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1. Introduction

Simon and Volkmann considered in [1] the following two equations which are connected with the
absolute values of some additive function γ : G → R, that is,

η(x) + η(y) = max{ η(x − y), η(x + y) }, x, y ∈ G, (1.1)

|η(x) − η(y)| = min{ η(x − y), η(x + y) }, x, y ∈ G, (1.2)

for a real function η : G → R defined on an abelian group (G,+) and both functional equations are
satisfied by η(x) = |γ(x)| where γ(x + y) = γ(x) + γ(y). Moreover, solution of the equation

η(x)η(y) = max{ η(x + y), η(x − y) }, (1.3)

with supposition about G to be an abelian group was presented in the following theorem as:

Theorem 1. [1, Theorem 2] Let η : G → R, where every element of an abelian group G is divisible
by 2 and 3. Then, η fulfills Eq (1.3) if and only if η(x) = 0 or η(x) = e|γ(x)|, x ∈ G, where γ : G → R is
an additive function.

The solutions of Eqs (1.1) and (1.2) presented by Jarczyk et al. [2] and are demonstrated as:

Theorem 2. Let η : G → R, where η is defined on an abelian group G. Then η fulfills Eq (1.1) if and
only if functional Eq (1.2) holds and also satisfies η(2x) = 2η(x) for x ∈ G.

Furthermore, the most comprehensive study of the equation

η(x) + η(y) = max{ η(xy−1), η(xy) } x, y ∈ G, (1.4)

on groups has been presented in [3, 4]. Volkmann has given the solution of Eq (1.4) with supposition
that η fulfills the renowned condition called Kannappan condition [5], that is defined as, η(xgy) =

η(xyg) for x, y, g ∈ G. Following that, Toborg [3] gave the characterization of such mappings exhibited
in Eq (1.4) without taking into account the Kannappan condition and abelian group G. Their key
findings are as follows:

Theorem 3 (For the special case, see [3, 4] for the general case). Let η : G → R, where η is acting on
any group G. Then, η fulfills Eq (1.4) if and only if η(x) = |γ(x)| for every x ∈ G, where γ : G → R is
an additive function.

We suggest the readers consult the articles [2, 6] and related cited references to get some inclusive
results and solutions about the functional Eq (1.4). In addition, some stability results of Eqs (1.2) and
(1.4) can be found in [7] and [6] respectively.

Recently, in [8], Eq (1.3) presented in a generalized form as

max{ η(xy−1), η(xy) } = η(x)η(y), x, y ∈ G, (1.5)

with the exception of additional suppositions that every element of the abelian group is divisible by 2
and 3. Their main result is demonstrated as:
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Theorem 4 (see [8]). Let η : G → R, where G is any group. Then a mapping η : G → R fulfills the Eq
(1.5) if and only if η ≡ 0 or there exists a normal subgroup Nη such that

Nη = { x ∈ G | η(x) = 1 }

and

xy ∈ Nη or xy−1 ∈ Nη, x, y ∈ G and x, y < Nη;

or η(x) = e|γ(x)|, x ∈ G, where γ : G → R is an additive function.

The main objective of this research article is to determine the solution to the generalized minimum
functional equation

χ(x)χ(y) = min{ χ(xy−1), χ(xy) }, x, y ∈ G. (1.6)

With the exception of additional suppositions, we derive some results concerning Eq (1.6) that are
appropriate for arbitrary group G rather than abelian group (G,+).

Redheffer and Volkmann [9] determined the solution of the Pexider functional equation

max{ h(x + y), h(x − y) } = f (x) + g(x), x, y ∈ G, (1.7)

for three unknown functions h, f and g acting on abelian group (G,+), which is a generalization of Eq
(1.1).

We will also examine the general solutions of the generalized Pexider-type functional equation

max{ η(xy), η(xy−1) } = χ(x)η(y) + ψ(x), x, y ∈ G, (1.8)

where real functions η, χ, and ψ are defined on any group G. This Pexider functional Eq (1.8) is a
common generalization of two previous Eqs (1.4) and (1.5). Readers can see renowned papers [10,11]
and associated references cited therein to obtain comprehensive results and discussions concerning the
Pexider version of some functional equations.

2. Analysis of Eq (1.6)

In this research paper, our group G will in general (G, ·) not be abelian (G,+), therefore, the group
operation will be described multiplicatively as xy for x, y ∈ G. Symbol e will be acknowledged as the
neutral element.

Definition 1. Assume that G is any group. A mapping η : G → R fulfills the Kannappan condition [5]
if

η(xzg) = η(xgz) for every g, x, z ∈ G.

Remark 1. For every abelian group G, a mapping η : G → R fulfills the Kannappan condition but
converse may not be true.

Lemma 1. Suppose that η : G → R, where G is an arbitrary group. Let η is a strictly positive solution
of the functional Eq (1.6), then η(x) = e−|β(x)|, x ∈ G, where β : G → R is an additive function.
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Proof. By given assumption, η(x) > 0 for every x ∈ G. Since η satisfies Eq (1.6), as a result, 1
η

also
satisfies the functional Eq (1.3), then by well-known theorem from [6], we can get that η(x) = e−|β(x)|,
x ∈ G, where β : G → R is an additive function. �

First, we are going to prove the following important lemma which will be utilized several times
during computations especially to prove Theorem 5.

Lemma 2. Let η : G → R, where G is an arbitrary group and η is a non-zero solution of Eq (1.6), then
the following results hold:

(1) η(e) = 1;
(2) η(x−1) = η(x);
(3) η(x−1yx) = η(y);
(4) η is central.

Proof. (1). Putting y = e in (1.6), we can obtain that η(x)η(e) = η(x). By given condition, η is non-zero,
therefore, we obtain η(e) = 1.

(2). Using x = e in functional Eq (1.6), we can deduce

η(e)η(y−1) = min{ η(e.y−1), η(e.y) }
η(y−1) = min{ η(y−1), η(y) }, (2.1)

replacing y−1 with y in Eq (2.1) provides that

η(y) = min{ η(y), η(y−1) }. (2.2)

Eqs (2.1) and (2.2) give that η(y−1) = η(y). Since y is arbitrary, therefore, we have η(x−1) = η(x) for
any x ∈ G.

(3). From functional Eq (1.6), the proof of property (3) can be obtained from the following simple
calculation:

η(x)η(x−1yx) = min{ η(x(x−1yx)), η(x(x−1yx)−1) }
= min{ η(yx), η(xx−1y−1x) }
= min{ η((yx)−1), η(y−1x) }
= min{ η(x−1y−1), η((y−1x)−1) } (by Lemma 2(2))
= min{ η(x−1y−1), η(x−1y) }

η(x)η(x−1yx) = η(x−1)η(y)
η(x)η(x−1yx) = η(x)η(y)

η(x−1yx) = η(y).

(4). By Lemma 2(3) and replacing y with xy, we can see that η(x−1(xy)x) = η(xy), which gives
η(xy) = η(yx), therefore, η is central. �

In addition, we concentrate on the main theorem of Section 2 to describe the solutions η of Eq (1.6).
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Theorem 5. Let η : G → R, where G is an arbitrary group. A mapping η is a solution of Eq (1.6) if
and only if η ≡ 0 or there exists a normal subgroup Hη of G defined as

Hη = { x ∈ G | η(x) = 1 }

and fulfills the condition that

xy−1 ∈ Hη ∨ xy ∈ Hη for every x, y ∈ G \ Hη; (2.3)

or there exists a normal subgroup Hη of G fulfills the condition that

xy−1 ∈ Hη ∧ xy ∈ Hη for every x, y ∈ G \ Hη; (2.4)

or η(x) = e−|β(x)|, x ∈ G, where β : G → R is some additive function.

Proof. The ‘if’ part obviously demonstrates that every mapping η determined in the statement of the
theorem is a solution of Eq (1.6). Conversely, suppose that a function η : G → R is a solution of (1.6),
then putting x = y = e in Eq (1.6), we get η(e) = η(e)η(e), which gives that either η(e) = 1 or η(e) = 0.
First, let η(e) = 0, and then put y = e in (1.6) to get η(x) = 0 for every x ∈ G. Suppose that η(e) = 1,
then there are the following different cases.

Suppose that there exists z◦ ∈ G such that η(z◦) ≤ 0. Putting x = y in (1.6), we have
min{ η(x2), η(e) } = η(x)2, which gives that η(x)2 ≤ 1, so −1 ≤ η(x) ≤ 1 but η(z◦) ≤ 0, therefore,
−1 ≤ η(z◦) ≤ 0. Let −1 < η(z◦) < 0, then we can compute

min{ η(z2
◦), η(e) } = η(z◦)2

min{ η(z2
◦), 1 } = η(z◦)2 < 1,

which implies that η(z2
◦) = η(z◦)2. Moreover,

η(z◦) ≥ min{ η(z3
◦), η(z◦) }

= η(z2
◦)η(z◦)

= η(z◦)2η(z◦)
= η(z◦)3

η(z◦) > η(z◦),

which gives a contradiction, consequently, either η(z◦) = 0 or η(z◦) = −1. Additionally, it is not
possible that η(x) = 0 and η(y) = −1 for some x, y ∈ G. Since η(e) = 1, therefore, either η(x) ∈ { 0, 1 }
or η(x) ∈ { −1, 1 }. Moreover, define Hη = { x ∈ G | η(x) = 1 }.

It is obvious that e ∈ Hη for the reason that η(e) = 1. Suppose that h ∈ Hη; then from Lemma 2(2)
we obtain η(h−1) = η(h) = 1; therefore, h−1 ∈ Hη. Let h1, h2 ∈ Hη; then, η(h1) = η(h2) = 1, and we can
deduce from Eq (1.6) that

η(h1h2) =η(h1h2)η(h2)
= min{ η(h1h2

2), η(h1) }
≤η(h1)
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η(h1h2) ≤η(h1)η(h2). (2.5)

η(h1)η(h2) = min{ η(h1h2), η(h1h−1
2 ) }

≤η(h1h2)
η(h1)η(h2) ≤η(h1h2). (2.6)

By (2.5) and (2.6) we can get that η(h1h2) = η(h1)η(h2) = 1, therefore, we have h1h2 ∈ Hη.
Consequently, Hη is a subgroup of G. Assume that h ∈ Hη; then Lemma 2(3) yields that
η(x−1hx) = η(h) for any x ∈ G and h ∈ Hη; accordingly, Hη is a normal subgroup of G.

First, suppose that η(x) ∈ { 0, 1 } and x, y ∈ G \ Hη; therefore, η(x) = η(y) = 0, then, by functional
Eq (1.6), we have min{ η(xy), η(xy−1) } = η(x)η(y) = 0. In a consequence, we can determine that
xy−1 ∈ Hη ∨ xy ∈ Hη for any x, y ∈ G \ Hη.

In addition, considering the second case, let η(x) ∈ { −1, 1 } and let x, y ∈ G \ Hη; thus, η(x) , 1 and
η(y) , 1; then η(x) = η(y) = −1. Consequently, Eq (1.6) gives that min{ η(xy), η(xy−1) } = η(x)η(y) = 1.
In either case, we can conclude that η(xy) = 1 and η(xy−1) = 1, which infers that xy−1 ∈ Hη ∧ xy ∈ Hη

for all x, y ∈ G \ Hη.
Furthermore, let η(x) > 0 for all x ∈ G, then from Lemma 1, we can conclude that η(x) = e−|β(x)|,

x ∈ G. �

Corollary 1. Let η : G → R, where G is an arbitrary group. Assume that η is a non-zero solution of
the functional Eq (1.6); then the commutator subgroup G′ is a normal subgroup of Hη.

Proof. Since η is a non-zero, then by the main theorem, we can derive the following cases:
Case 1. According to the main theorem, there exists a normal subgroup Hη defined as η(x) = 1 for

every x ∈ Hη and also satisfies the condition (2.4); consequently, by Lemma 2, we can compute that

(xy)−1 ∈ Hη ∧ (xy−1)−1 ∈ Hη

y−1x−1 ∈ Hη ∧ yx−1 ∈ Hη

x−1y−1 ∈ Hη ∧ x−1y ∈ Hη

xyx−1y−1 ∈ Hη ∧ xy−1x−1y ∈ Hη

[x, y] ∈ Hη ∧ (xy−1x−1y)−1 ∈ Hη

[x, y] ∈ Hη ∧ y−1xyx−1 ∈ Hη

[x, y] ∈ Hη ∧ xyx−1y−1 ∈ Hη,

which indicates that η([x, y]) = 1.
Case 2. There exists a normal subgroup Hη which satisfies the condition (2.3), that is xy−1 ∈

Hη ∨ xy ∈ Hη for all x, y ∈ G \ Hη; accordingly, applying Lemma 2 and Case 1, we can deduce that
η([x, y]) = 1.

Case 3. Assume that η(x) > 0 for any x ∈ G; consequently by Theorem 5, we have η(x) = e−|β(x)| for
any x ∈ G, where β : G → R is an additive function, thus, η([x, y]) = 1 for the reason that β([x, y]) = 0
for any x, y ∈ G.

Hence, in either case, the required proof is completed. �

Corollary 2. Any solution η : G → R of Eq (1.6) on any group G fulfills the Kannappan condition.
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Proof. The proof relies on the following cases:
Case 1. Assume that η ≡ 0 on group G, then it is obvious that η fulfills the Kannappan condition.
Case 2. Let η(x) ≤ 0 for all x ∈ G. Then from Theorem 5 and Corollary 1, there exists normal

subgroup Hη such that G′ ⊆ Hη, consequently, η(xyg) = 1 if and only if xyg ∈ Hη if and only if
[y−1, x−1]xyg = xgy ∈ Hη if and only if η(xgy) = 1. It is sufficient to prove the Kannappan condition
because η only takes the values 1, 0, and −1.

Case 3. Suppose that η(x) > 0, x ∈ G, then η(x) = e−|β(x)|, therefore η(xyg) = η(xgy) for any
x, g, y ∈ G because β is an additive function. �

Corollary 3. If η is a strictly positive solution of (1.6), then max{ η(xy−1), η(xy) } ∈ (0, 1].

Theorem 6. Let η : G → R and η is a non-zero solution of (1.6), then:
(1) Assume that g ∈ G and η(gx−1) = η(gx) for some elements x ∈ G with the restriction that

η(x2) , 1. Then η(g2) = 1.
(2) Suppose that Gη = { g ∈ G | η(g2) = 1 }, then Gη is a normal subgroup of G.
(3) If η is strictly positive, then Gη = Hη.

Proof. Assume that x, y ∈ G, then by Eq (1.6) and Corollary 2, we have

η(gx)η(gx−1) = min{ η(gxgx−1), η(gx(gx−1)−1) }
= min{ η(gxgx−1), η(gxxg−1) }
= min{ η(g2), η(gx2g−1) }

η(gx)η(gx−1) = min{ η(g2), η(x2) }. (2.7)

(1). By given condition η(gx) = η(gx−1) for some x ∈ G and by Eq (2.7), we can see that either
η(x2) = 1 or η(g2) = 1, therefore, given condition η(x2) , 1 implies that η(g2) = 1.

(2). Since η(e) = 1, therefore e ∈ Gη. Let g ∈ Gη; then η(g2) = 1. Moreover, η(x−1) = η(x) gives
that η(g−2) = η(g2) = 1, therefore g−1 ∈ Gη. Let g, y ∈ Gη; then, η(y2) = 1 and η(g2) = 1, therefore, a
simple calculation yields

η(y2g2) =η(y2g2)η(g2)
= min{ η(y2g4), η(y2) }
≤η(y2)

η(y2g2) ≤η(y2)η(g2). (2.8)

η(y2)η(g2) = min{ η(y2g2), η(y2g−2) }
≤η(y2g2)

η(y2)η(g2) ≤η(y2g2), (2.9)

So, inequalities (2.8) and (2.9) implies that η(y2g2) = η(y2)η(g2) = 1, which yields that yg ∈ Gη,
consequently, Gη is a subgroup of G. Additionally, Lemma 2 provides that η(xg) = η(gx) for every
x ∈ G and g ∈ Gη. As a result, Gη is a normal subgroup of a group G.

(3). As η(x) > 0 for every x ∈ G, then the proof can be seen easily from Lemma 1 and Theorem 6
(2). �
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Definition 2. Suppose that group G is abelian. Then a mapping η : G → R is called a discrete norm
if η(x) > γ, where γ > 0 and x ∈ G \ {e}. Then (G, η, e) is said to be a discretely normed abelian
group [12].

Theorem 7. Assume that (G, η, e) is a discretely normed abelian group. A mapping η : G → R is a
solution of (1.6) if and only if η(x) = e−|β(x)|, x ∈ G \ {e}, where β : G → R is some additive function.

Proof. Since (G, η, e) is a discretely normed, then there exists a mapping η : G → R such that η(x) > γ,
where γ > 0 and x ∈ G \ {e}. Setting η(x) = log η(x), and using Lemma 1, we get

min{ η(xy−1), η(xy) } = η(x)η(y)

if and only if η(x) = e−|β(x)|, x ∈ G \ {e}, where β : G → R is some additive function. �

Corollary 4. For free abelian group G, a mapping η is a solution of Eq (1.6) if and only if η(x) = e−|β(x)|,
x ∈ G \ {e}, where β : G → R is some additive function.

3. Generalized Pexider-type functional Eq (1.8)

Theorem 8. Let η : G → R fulfills the Kannappan condition, where G is an arbitrary group. Then
η, χ, ψ are solutions of the functional Eq (1.8) if and only if

η(x) = λ1, x ∈ G, λ1 ∈ R,

ψ is an arbitrary f unction,

χ(x) = 1 − λ−1
1 ψ(x);

or 
η(x) = ξ(x) + λ1, x ∈ G, λ1 ∈ R,

χ(x) = 1,
ψ(x) = ξ(x),

where ξ : G → R is a solution of Eq (1.4);
or 

η(x) = λ2ξ(x) + λ1, x ∈ G, λ1, λ2 ∈ R, λ2 > 0,
χ(x) = ξ(x),
ψ(x) = λ1(1 − ξ(x)),

where ξ : G → R is a solution of Eq (1.5);
or 

η(x) = λ2ξ(x) + λ1, x ∈ G, λ1, λ2 ∈ R, λ2 < 0,
χ(x) = ξ(x),
ψ(x) = λ1(1 − ξ(x)),

where ξ : G → R is a solution of Eq (1.6).
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Proof. The ‘if’ part of the theorem can easily be seen that every function η, χ, and ξ presented in the
statement is a solution of Eq (1.8). Conversely, suppose that η, χ, ψ are solutions of Eq (1.8), then we
have the following cases:

(1). η is constant.
Assuming that η(x) = λ1 for x ∈ G and λ1 ∈ R, we may deduce from Eq (1.8) that

χ(x) = 1− λ−1
1 ψ(x) when ψ is an arbitrary function, which is required result described in the statement.

(2). η is not constant.
Setting y = e in Eq (1.8) gives that

max{ η(x), η(x) } = χ(x)η(e) + ψ(x)
η(x) = χ(x)η(e) + ψ(x)
ψ(x) = η(x) − χ(x)η(e). (3.1)

Using Eq (3.1) in (1.8), we conclude that

max{ η(xy), η(xy−1) } = χ(x)η(y) + η(x) − χ(x)η(e). (3.2)

Setting x = e, we can obtain

max{ η(y), η(y−1) } = χ(e)η(y) + η(e) − χ(e)η(e). (3.3)

We are going to show that χ(e) = 1, but on the contrary, assume that χ(e) , 1. Setting

H := {y ∈ G : η(y−1) ≤ η(y)}, H′ := G \ H.

If y ∈ H′ then y−1 ∈ H. Also, if y ∈ H, then from Eq (3.3), we have

η(y) = χ(e)η(y) + η(e) − χ(e)η(e)
(χ(e) − 1)(η(e) − η(y)) = 0,

which implies that η(y) = η(e) for all y ∈ H. Moreover, H′ , ∅ because η is not constant. Assume that
y′ ∈ H′ then η(y′) < η(y′

−1
) = η(e), which implies that

η(y′) − η(e) < 0. (3.4)

Writing y′ instead of y in Eq (3.3) and using (3.4) we can get that

η(e) = η(y′
−1

) = χ(e)η(y′) + η(e) − χ(e)η(e),

which implies that (η(y′) − η(e))χ(e) = 0, so χ(e) = 0. Setting x = y′ and y = y′
−1

in (3.2) we have

η(e) ≤ max{ η(e), η(y′2) } = χ(y′)η(y′
−1

) + η(y′) − χ(y′)η(e)
= χ(y′)η(e) + η(y′) − χ(y′)η(e)

η(e) ≤ η(y′) < η(e),

which is a contradiction, thus, we have χ(e) = 1. Moreover, from Eq (3.3), we can see that

max{ η(y), η(y−1) } = η(y), (3.5)
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writting y−1 instead of y in (3.5) we have

max{ η(y−1), η(y) } = η(y−1), (3.6)

from (3.5) and (3.6) we can get that η(y−1) = η(y).
Since η(x−1) = η(x) for every x ∈ G, then from Eq (3.2) and Kannappan condition we have

χ(x)η(y) + η(x) − χ(x)η(e) = max{ η(xy), η(xy−1) }
= max{ η(y−1x−1), η(yx−1) }
= max{ η(ey−1x−1), η(eyx−1) }
= max{ η(x−1y−1), η(x−1y) }

χ(x)η(y) + η(x) − χ(x)η(e) = χ(x−1)η(y) + η(x−1) − χ(x−1)η(e)
(η(y) − η(e))(χ(x) − χ(x−1)) = 0,

which infers that χ(x−1) − χ(x) = 0 because η is not constant. Moreover, when η is not constant
then η(x−1) = η(x) and χ(x−1) = χ(x) for every x ∈ G, consequently, by Eq (3.1) we can get that
ψ(x−1) = ψ(x). Also, by Eq (3.2) and Kannappan condition we can see that

χ(x)η(y) + η(x) − χ(x)η(e) = max{ η(xy), η(xy−1) }
= max{ η(exy), η(yx−1) }
= max{ η(yx), η(yx−1) }

χ(x)η(y) + η(x) − χ(x)η(e) = χ(y)η(x) + η(y) − χ(y)η(e)
χ(x)(η(y) − η(e)) + η(x) = χ(y)(η(x) − η(e)) + η(y)

χ(x)(η(y) − η(e)) − (η(y) − η(e)) = χ(y)(η(x) − η(e)) − (η(y) − η(e))
(η(y) − η(e))(χ(x) − 1) = (η(x) − η(e))(χ(y) − 1).

Suppose that η(y′) , η(e) for y′ ∈ G, then we can obtain that

χ(x) − 1 =
χ(y′) − 1
η(y′) − η(e)

(η(x) − η(e)).

Moreover, assume that β := χ(y′)−1
η(y′)−η(e) , then χ(x) − 1 = β(η(x) − η(e)), so we can write as χ1(x) = βη1(x),

where

χ1(x) := χ(x) − 1, x ∈ G, (3.7)

η1(x) := η(x) − η(e), x ∈ G. (3.8)

Also η1(e) = 0. By functional Eq (3.2) and definition of η1, we have

max{ η1(xy), η1(xy−1) } = max{ η(xy), η(xy−1) } − η(e)
= χ(x)η(y) + η(x) − χ(x)η(e) − η(e)
= χ(x)(η(y) − η(e)) + η(x) − η(e)
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= χ(x)η1(y) + η1(x)
= (βη1(x) + 1)η1(y) + η1(x)

max{ η1(xy), η1(xy−1) } = βη1(x)η1(y) + η1(x) + η1(y). (3.9)

According to the different values of β, we can discuss the following three different cases.
Case 1. β = 0.
By Eq (3.7), we see that χ(x) = 1, x ∈ G. Furthermore, by functional Eq (3.9), we have

max{ η1(xy), η1(xy−1) } = η1(x) + η1(y),

for all x, y ∈ G and also η1 satisfies the functional Eq (1.4), then from well-known theorem of Toborg
[3], there exists some additive function g : G → R such that η1(x) = |g(x)| for all x ∈ G, then from Eqs
(3.1), (3.7) and (3.8), we can deduce 

η(x) = λ1 + ξ(x),
χ(x) = 1,
ψ(x) = ξ(x),

where λ1 = η(e) and ξ : G → R is a solution of Eq (1.4) such that ξ(x) = |g(x)|.
Case 2. β > 0.
Let η2 := βη1(x) for all x ∈ G, then multiplying functional Eq (3.9) by β, we conclude that

max{ βη1(xy), βη1(xy−1) } = (βη1(x))(βη1(y)) + βη1(x) + βη1(y)
max{ η2(xy), η2(xy−1) } = η2(x)η2(y) + η2(x) + η2(y)

= (η2(x) + 1)(η2(y) + 1) − 1
max{ η2(xy), η2(xy−1) } + 1 = (η2(x) + 1)(η2(y) + 1),

then by setting ξ(x) := η2(x) + 1 for x ∈ G, we get

max{ ξ(xy), ξ(xy−1) } = ξ(x)ξ(y), x, y ∈ G.

It is clear that ξ : G → R satisfies Eq (1.5), then from Eq (3.8) we get

ξ(x) = η2(x) + 1 = βη1(x) + 1 = β(η(x) − η(e)) + 1,

which gives that η(x) = λ2ξ(x) + λ1 where λ2 = β−1, λ1 = η(e) − β−1.
Also, from Eqs (3.1), (3.7) and (3.8), we can see that

η(x) = λ2ξ(x) + λ1, x ∈ G, λ2 > 0,
χ(x) = ξ(x),
ψ(x) = λ1(1 − ξ(x)),

where ξ : G → R is a solution of (1.5).
Case 3. β < 0.
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Assume that η2 := −βη1(x) for every x ∈ G, then multiplying functional Eq (3.9) by −β, we have

max{ −βη1(xy),−βη1(xy−1) } = (−βη1(x))(βη1(y)) − βη1(x) − βη1(y)
max{ η2(xy), η2(xy−1) } = −η2(x)η2(y) + η2(x) + η2(y)

= −(η2(x) − 1)(η2(y) − 1) + 1
max{ η2(xy), η2(xy−1) } − 1 = −(η2(x) − 1)(η2(y) − 1),

for any x, y ∈ G, then by setting ξ1(x) := η2(x) − 1 for x ∈ G, we have

max{ ξ1(xy), ξ1(xy−1) } = −ξ1(x)ξ1(y), x, y ∈ G,

then by setting ξ(x) := −ξ1(x), x ∈ G, we can see that ξ : G → R satisfies the Eq (1.6), then from Eqs
(3.1), (3.7) and (3.8), we have 

η(x) = λ2ξ(x) + λ1, x ∈ G, λ2 < 0,
χ(x) = ξ(x),
ψ(x) = λ1(1 − ξ(x)),

which completes the proof. �
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12. J. Steprāns, A characterization of free abelian groups, Proc. Am. Math. Soc., 93 (1985), 347–349.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 10, 11305–11317.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Analysis of Eq (??)
	Generalized Pexider-type functional Eq (??)

