) +f(b)  Tulu+k)
2(b - a)t

it o Oy a1, (o @)

a 1 7 1- (l)w
- 2

—|If 2B+ 1, =+ 1|+ —————
[lf (a)|( ( “ k ) a+f+1

X —B(a+1,%+1))+m

()

2(1_(%)7:) 1 1+5+a 1— (L 1+4+a
1
x( m +M(2) —ZB(—;Q+1,E+1)—ML+B(Q+1,E+1))].
T+ 1 Ttl+a 2 k Tt1l+a k

Corollary 8. Under the assumption of Theorem 10 withk = m = 1 and ¢ = 0 in (3.5), the following
inequality holds:

‘f(a)+f(b) Tp+1D
2(b - ay

1 o0 ) + 1%, (o0 @)

1 - (%)aﬂl
o

+u+1

b

If (a)I[ZB(; a+1l,u+ 1)+

(2( ), @™

u+1 ,u+1+a/

—B(a+1,,u+1)]+|f'(b)|

1— (%)l+y+a

u+l+a

1
—ZB(E;a+1,,u+1)— +B(a/+1,,u+1))].

Corollary 9. Under the assumption of Theorem 10 with = I in (3.5), the following inequality holds:

f@+ fb) Tu+k)
‘ T 30 o |l fB) +i 1} f(@)
b— 1 =)
¢ |f’(a)|(23(5;a #1,E 1) ¥ %

u
“Ble+1.H 1))
(a+ L))+

et

11+%+a
— 2B la+1l_l+1 _i
2’ "k E+l+a

K s 3( 1 H
+B(a+1,k+1))] c(b - a) 23(2,a+1,k+1)

1 - <%)%+a

i 1
— 2047 o F |1+ 20, -5, 2(1 + @) = | +
k E+l+a

2
1_(%)%+20

—B(a+1,'[i+l)— m
T+1+2a

. +B(Za+l,%+l))].

For next two results, we need the following lemma.
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Lemma 2. [26] Let f : [a,b] — R be a differentiable mapping on (a, b) such that f' € Lla,b], ¥ is
positive increasing function having continuous derivative ' on (a,b). If a, b] C Range(¥), k > 0 and
m € (0, 1], then the following integral identity for fractional integral holds:

21T (u + k)[
(mb — a)k ‘/’_](

1 a+ mb a+ mb
_E[f( 2 )+mf( 2m )]
mb—ay (., (at 2t
= 1 j(: tkf (3+m(7)b)dt
Yy (a(2-t\ bt

Theorem 11. Let f : [a,b] — R be a differentiable mapping on (a, b) such that f' € L[a,b]. Also
suppose that | f'|? is strongly (a, m)-convex function on [a, b] for g > 1, { is an increasing and positive
monotone function on (a, b], having a continuous derivative ' on (a,b). If [a,b] C Range(y), k > 0
and (., m) € (0, 11%, then the following k-fractional integral inequality holds:

oy W b))+ (fow (v (2)]

2m

2Z 1Fk(/.l+k)[
(mb — a)* d

LY (fo w)(w‘( ))]

v ()
1 a+ mb a+ mb
S ]
mb — a [(21014 @l (t+1)(4+2)
< p2+h (% N 1)(% +2)$ ak +u+k
+1)(,u 2)(2“(ak+,u+k)—(/,t+k))

(e A(f o)~ (mb))

+ 2kl £ (D) (%‘

P L+ K)ak+p+ K

— 22 — a)? (% + 1) (% ; 2)

2°Qak + p + k) — (ak + p + k) \ \a
X( (ka + o+ HQak + g+ k) ))

—a , 7 u u 2% ak +u+k)— (u+k)
+21 km'f %) (%“)(%”)( L+ Rk + g+ k) )

21 k(4 +1) (% +2)1F B
- ak +u+k

o J7i u 2°Qak + u+ k) — (ak + u + k)
_212cm(Z+1)(k )(b_%)( (ka + 1 + k)Qak + 1 + k) )) ] (3.13)

with u > 0.
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Proof. Applying Lemma 2 and strongly (a, m)-convexity of |f’|, (for g = 1), we have

m‘nw+M[
(mb _ a)k w (a+mb)+

AR
e [l

(lf/(a)l + |f,(b)|)fl ey 4 (lf/(b)l |/
2@ 0

(Foww by +mE Lt L (Fou (v (2))]

2m

tﬁf'(

mb —a
4

) cm ((b —a)* + (b - %)2) fl fran t“)dt]
0

22a

L mb— a[k[lf’(a)l + 1)l N mk[2%(ak + p+ k) — (u+ k)]

-4 29(u + ak + k) (u+ k)ak +u+k)

a cmk[2¥Qak + pu + k) — (ak +u + k a \?

Xﬂf®”+ «Eﬂ)_ éwék+ﬂikx;£+yfl))%w_”y+(b__ﬂ)}
Now for g > 1, we proceed as follows: From Lemma 2 and using power mean inequality, we get
267 T (u + k)

(mb — a)*

et Ul s (Fow (07 (2))

_ %[f(a +2mb) N mf(a -;nzftb) H

< mb4—a(f1 t'idt)]_q[( fl £k f'(%t +m(2T_t)b) th);
0 0

+(f01 tE f’(n% (ZT_I) +%) th);]

/ , 1
__mb- ﬂvﬁwffim+wgyhf@“fﬁm
TR o

412 e F 0 020 )

1

2 1
Cm(b Cl) f (2a ta)tf('ﬂldl.)q

220
1% '
( ‘ — ()R dt + lféb)qu 15 dy
0
Cm(b B ﬁ)z a ay e (1]
—TI(Z — 1)t* dt)]
mb —a klf" (@) N mkl|f’(D)[2%(ak + pu + k) — (u + k)]

= 4(%+ I)L[(Z"(ak +u+k) 20y + k)(ak + p1 + k)
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_emk(b — a)*[2°Qak + p + k) — (ak + p + k)] )3,
22¢(ka + u + k)Qak + u + k)
m|f (&) 112 @k + p+B) =+ D] k)

+( 20(u + ky(ak + g+ k) I

emk(b — 5)*[2°Qak + p + k) — (ak + p + )]\
- 22 (ka + p + k)(2ak + p + k) ) ]
cmoe_RAronEe i)

22+} (% N 1)(% +2)$ 2%(ak + u + k)

+ 217 mk| £ (b)|? (’% + 1) ('% + 2)(20(0]6 Rl Tl k))

(u+ k)ak+u+k)
e o(H V(K 29Qak + p+ k) — (ak + p+ k)| \a
—2 emb-a) (k+1)(k+2)( (ke + 11 + ) Qak + 1+ k) ))

(i (2)r(E )

2(ak+p R = @R 2k (4 +1) (% +2)1F )

(u+ k)ak + u+ k) 2¢(ak + u + k)
B 2em (5 +1) (% +2) (b — %) 290k + u + k) — (ak +p + k));]
22 (ka + u + k)Qak + p + k) '
This completes the proof. O

Remark 5. Under the assumption of Theorem 11, one can achieve the following outcomes:

(i)If « = m = 1in(3.13), then the inequality stated in [17, Theorem 12] can be obtained.

(i) Ifa =k =1and y =1 in (3.13), then the inequality stated in [21, Theorem 10] can be obtained.
(iii)Ifa =k =1, ¢ =1and c = 0in (3.13), then the inequality stated in [27, Theorem 2.4] can
be obtained.

(v)Ifa =m =1,¢ =1 and c = 0in (3.13), then the inequality stated in [13, Theorem 3.1] can
be obtained.

W) IlIfa=m=k=1,¢ =1and c = 0in (3.13), then the inequality stated in [9, Theorem 5] can
be obtained.

(vi)lfe=u=k=m=gq=1andy = 1in (3.13), then the inequality stated in [26, Corollary 8] can
be obtained.

(i)lfae =u=k=m=q=1,¢ =1and c = 0in (3.13), then the inequality stated in [28, Theorem
2.2] can be obtained.

Corollary 10. Under the assumption of Theorem 11 with ¢ = 0 in (3.13), the following
inequality holds:

2%~ T + k)
(mb — a)*

sl () e
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mb — a [(2“‘”k|f’(a)|‘1 (4+1)(%+2)
_22+5(%+1)(%+2)$ ak +p+k

e oo (1 (K 2% (ak +p+ k) — (u + k) \\a
+2 mk|f(b)|q(k+l)(k+2)( 1+ k) (ak + g+ k) ))

Gl G+ 1)(E+2)
2ok +p+ k) — b)) 2 k(E+1)(F2) 1O
X( L+ K@k +p+ ) )+ ak+p+k )]

Corollary 11. Under the assumption of Theorem 11 with k = 1 in (3.13), the following
inequality holds:

o1 1r(ﬂ+1)[w

(21 “km

(Lo o)+ 1 (Fow (v (2))] - %[f (a +zmb)

(mb — a)* ()" o
_ l—a| £7
+mf (a ; mb)” L - [(2 AP Gt DU+ 2) ot o o+ 1+ 2)
2m 2% a(u + 1)(u +2)7 atputl

(2“(a+,u+1)—(,u+1)
w+D@+u+1)

+ (2 mlp (2 )I"(,u+1)(,u+2)(

1220 o 2°Qa+pu+ 1) —(@+u+ D\
)_2 emib=a) (,u+1)(,u+2)( (@+pu+1DQRa+u+1) ))

2 +p+ 1) -(u+1) N 217 (u+ 1) (u+2) | f (D)
w+Da@+u+1) a+u+1

2“(2a+,u+1)—(a/+,u+1))) ]
(@+pu+DQRa+u+1) '

_ol- 2acm(,u+l)(,u+2)(b—%) (

Corollary 12. Under the assumption of Theorem 11 with & = 1 in (3.13), the following

inequality holds:
25 T + k) - ay 1 (a+mb) (a+mb)
(mb — a)t [ (=g2)” Jmb) +m kI( “nt) f( )] 2 f 2 tmf 2m ”

. mb=a [(21‘“k|f’(a)l" (1) +2)
_22+;(%+1)(%+2)% ak +p+k

2"kl (D) (% +1

)(H+2)X(2“(ak+,u+k)—(,u+k))

k (u+ k)ak + u+ k)

e u u 272ak + p+ k) — (ak + u + k)\\a
_2126"1([’_“)2(%”)(%”)( (ka + p+ ) Qak + g+ k) ))

N a\|?(u u 2%(ak +u+k)— (u+k)
(21 fm (mZ) (%“)(E”)( (Lt )@k +p+ k) )

21k (2 + 1) (4 +2) I D)l
" ak+u+k

e (M u 27Qak + pu + k) — (ak + u + k) \\¢
_2126’"(%“)(%”)(“%)( (ke + 11 + )k + i+ k) )) ]

AIMS Mathematics Volume 6, Issue 10, 11403-11424.



11420

Theorem 12. Let f : I — R be a differentiable mapping on (a,b) with a < b. Also suppose that
|f'|9 is strongly (a, m)-convex function for q > 1, ¥ is positive increasing function having continuous
derivative ' on (a,b). If [a,b] C Range(y), k > 0 and (a,m) € (0, 112, then the following fractional
integral inequality holds:

2% T (u + k)
(mb—a)k

) %[f(a+2mb) mf(a+mb)”

- lem(iﬁ[(( @l (2) i (A Sy

({22 o o007 )+ (0w (07 ()]

2m

— 222l — g)? (—1 —a+2%(1 + 2a)) )31

(1I+a)l+2a)

a 22_"m[2"(1 ra)—1]\7 (22 \i
'f m? ( I +a ) +(a ) lf(b)l)
22 a (=11 + ) +2%(1 + 2a)\ \4
=2 Cm(b_%) ( (1 +a)1 +2a) )) ] (.14)

with,u>0andé+é = 1.
Proof. By applying Lemma 2 and using the property of modulus, we get

—zk(ngkf”a;k)[ Y gy P oD@ )+ mE L2 o (w7t (2))

11 (a+mb a+mb
“alf ( 2 ) mf ( )”

mb — a Y. o (at 2— “u  (a(2-t\ bt
Now applying Holder’s inequality for integrals, we get
k+1 Y -
sy 0@ b 24 (Foun (w7 (2))

2%~ 1Fk(/1+k)[
(mb — a)* d

S e (5
o (o5

Using strongly (@, m)-convexity of [f’|?, we get

<
——

q 1
dt)

) ([

)

ZE‘IFk(/J + k)
(mb — a)*

128 ey 0 007 by 1% o (97 (%))
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sl () e ()

mb—a [(If@° (', mlf®oe (., .
][( a j(;l‘dl+2—aj(;(2 _l)dt

4(42+ 1)
iy W@Wftm
0

IA

1

b-a)? (! i
- w f QY - t")dt) +
2 0

cm(b — %)2 1 :
Sl f 2" - i) ]
2 0

mb —a [( | (@)l N m|f'(B[2°(1 + @) — 1]
A+ 1) 20(a + 1) 2o(1 + )

[20‘(1 +a)—1] If ()]
2"(1 + @) * 2% a + 1)

em(b — a)? (=11 + @) + 2%(1 + 2a) ;+( 'f'
D (1 + a)1 + 2a) )
_em(b— L) (—1 —a+2%(1+ 2a)))é]

22a (1+a)(1 +2a)
mb — a %?”WWW+?WMf®WWU+®—H
2 (2 + 1);l (a+1) 1+a

<

_ h2-2 ol -a+2°0 4+ 20) 0 2% m'f’ [2"(1+0¢)—1]
2 emlb a)( (1 +a)1+2a) )) +( (1+a)

227 b, ,, a\t(-1—a+2%(1 +2a)\\s
M I Cm(b_ﬁ)( 1+ o)1+ 20) ))]

) mb——al[(( @l (jz:yl )j] . (22—am[2a(1 +a) - 1])3;)4

475 (2 4 1) I+a

(b — a)? ( 1 —a+2%1 + 2&)) 'f

1+ a)1 +2a)

2—-a a _ 2(1 7
><(2 m[29(1 + @) 1]) +( ) I (b)|)
a +

1+a
) ( 1(1 +a) +2%(1 +2a)))
(1+a)(1+2a)

Here, we have used the fact a? + b? < (a + b)?, for g > 1, a,b > 0. This completes the proof. m]

- 22 2QCI’I’Z (b -
m

Remark 6. Under the assumption of Theorem 12, one can achieve the following outcomes:

(i) If @« = m = 11in (3.14), then the inequality stated in [17, Theorem 13] can be obtained.

(ii) Ifa = k=1 and y = Il in (3.14), then the inequality stated in [21, Theorem 10] can be obtained.
(iii)Ifa =k =1, ¢ =1and ¢ = 0in (3.14), then the inequality stated in [27, Theorem 2.7] can
be obtained.

(iv)Ifa=m=1,¢ =1and c = 0 in (3.14), then the inequality stated in [13, Theorem 3.2] can
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be obtained.
(V) Ifa=u=k=m=1,¢ =1andc = 0in (3.14), then the inequality stated in [29, Theorem 2.4]
can be obtained.

Corollary 13. Under the assumption of Theorem 12 with ¢ = 0 in 3.14, the following inequality holds:

2’\ lrk(/,t-l-k)[
(mb — a)* i (3

—%[f(“*z””’)mf(“;,’;”‘b)]l

gy (oW (b)) +mE I on(v'(5))]

2m

42_1"1(2 7 [ ) (2 1]);
(e [ R e )|

Corollary 14. Under the assumption of Theorem 12 with k = 1 in (3.14), the following
inequality holds:

2410 (u + 1)[ o
(mb —ay | v'(%

() (5

- ﬁ[(( (> ) e - 1])é)q

— 272 cm(b — a)? (

o 0 o) - 1% (pou (v (4))]

l//_l ( 2m

—1—a+2%1 +2a) );
(1+a/)(1+2a/)
22(1 (1 -1 22a q

( mi2(1 + @) ]) ( )If()l)

1+«

(| (%

1
- 11+ @) +2°(1 + 2a)
~2 Cm(b m2) ( (1 +a)1 +2a) )

Corollary 15. Under the assumption of Theorem 12 with = 1 in (3.14), the following

inequality holds:
257 T (u + k) " Lol g a\]_ 1y . [a+mb a+mb ‘
b — )} gy PO+l ()] 5 f( 2 ) ’"f( )]

< 42"1(’1—17—:11)[(( ran(Z 2> )a PO (zz—am[zf(i - @) - 1])q)q ey ar
k
X (—1(1—35)(21"(: 2+0§a)))31 N (( f’(%) (22—wm[2‘¥(1 +a)-— 1])q N (jz @ ) ” (b)|)

I +a
e (b i % )2 (—1(11++a6)¥;12:’r(; oj) 2a) ))é]
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4. Conclusions

Some new versions of the Hadamard type inequalities are established for strongly (a, m)-convex
functions via the generalized Riemann-Liouville fractional integrals. @We have obtained new
generalizations as well as proved estimations of such inequalities for strongly (a,m)-convex
functions. We conclude that findings of this study give the refinements as well as generalization of
several fractional inequalities for convex, strongly convex and strongly m-convex functions. The
reader can further deduce inequalities for Riemann-Liouville fractional integrals.

Conflict of interest

Authors do not have conflict of interest.

References

1. G. Farid, Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. App., 14
(2017), 64-68.

2. I Iscan, M. Kunt, N.Yazici, Hermite-Hadamard-Fejér type inequalities for harmonically convex
functions via fractional integrals, New Trends Math. Sci., 4 (2016), 239-253.

3. S. Rashid, M. A. Noor, K. I. Noor, Y. M. Chu, Ostrowski type inequalities in the sense of
generalized k-fractional integral operator for exponentially convex functions, AIMS Math., 5
(2020), 2629-2645.

4. Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville k-
fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard
inequalities, IEEE Access, 6 (2018), 64946—-64953.

5. A. Ekinci, M. E. Ozdemir, Some new integral inequalities via Riemann-Liouville integral
operators, Appl. Comput. Math., 3 (2019), 288-295.

6. E. Set, A. O. Akdemir, F. Ozata, Griiss type inequalities for fractional integral operator involving
the extended generalized Mittag-Lefller function, Appl. Comput. Math., 19 (2020), 402-414.

7. Y. L. Dong, M. Saddiqa, S. Ullah, G. Farid, Study of fractional integral operators containing
Mittag-Leftler functions via strongly (a,m)-convex functions, Math. Probl. Eng., 2021 (2021),
6693914.

8. M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard’s inequalities for fractional
integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407.

9. M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville
fractional integrals, Miskolc Math. Notes, 17 (2017), 1049—1059.

10. S. Mubeen, G. M. Habibullah, k-fractional integrals and applications, Int. J. Contemp. Math. Sci.,
7 (2012), 89-94.

11. S. Mubeen, A. Rehman, A note on k-Gamma function and Pochhammer k-symbol, J. Math. Sci., 6
(2014), 93-107.

12. G. Farid, A. U. Rehman, M. Zahra, On Hadamard-type inequalities for k-fractional integrals,
Nonlinear Funct. Anal. Appl., 21 (2016), 463—478.

AIMS Mathematics Volume 6, Issue 10, 11403-11424.



11424

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

@ AIMS Press

G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for k-fractional integrals, Konuralp
J. Maths., 4 (2016), 79-86.

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, North-Holland Mathematics Studueds, Elsevier, 2006.

K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential
equations, New York: John Wiley and Sons, Inc., 1993.

S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and
applications, USA: Gordon and Breach Science Publishers, 1993.

G. Farid, H. Yasmeen, C. Y. Jung, S. H. Shim, G. Ha, Refinements and generalizations of some
fractional integral inequalities via strongly convex functions, Math. Probl. Eng., 2021 (2021),
6667226.

M. U. Awan, M. A. Noor, T. S. Du, K. I. Noor, New refinements of fractional Hermite-Hadamard
inequality, RACSAM, 113 (2019), 21-29.

M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, K. I. Noor, Some new refinements of Hermite-
Hadamard-type inequalities involving ¢-Riemann-Liouville fractional integrals and applications,
Math. Probl. Eng., 2020 (2020), 3051920.

K. Liu, J. R. Wang, D. O’Regan, On the Hermite-Hadamard type inequality for y-Riemann-
Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27.

Y. C. Kwun, G. Farid, S. B. Akbar, S. M. Kang, Riemann-Liouville Fractional versions of
Hadamard inequality for strongly m-convex functions, unpublished work.

N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math., 80 (2010),
193-199.

G. Farid, A. U. Rehman, B. Tarig, A. Waheed, On Hadamard type inequalities for m-convex
functions via fractional integrals, J. Inequal. Spec. Funct., 7 (2016), 150-167.

Y. C. Kwun. G. Farid, S. B. Akbar, S. M. Kang, Riemann-Liouville fractional versions of Hadamard
inequality for strongly (@, m)-convex functions, unpublished work.

P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a
convex function with respect to a monotone function, Math. Methods Appl. Sci., 44 (2021), 2314—
2324.

C. Miao, G. Farid, H. Yasmeen, Y. Bian, Generalized Hadamard fractional integral inequalities for
strongly (s, m)-convex functions, J. Math., 2021 (2021), 6642289.

G. Farid, A. U. Rehman, B. Tariq, On Hadamard-type inequalities for m-convex functions via
Riemann-Liouville fractional integrals, Studia Univ. Babes-Bolyai, Math., 62 (2017), 141-150.

S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to
special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95.

U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real
numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137-146.

©2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 10, 11403-11424.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Main results
	Error estimations of Hadamard type fractional inequalities for strongly (, m)-convex function
	Conclusions

