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Abstract: Network theory gives an approach to show huge and complex frameworks through
a complete arrangement of logical devices. A network is made is made of vertices and edges,
where the degree of a vertex refers to the number of joined edges. The degree appropriation of a
network represents the likelihood of every vertex having a particular degree and shows significant
worldwide network properties. Network theory has applications in many disciplines like basic sciences,
computer science, engineering, medical, business, public health and sociology. There are some
important networks like logistical networks, gene regulatory networks, metabolic networks, social
networks, derived networks. Topological index is a numerical number assigned to the molecular
structure/netwrok which is used for correlation analysis in physical, theoretical and environmental
chemistry. The hex-derived networks are created by hexagonal networks of dimension t, these networks
have an assortment of valuable applications in computer science, medical science and engineering. In
this paper we discuss the reverse degree-based topological for third type of hex-derived networks.
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1. Introduction

Graph theory has provided the researcher with various useful tools, such as graph labeling, locating
numbers and topological indices. Graph theory subject has many applications and implementations in
different research subjects like chemistry, medicine and engineering. A graph can be recognized by a
numeric value, a polynomial, a sequence of numbers or a matrix. The representation of the chemical
compound in terms of diagram, known as its molecular graph, in which its atoms and the chemical
bonding between them represent the nodes and edges, respectively. Recently, a new subject caught
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attention of the researchers was introduced, which is the combination of chemistry, information science
and mathematics is called Cheminformatics, which studies QSAR/QSPR relationship, bioactivity and
characterization of chemical compounds [1].

The topological index is a numeric value related with chemical compositions maintaining the
correlation of chemical structures with many physico-chemical properties, chemical reactivity or
biological activity. Topological indices are prepared on the grounds of the transformation of a chemical
network into a number that describes the topology of the chemical network. Some of the main types of
topological indices of graphs are distance-based topological indices, degree-based topological indices,
and counting-related topological indices. Recently, numerous researchers have found topological
indices for the study of fundamental properties of molecular graph or network. These networks have
very motivating topological properties which have been considered in different characteristics in [2–9].

Let G = (V, E) be a simple connected graph, with V be the vertex set and E be the edge set of graph
G, with order |V | = p, size |E| = q. The number of edges incident with a vertex ω is known as the
degree of ω, denoted by ζ(ω). The reverse vertex degree (R(ω)) was introduced by Kulli [10] defined
as: R(ω) = 1 − ζ(ω) + ∆, where ∆ denoted the maximum degree of the given graph. Let ER(ω),R(µ)

represents the edge partition of the given graph based on reverse degree of end vertices of an edge
ωµ ∈ E and |ER(ω),R(µ)| represents its cardinality. There are detailed variations of topological indices
mainly distance-based and degree-based indices, see [11–16]. Milan Randic [30] was the first who
defined the degree-based indices and its reverse Randic index is defined as:

RRα(G) =
∑

ωµ∈E(G)

(
R(ω) × R(µ)

)α
, α =

1
2
,−

1
2
, 1,−1. (1.1)

Estrada et al. presented the atom bond connectivity (ABC) index in [18] and the reverse atom bond
connectivity (RABC) is defined as:

RABC(G) =
∑

ωµ∈E(G)

√
R(ω) + R(µ) − 2
R(ω) × R(µ)

(1.2)

Vukicevic and Furtula defined the geometric arithmetic (GA) index in [19] and the reverse geometric
arithmetic (RGA) is presented as:

RGA(G) =
∑

ωµ∈E(G)

2
√
R(ω) × R(µ)
R(ω) + R(µ)

(1.3)

Gutman et al. [20, 21] defined the first and second Zagreb and its reverse indices as:

RM1(G) =
∑

ωµ∈E(G)

(
R(ω) + R(µ)

)
(1.4)

RM2(G) =
∑

ωµ∈E(G)

(
R(ω) × R(µ)

)
(1.5)

Shirdel et al. [22] introduced hyper Zagreb index. We defined the reverse hyper Zagreb index as:

RHM(G) =
∑

ωµ∈E(G)

(
R(ω) + R(µ)

)2

(1.6)
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Furtula and Gutman [23] accomplished the forgotten index and its reverse forgotten index as:

RF(G) =
∑

ωµ∈E(G)

(
(R(ω))2 + (R(µ))2

)
(1.7)

Augmented Zagreb index was introduced by Furtula et al. [24] and the reverse augmented Zagreb
index as:

RAZI(G) =
∑

ωµ∈E(G)

(
R(ω) × R(µ)
R(ω) + R(µ) − 2

)3

(1.8)

Ranjini et al. [25] introduced the first redefined, second redefined and third redefined Zagreb indices.
The reverse first redefined, second redefined and third redefined Zagreb indices are defined as:

RRZ1(G) =
∑

ωµ∈E(G)

R(ω) + R(µ)
R(ω) × R(µ)

(1.9)

RRZ2(G) =
∑

ωµ∈E(G)

R(ω) × R(µ)
R(ω) + R(µ)

(1.10)

RRZ3(G) =
∑

ωµ∈E(G)

(
R(ω) + R(µ)

)(
R(ω) × R(µ)

)
(1.11)

For latest results on topological indices see [26–35]. In this paper, we compute the exact results for all
the above reverse indices.

2. Structure of third type hex-derived networks

With the help of complete graphs of order 3 (K3), Chen et al. [36] assembled a hexagonal mesh. In
terms of chemistry, these K3 graphs are also called oxide graphs. The Figure 1 is obtained by joining
these K3 graphs. Two dimensional mesh graph HX(2) (see Figure 1 (a)), is obtained by joining six K3

graphs and three dimensional mesh graph HX(3) (see Figure 1 (b)) is obtained by putting K3 graphs
around all side of HX(2). Furthermore, repeating the same process by putting the t K3 graph around
each hexagon, we obtained the tth hexagonal mesh. To be noted that the one dimensional hexagonal
mesh graph does not exist.

Simonraj et al. [37] created the new network which is named as third type of hex-derived networks.
The graphically construction algorithm for third type of hexagonal hex-derived network HHDN3(t)
(see Figure 2), triangular hex-derived network T HDN3(t) (see Figure 3) and rectangular hex-derived
network RHDN3(t) (see Figure 4) are defined in [38,39] and they determined some topological indices
of these new derived networks. Some networks such as hexagonal, honeycomb, and grid networks, for
instance, endure closeness to atomic or molecular lattice configurations. Related research that applies
this theory and which could get additional advantages from the visions of the new research is found
in [40–46].
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Figure 1. Hexagonal meshes: (a) HX(2) and (b) HX(3).

Figure 2. Third type of hexagonal hex-derived network HHDN3(t) for t = 4.

Figure 3. Third type of triangular hex-derived network T HDN3(t) for t = 7.
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Figure 4. Third type of rectangular hex-derived network RHDN3(t) for t = 4.

3. Hexagonal hex-derived network HHDN3(t)

Let Γ1 = HHDN3(t) be the third type of hexagonal hex-derived network which is shown in Figure
2, where t ≥ 4. The graph Γ1 has 21t2 − 39t + 19 vertices from which 18t2 − 36t + 18 vertices of reverse
degree 15, 4 vertices of reverse degree 12, 6t − 12 vertices of reverse degree 9 and 3t2 − 9t + 9 vertices
of reverse degree 1. There are 63t2 − 123t + 60 number of edges of Γ1 is partitioned into nine classes
based on their reverse degrees which are given in Eq (3.1).

|ER(ω),R(µ)(Γ1)| =



9t2 − 33t + 30, for; R(ω) = 1,R(µ) = 1
12t − 24, for; R(ω) = 9,R(µ) = 1
6t − 18, for; R(ω) = 9,R(µ) = 9
6, for; R(ω) = 12,R(µ) = 1
12, for; R(ω) = 12,R(µ) = 9
36t2 − 108t + 84, for; R(ω) = 15,R(µ) = 1
36t − 72, for; R(ω) = 15,R(µ) = 9
24, for; R(ω) = 15,R(µ) = 12
18t2 − 36t + 18, for; R(ω) = 15,R(µ) = 15

(3.1)

In the next theorem, we will calculate the reverse Randic index, reverse Zagreb indices, reverse
forgotten index for Γ1 graph.

Theorem 3.1. Let Γ1 be the third type of hexagonal hex-derived network, then

• RRα(Γ1) = [9+36(15)α+18(225)α]t2 +[−33+12(9)α+6(81)α−108(15)α+36(135)α−36(225)α]t+
30 − 24(9)α − 18(81)α + 6(12)α + 12(108)α + 84(15)α − 72(135)α + 24(180)α + 18(225)α

• RM1(Γ1) = 1134 t2 − 1782 t + 630
• RM2(Γ1) = 4599 t2 − 4299 t − 366
• RHM(Γ1) = 25452 t2 − 36300 t + 11922
• RF(Γ1) = 16254 t2 − 27702 t + 12654

Proof. Let Γ1 be the third type of hexagonal hex-derived network which is shown in Figure 2. The
order of hexagonal hex derived network Γ1 is p = |Γ1| = 21t2−39t +19 and size is q = 63t2−123t +60.
The edge partitioned of Γ1 based on their reverse degrees are shown in Eq (3.1). Reverse Randic index
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can be calculated by using Eq (3.1). Thus, from Eq (1.1), it follows,
RRα(Γ1) = (1)α|E1,1(Γ1)| + (9)α|E9,1(Γ1)| + (81)α|E9,9(Γ1)| + (12)α|E12,1(Γ1)|
+ (108)α|E12,9(Γ1)| + (15)α|E15,1(Γ1)| + (135)α|E15,9(Γ1)| + (180)α|E15,12(Γ1)| + (225)α|E15,15(Γ1)|.
= (9t2 − 33t + 30) + (9)α(12t − 24) + (81)α(6t − 18) + (12)α(6) + (108)α(12) + (15)α(36t2 − 108t + 84) +

(135)α(36t − 72) + (180)α(24) + (225)α(18t2 − 36t + 18).
= [9 + 36(15)α + 18(225)α]t2 + [−33 + 12(9)α + 6(81)α − 108(15)α + 36(135)α − 36(225)α]t + 30 −
24(9)α − 18(81)α + 6(12)α + 12(108)α + 84(15)α − 72(135)α + 24(180)α + 18(225)α. Put α = 1 and after
some calculation, we get reverse second Zagreb index RM2(Γ1) as:

RM2(Γ1) = 4599 t2 − 4299 t − 366. (3.2)

Using the Eq (1.4), we can determine the reverse first Zagreb index RM1(Γ1) as:
RM1(Γ1) = 2 × |E1,1(Γ1)| + 10 × |E9,1(Γ1)| + 18 × |E9,9(Γ1)| + 13 × |E12,1(Γ1)| + 21 × |E12,9(Γ1)| + 16 ×
|E15,1(Γ1)| + 24 × |E15,9(Γ1)| + 27 × |E15,12(Γ1)| + 30 × |E15,15(Γ1)|.
By putting the values of from equation (3.1) and after simplification, we obtain:

RM1(Γ1) = 1134 t2 − 1782 t + 630. (3.3)

Using the Eq (1.6), we can determine the reverse hyper Zagreb index RHM(Γ1) as:
RHM(Γ1) = 4 × |E1,1(Γ1)| + 100 × |E9,1(Γ1)| + 324 × |E9,9(Γ1)| + 169 × |E12,1(Γ1)| + 441 × |E12,9(Γ1)| +
256 × |E15,1(Γ1)| + 576 × |E15,9(Γ1)| + 729 × |E15,12(Γ1)| + 900 × |E15,15(Γ1)|.
After simplification, we get

RHM(Γ1) = 25452 t2 − 36300 t + 11922

Using the Eq (1.7), we can determine the reverse forgotten index RF(Γ1)) as:
RF(Γ1)) = 2× |E1,1(Γ1)|+ 82× |E9,1(Γ1)|+ 162× |E9,9(Γ1)|+ 145× |E12,1(Γ1)|+ 225× |E12,9(Γ1)|+ 226×
|E15,1(Γ1)| + 306 × |E15,9(Γ1)| + 369 × |E15,12(Γ1)| + 450 × |E15,15(Γ1)|.
After simplification, we get

RF(Γ1) = 16254 t2 − 27702 t + 12654

�

In the next theorem, we will calculate the reverse atom bond connectivity index, reverse geometric
arithmetic index for Γ1 graph.

Theorem 3.2. Let Γ1 be the third type of hexagonal hex-derived network, then

• RABC(Γ1) =
(

12
√

210
5 + 12

√
7

5

)
t2+

(
8
√

2 + 8
3 −

36
√

210
5 + 4

√
330

5 − 24
√

7
5

)
t−8−16

√
2+
√

33+ 2
√

57
3 +

28
√

210
5 − 8

√
330

5 + 4
√

5 + 12
√

7
5

• RGA(Γ1) =
(
27 + 9

√
15

2

)
t2 +

(
−279

5 −
9
√

15
2

)
t + 78

5 + 792
√

3
91 − 15

√
15

2 + 32
√

5
3 .

Proof. The reverse atom bond connectivity (RABC(Γ1)), can be determined by using Eq (1.2) and Eq
(3.1), as follows:

RABC(Γ1) = 0× |E1,1(Γ1)|+
√

8
9 × |E9,1(Γ1)|+

√
16
81 × |E9,9(Γ1)|+

√
11
12 × |E12,1(Γ1)|+

√
19

108 × |E12,9(Γ1)|+
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14
15 × |E15,1(Γ1)| +

√
22

135 × |E15,9(Γ1)| +
√

25
180 × |E15,12(Γ1)| +

√
28
225 × |E15,15(Γ1)|.

After some simplification, we get
RABC(Γ1) =

(
12
√

210
5 + 12

√
7

5

)
t2 +

(
8
√

2 + 8
3 −

36
√

210
5 + 4

√
330

5 − 24
√

7
5

)
t − 8 − 16

√
2 +
√

33 + 2
√

57
3 +

28
√

210
5 − 8

√
330

5 + 4
√

5 + 12
√

7
5 .

The reverse geometric arithmetic (RGA(Γ1)), can be determined by using Eq (1.3) and Eq (3.1), as
follows:
RGA(Γ1) = |E1,1(Γ1)| + 2

√
9

10 × |E9,1(Γ1)| + 2
√

81
18 × |E9,9(Γ1)| + 2

√
12

13 × |E12,1(Γ1)| + 2
√

108
21 × |E12,9(Γ1)| +

2
√

15
16 × |E15,1(Γ1)| + 2

√
135

24 × |E15,9(Γ1)| + 2
√

180
27 × |E15,12(Γ1)| + 2

√
225

30 × |E15,15(Γ1)|.
After some simplification, we get
RGA(Γ1) =

(
27 + 9

√
15

2

)
t2 +

(
−279

5 −
9
√

15
2

)
t + 78

5 + 792
√

3
91 − 15

√
15

2 + 32
√

5
3 . �

In the next theorems, we will calculate the reverse redefined Zagreb indices for Γ1 graph.

Theorem 3.3. Let Γ1 be the third type of hexagonal hex-derived network, then

• RRZ1(Γ1) = 294 t2
5 − 2474 t

15 + 3629
30

• RRZ2(Γ1) = 693 t2
4 − 2949 t

20 −
93907
1820

• RRZ3(Γ1) = 130158 t2 − 142518 t + 24828

Proof. Reverse redefined Zagreb indices can be calculated by using Eq (3.1), the RRZ1(Γ1) by using
Eq (1.9) as follows:
RRZ1(Γ1) = 2 × |E1,1(Γ1)| + 10

9 × |E9,1(Γ1)| + 18
81 × |E9,9(Γ1)| + 13

12 × |E12,1(Γ1)| + 21
108 × |E12,9(Γ1)| + 16

15 ×

|E15,1(Γ1)| + 24
135 × |E15,9(Γ1)| + 27

108 × |E15,12(Γ1)| + 30
225 × |E15,15(Γ1)|.

After some simplification, we get

RRZ1(Γ1) =
294 t2

5
−

2474 t
15

+
3629

30
.

The RRZ2(Γ1) can be determined by using Eq (1.10) as follows:
RRZ2(Γ1) = 1

2 × |E1,1(Γ1)| + 9
10 × |E9,1(Γ1)| + 81

18 × |E9,9(Γ1)| + 12
13 × |E12,1(Γ1)| + 108

21 × |E12,9(Γ1)| + 15
16 ×

|E15,1(Γ1)| + 135
24 × |E15,9(Γ1)| + 108

27 × |E15,12(Γ1)| + 225
30 × |E15,15(Γ1)|.

After some simplification, we get

RRZ2(Γ1) =
693 t2

4
−

2949 t
20

−
93907
1820

.

The RRZ3(Γ1) can be calculated by using Eq (1.11) as follows:
RRZ3(Γ1) = 2 × |E1,1(Γ1)| + 90 × |E9,1(Γ1)| + 1458 × |E9,9(Γ1)| + 156 × |E12,1(Γ1)| + 2268 × |E12,9(Γ1)| +
240 × |E15,1(Γ1)| + 3240 × |E15,9(Γ1)| + 2916 × |E15,12(Γ1)| + 6750 × |E15,15(Γ1)|.
After some simplification, we get

RRZ3(Γ1) = 130158 t2 − 142518 t + 24828.

�

AIMS Mathematics Volume 6, Issue 10, 11330–11345.



11337

4. Triangular hex-derived network T HDN3(p)

Let Γ2 = T HDN3(t) be the third type of triangular hex-derived network which is shown in Figure 3,
where t ≥ 4. The graph Γ2 has 7t2−11t+6

2 vertices. There are 21t2−39t+18
2 number of edges of Γ2 is partitioned

into six classes based on their reverse degrees which are given in Eq (4.1). Now we calculated reverse
degree based indices such as: reverse Randic index RRα, reverse atom bond connectivity index RABC,
reverse geometric arithmetic index RGA, first reverse Zagreb index RM1, second reverse Zagreb index
RM2, reverse forgotten index RF, reverse hyper Zagreb index RHM and reverse redefined Zagreb
indices for Γ2 graph.

|ER(ω),R(µ)(Γ2)| =



3t2
2 −

21t
2 + 18, for; R(ω) = 1,R(µ) = 1

6t − 18, for; R(ω) = 9,R(µ) = 1
3t − 6, for; R(ω) = 9,R(µ) = 9
6t2 − 30t + 36, for; R(ω) = 15,R(µ) = 1
18t − 30, for; R(ω) = 15,R(µ) = 9
3t2 − 6t + 9, for; R(ω) = 15,R(µ) = 15

(4.1)

In the next theorem, we will calculate the reverse Randic index, reverse Zagreb indices, reverse
forgotten index for Γ2 graph.

Theorem 4.1. Let Γ2 be the third type of triangular hex-derived network, then

• RRα(Γ2) =
(

3
2 + 6 (15)α + 3 (225)α

)
t2 +

(
−21

2 + 6 (9)α + 3 (81)α − 30 (15)α+
18 (135)α − 6 (225)α) t + 18 − 18 (9)α − 6 (81)α + 36 (15)α − 30 (135)α + 9 (225)α.

• RM1(Γ2) = 189 t2 − 135 t − 126
• RM2(Γ2) = 1533 t2

2 + 1833 t
2 − 2115

• RHM(Γ2) = 4242 t2 − 1182 t − 3636
• RF(Γ2) = 2709 t2 − 3015 t + 594

Proof. Let Γ2 be the third type of triangular hex-derived network which is shown in Figure 3. The
order of triangular hex derived network Γ2 is p = |Γ2| =

7t2−11t+6
2 and size is q = 21t2−39t+18

2 . The edge
partitioned of Γ2 based on their reverse degrees are shown in Eq (4.1). Reverse Randic index can be
calculated by using Eq (4.1). Thus, from Eq (1.1), it follows,
RRα(Γ2) = (1)α|E1,1(Γ2)| + (9)α|E9,1(Γ2)| + (81)α|E9,9(Γ2)| + (15)α|E15,1(Γ2)| + (135)α|E15,9(Γ2)| +

(225)α|E15,15(Γ2)|.
After simplification, we get
RRα(Γ2) =

(
3
2 + 6 (15)α + 3 (225)α

)
t2 +

(
−21

2 + 6 (9)α + 3 (81)α − 30 (15)α+
18 (135)α − 6 (225)α) t + 18 − 18 (9)α − 6 (81)α + 36 (15)α − 30 (135)α + 9 (225)α.
Put α = 1 and after some calculation, we get reverse second Zagreb index RM2(Γ2) as:

RM2(Γ2) =
1533 t2

2
+

1833 t
2
− 2115 (4.2)

Using the Eq (1.4), we can determine the reverse first Zagreb index RM1(Γ2) as:
RM1(Γ2) = 2×|E1,1(Γ1)|+10×|E9,1(Γ1)|+18×|E9,9(Γ1)|+16×|E15,1(Γ1)|+24×|E15,9(Γ1)|+30×|E15,15(Γ1)|.
By putting the values of from Eq (4.1) and after simplification, we obtain:

RM1(Γ2) = 189 t2 − 135 t − 126 (4.3)

AIMS Mathematics Volume 6, Issue 10, 11330–11345.



11338

Using the Eq (1.6), we can determine the reverse hyper Zagreb index RHM(Γ2) as:
RHM(Γ2) = 4 × |E1,1(Γ2)| + 100 × |E9,1(Γ2)| + 324 × |E9,9(Γ2)| + 256 × |E15,1(Γ2)| + 576 × |E15,9(Γ2)| +
900 × |E15,15(Γ2)|.
After simplification, we get

RHM(Γ2) = 4242 t2 − 1182 t − 3636.

Using the Eq (1.7), we can determine the reverse forgotten index RF(Γ2)) as:
RF(Γ2)) = 2× |E1,1(Γ2)|+ 82× |E9,1(Γ2)|+ 162× |E9,9(Γ2)|+ 226× |E15,1(Γ2)|+ 306× |E15,9(Γ2)|+ 450×
|E15,15(Γ2)|.
After simplification, we get

RF(Γ2) = 2709 t2 − 3015 t + 594.

�

In the next theorem, we will calculate the reverse atom bond connectivity index, reverse geometric
arithmetic index for Γ2 graph.

Theorem 4.2. Let Γ2 be the third type of triangular hex-derived network, then

• RABC(Γ2) =
(

2
√

210
5 + 2

√
7

5

)
t2 +

(
4
√

2 + 4
3 − 2

√
210 + 2

√
330

5 − 4
√

7
5

)
t − 8

3 − 12
√

2 + 12
√

210
5 −

2
√

330
3 + 6

√
7

5

• RGA(Γ2) =
(

9
2 + 3

√
15

4

)
t2 +

(
−99

10 + 3
√

15
4

)
t + 51

5 − 3
√

15.

Proof. The reverse atom bond connectivity (RABC(Γ2)), can be determined by using Eq (1.2) and Eq
(4.1), as follows:

RABC(Γ2) = 0× |E1,1(Γ2)|+
√

8
9 × |E9,1(Γ2)|+

√
16
81 × |E9,9(Γ2)|+

√
14
15 × |E15,1(Γ2)|+

√
22

135 × |E15,9(Γ2)|+√
28
225 × |E15,15(Γ2)|.

After some simplification, we get
RABC(Γ2) =

(
2
√

210
5 + 2

√
7

5

)
t2+

(
4
√

2 + 4
3 − 2

√
210 + 2

√
330

5 − 4
√

7
5

)
t− 8

3−12
√

2+ 12
√

210
5 − 2

√
330

3 + 6
√

7
5 .

The reverse geometric arithmetic (RGA(Γ2)), can be determined by using Eq (1.3) and Eq (4.1), as
follows:
RGA(Γ2) = |E1,1(Γ2)| + 2

√
9

10 × |E9,1(Γ2)| + 2
√

81
18 × |E9,9(Γ2)| + 2

√
15

16 × |E15,1(Γ2)| + 2
√

135
24 × |E15,9(Γ2)| +

2
√

225
30 × |E15,15(Γ2)|.

After some simplification, we get

RGA(Γ2) =

9
2

+
3
√

15
4

 t2 +

−99
10

+
3
√

15
4

 t +
51
5
− 3
√

15.

�

In the next theorems, we will calculate the reverse redefined Zagreb indices for Γ2 graph.

Theorem 4.3. Let Γ2 be the third type of triangular hex-derived network, then

• RRZ1(Γ2) = 49 t2
5 −

649 t
15 + 734

15

• RRZ2(Γ2) = 231 t2
8 + 1671 t

40 −
1017

10
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• RRZ3(Γ2) = 21693 t2 + 15513 t − 38142.

Proof. Reverse redefined Zagreb indices can be calculated by using Eq (4.1), the RRZ1(Γ2) by using
Eq (1.9) as follows:
RRZ1(Γ2) = 2×|E1,1(Γ2)|+ 10

9 ×|E9,1(Γ2)|+ 18
81×|E9,9(Γ2)|+ 16

15×|E15,1(Γ2)|+ 24
135×|E15,9(Γ2)|+ 30

225×|E15,15(Γ2)|.
After some simplification, we get

RRZ1(Γ2) =
49 t2

5
−

649 t
15

+
734
15

.

The RRZ2(Γ2) can be determined by using Eq (1.10) as follows:
RRZ2(Γ2) = 1

2×|E1,1(Γ2)|+ 9
10×|E9,1(Γ2)|+ 81

18×|E9,9(Γ2)|+ 15
16×|E15,1(Γ2)|+ 135

24 ×|E15,9(Γ2)|+ 225
30 ×|E15,15(Γ2)|.

After some simplification, we get

RRZ2(Γ2) =
231 t2

8
+

1671 t
40

−
1017

10
.

The RRZ3(Γ2) can be calculated by using Eq (1.11) as follows:
RRZ3(Γ2) = 2 × |E1,1(Γ2)| + 90 × |E9,1(Γ2)| + 1458 × |E9,9(Γ2)| + 240 × |E15,1(Γ2)| + 3240 × |E15,9(Γ2)| +
6750 × |E15,15(Γ2)|.
After some simplification, we get

RRZ3(Γ2) = 21693 t2 + 15513 t − 38142.

�

5. Rectangular hex-derived network RHDN3(p)

In this section, we calculate certain reverse degree based topological indices of the third type of
rectangular hex-derived network, RHDN3(t,w) of dimension t = w. Now we calculated reverse degree
based indices such as: reverse Randic indexRRα, reverse atom bond connectivity indexRABC, reverse
geometric arithmetic index RGA, first reverse Zagreb index RM1, second reverse Zagreb index RM2,
reverse forgotten index RF, reverse augmented Zagreb index RAZI, reverse hyper Zagreb index RHM
and reverse redefined Zagreb indices for Γ3 graph.

|ER(ω),R(µ)(Γ3)| =



3t2 − 16t + 21, for; R(ω) = 1,R(µ) = 1
8t − 20, for; R(ω) = 9,R(µ) = 1
4t − 10, for; R(ω) = 9,R(µ) = 9
2, for; R(ω) = 12,R(µ) = 1
4, for; R(ω) = 12,R(µ) = 9
12t2 − 48t + 48, for; R(ω) = 15,R(µ) = 1
24t − 44, for; R(ω) = 15,R(µ) = 9
8, for; R(ω) = 15,R(µ) = 12
6t2 − 12t + 10, for; R(ω) = 15,R(µ) = 15

(5.1)

In the next theorem, we will calculate the reverse Randic index, reverse Zagreb indices, reverse
forgotten index for Γ3 graph.
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Theorem 5.1. Let Γ3 be the third type of rectangular hex-derived network, then

• RRα(Γ3) = (3 + 12 (15)α + 6 (225)α) t2+(−16 + 8 (9)α + 4 (81)α − 48 (15)α + 24 (135)α − 12 (225)α) t+
21 − 20 (9)α − 10 (81)α + 2 (12)α + 4 (108)α + 48 (15)α − 44 (135)α + 8 (180)α + 10 (225)α

• RM1(Γ3) = 378 t2 − 432 t
• RM2(Γ3) = 1533 t2 + 200 t − 2043
• RHM(Γ3) = 8484 t2 − 7232 t − 1278
• RF(Γ3) = 5418 t2 − 7632 t + 2808.

Proof. Let Γ3 be the third type of rectangular hex-derived network which is shown in Figure 4. The
order of hexagonal hex derived network Γ3 is p = |Γ1| = 7t2 − 12t + 6 and size is q = 21t2 − 40t + 19.
The edge partitioned of Γ3 based on their reverse degrees are shown in Eq (5.1). Reverse Randic index
can be calculated by using Eq (5.1). Thus, from Eq (1.1), it follows,
RRα(Γ3) = (1)α|E1,1(Γ3)| + (9)α|E9,1(Γ3)| + (81)α|E9,9(Γ3)| + (12)α|E12,1(Γ3)|
+ (108)α|E12,9(Γ3)| + (15)α|E15,1(Γ3)| + (135)α|E15,9(Γ3)| + (180)α|E15,12(Γ3)| + (225)α|E15,15(Γ3)|.
After Simplification, we get
RRα(Γ3) = (3 + 12 (15)α + 6 (225)α) t2+(−16 + 8 (9)α + 4 (81)α − 48 (15)α + 24 (135)α − 12 (225)α) t+
21 − 20 (9)α − 10 (81)α + 2 (12)α + 4 (108)α + 48 (15)α − 44 (135)α + 8 (180)α + 10 (225)α.
Put α = 1 and after some calculation, we get reverse second Zagreb index RM2(Γ3) as:

RM2(Γ3) = 1533 t2 + 200 t − 2043. (5.2)

Using the Eq (1.4), we can determine the reverse first Zagreb index RM1(Γ3) as:
RM1(Γ3) = 2 × |E1,1(Γ3)| + 10 × |E9,1(Γ3)| + 18 × |E9,9(Γ3)| + 13 × |E12,1(Γ3)| + 21 × |E12,9(Γ3)| + 16 ×
|E15,1(Γ3)| + 24 × |E15,9(Γ3)| + 27 × |E15,12(Γ3)| + 30 × |E15,15(Γ3)|.
By putting the values of from Eq (5.1) and after simplification, we obtain:

RM1(Γ3) = 378 t2 − 432 t. (5.3)

Using the Eq (1.6), we can determine the reverse hyper Zagreb index RHM(Γ3) as:
RHM(Γ3) = 4 × |E1,1(Γ3)| + 100 × |E9,1(Γ3)| + 324 × |E9,9(Γ3)| + 169 × |E12,1(Γ3)| + 441 × |E12,9(Γ3)| +
256 × |E15,1(Γ3)| + 576 × |E15,9(Γ3)| + 729 × |E15,12(Γ3)| + 900 × |E15,15(Γ3)|.
After simplification, we get

RHM(Γ3) = 8484 t2 − 7232 t − 1278.

Using the Eq (1.7), we can determine the reverse forgotten index RF(Γ3)) as:
RF(Γ3)) = 2× |E1,1(Γ3)|+ 82× |E9,1(Γ3)|+ 162× |E9,9(Γ3)|+ 145× |E12,1(Γ3)|+ 225× |E12,9(Γ3)|+ 226×
|E15,1(Γ3)| + 306 × |E15,9(Γ3)| + 369 × |E15,12(Γ3)| + 450 × |E15,15(Γ3)|.
After simplification, we get

RF(Γ3) = 5418 t2 − 7632 t + 2808.

�

In the next theorem, we will calculate the reverse atom bond connectivity index, reverse geometric
arithmetic index for Γ3 graph.

Theorem 5.2. Let Γ3 be the third type of rectangular hex-derived network, then
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• RABC(Γ3) =
(

4
√

210
5 + 4

√
7

5

)
t2 +

(
16
√

2
3 + 16

9 −
16
√

210
5 + 8

√
330

15 − 8
√

7
5

)
t − 40

9 −
40
√

2
3 +

√
33
3 + 2

√
57

9 +

16
√

210
5 − 44

√
330

45 + 4
√

5
3 + 4

√
7

3 .

• RGA(Γ3) =
(
9 + 3

√
15

2

)
t2 − 96 t

5 + 9 + 264
√

3
91 − 5

√
15 + 32

√
5

9 .

Proof. The reverse atom bond connectivity (RABC(Γ3)), can be determined by using Eq (1.2) and Eq
(5.1), as follows:

RABC(Γ3) = 0× |E1,1(Γ3)|+
√

8
9 × |E9,1(Γ3)|+

√
16
81 × |E9,9(Γ3)|+

√
11
12 × |E12,1(Γ3)|+

√
19

108 × |E12,9(Γ3)|+√
14
15 × |E15,1(Γ3)| +

√
22

135 × |E15,9(Γ3)| +
√

25
180 × |E15,12(Γ3)| +

√
28
225 × |E15,15(Γ3)|.

After some simplification, we get
RABC(Γ3) =

(
4
√

210
5 + 4

√
7

5

)
t2 +

(
16
√

2
3 + 16

9 −
16
√

210
5 + 8

√
330

15 − 8
√

7
5

)
t− 40

9 −
40
√

2
3 +

√
33
3 + 2

√
57

9 + 16
√

210
5 −

44
√

330
45 + 4

√
5

3 + 4
√

7
3 .

The reverse geometric arithmetic (RGA(Γ3)), can be determined by using Eq (1.3) and Eq (5.1), as
follows:
RGA(Γ3) = |E1,1(Γ3)| + 2

√
9

10 × |E9,1(Γ3)| + 2
√

81
18 × |E9,9(Γ3)| + 2

√
12

13 × |E12,1(Γ3)| + 2
√

108
21 × |E12,9(Γ3)| +

2
√

15
16 × |E15,1(Γ3)| + 2

√
135

24 × |E15,9(Γ3)| + 2
√

180
27 × |E15,12(Γ3)| + 2

√
225

30 × |E15,15(Γ3)|.
After some simplification, we get
RGA(Γ3) =

(
9 + 3

√
15

2

)
t2 − 96 t

5 + 9 + 264
√

3
91 − 5

√
15 + 32

√
5

9 .

�

In the next theorems, we will calculate the reverse redefined Zagreb indices for Γ3 graph.

Theorem 5.3. Let Γ3 be the third type of rectangular hex-derived network, then

• RRZ1(Γ3) = 98 t2
5 −

3184 t
45 + 5977

90

• RRZ2(Γ3) = 231 t2
4 + 86 t

5 −
28460

273
• RRZ3(Γ3) = 43386 t2 − 8240 t − 31614.

Proof. Reverse redefined Zagreb indices can be calculated by using Eq (5.1), the RRZ1(Γ3) by using
Eq (1.9) as follows:
RRZ1(Γ3) = 2 × |E1,1(Γ3)| + 10

9 × |E9,1(Γ3)| + 18
81 × |E9,9(Γ3)| + 13

12 × |E12,1(Γ3)| + 21
108 × |E12,9(Γ3)| + 16

15 ×

|E15,1(Γ3)| + 24
135 × |E15,9(Γ3)| + 27

108 × |E15,12(Γ3)| + 30
225 × |E15,15(Γ3)|.

After some simplification, we get

RRZ1(Γ3) =
98 t2

5
−

3184 t
45

+
5977
90

.

The RRZ2(Γ1) can be determined by using equation (1.10) as follows:
RRZ2(Γ3) = 1

2 × |E1,1(Γ3)| + 9
10 × |E9,1(Γ3)| + 81

18 × |E9,9(Γ3)| + 12
13 × |E12,1(Γ3)| + 108

21 × |E12,9(Γ3)| + 15
16 ×

|E15,1(Γ3)| + 135
24 × |E15,9(Γ3)| + 108

27 × |E15,12(Γ3)| + 225
30 × |E15,15(Γ3)|.

After some simplification, we get

RRZ2(Γ3) =
231 t2

4
+

86 t
5
−

28460
273

.

The RRZ3(Γ3) can be calculated by using Eq (1.11) as follows:
RRZ3(Γ3) = 2 × |E1,1(Γ3)| + 90 × |E9,1(Γ3)| + 1458 × |E9,9(Γ3)| + 156 × |E12,1(Γ3)| + 2268 × |E12,9(Γ3)| +
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240 × |E15,1(Γ3)| + 3240 × |E15,9(Γ3)| + 2916 × |E15,12(Γ3)| + 6750 × |E15,15(Γ3)|.
After some simplification, we get

RRZ3(Γ3) = 43386 t2 − 8240 t − 31614.

�

6. Conclusions

In this article, we have calculated the exact solutions of reverse degree-based topological descriptors
for hex-derived networks of third type. Hex-derived network has a variety of useful applications in
pharmacy, electronics, and networking. We obtained the reverse degree-based indices such as reverse
Randic index, reverse atom bond connectivity index, reverse geometric arithmetic index, reverse
Zagreb indices, reverse redefined Zagreb indices for hex derived networks. These results may be
helpful for people working in computer science and chemistry who encounter hex-derived networks.
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