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1. Introduction

Periodic behavior is essential to our life. The mathematical modeling of real-life problems mainly
arises in functional equations, such as partial differential equations, ordinary differential equations,
and integro-differential equations. It is a matter of the fact that periodic solutions can be created or
destroyed only at infinity, or their stability can change. Such qualitative changes in the dynamics are
called bifurcation. It is also possible for pairs of limit cycles (one stable and one unstable) to coalesce
and vanish in a codimension two generalized Hopf bifurcation (see Guckenheimer and Holmes [1]).
Many of these functions have the ability to adopt bifurcation, with which we can check the stability. If
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Figure 1. Passively stable limit cycle.

all the periodic solutions come out of the origin, then these are unstable, otherwise stable (isolated
closed trajectory in periodic behavior). Stable limit cycles are an example of attractors. By the Jordan
curve theorem, every closed trajectory divides the plane into two regions, an interior region bounded
by the curve and an exterior containing all of the nearby and far away exterior points, so that every
continuous path connecting a point of one region to a point of the other intersects with that loop
somewhere. In the present article, we are mainly concerned with the nonlinear system because
trajectories do not simply need to approach or leave a single point. They might even approach a large
set, like a circle or another closed curve. It is a fact that limit cycles are a nonlinear phenomenon;
because the linear system x

′

= Ax may have closed orbits, they would not be isolated, such that if they
have a periodic solution x(t), then all constant multiples should be, see also [2].

In engineering, power engineering, we can exploit oscillators for timing and sequencing. We can
use them in locomotion control in robots. Van der Pol oscillator comes up in electrical circuits; it is
an example of relaxation oscillation. Its equation is x

′′

− µ
(
1 − x2

)
x
′

+ x = 0, where µ is a positive
constant. If µ = 1, then trajectories fastly settle on a closed curve, while for µ = 0, all trajectories
become a circle. In analyzing nonlinear systems in the xy-plane, we have so far concentrated on
analyzing how the system’s trajectories look in the neighborhood of each critical point.

We also observed periodic behavior in our body like; heartbeats, breathing, chewing, locomotion,
diverse rhythms inside the brain, etc. More generally in walking, which is also a periodic, a passive
stable limit cycle exists. as shown in Figure 1, see [3] for more details.

Consider the system of the form:
·

t = λt + s + aw (t, s)
·
s = −t + λs + bw (t, s) ,

(1.1)

where aw and bw are homogenous polynomials having degree w. The polar form of (1.1) is written as
following:

·
r = λr + x (θ) rw

·

θ = −1 + y (θ) rw−1.
(1.2)

Where x and y are polynomials in cos θ and sin θ with degree (w + 1) . In Lloyd [4], it is presented that
if:

ζ = rw−1
(
1 − rw−1y (θ)

)−1
. (1.3)
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Then the Eq (1.3) can be transformed to non-autonomous first order differential equation as:

dζ
dθ

= κ (θ) ζ3 + ρ (θ) ζ2 − λ (w − 1) ζ, (1.4)

where
κ(θ) = − (w − 1) y (θ) (x (θ) + λy (θ)),

and
ρ (θ) = (w − 1) x (θ) + 2λ (w − 1) y (θ) − y′ (θ) .

Here κ & ρ are homogeneous polynomials in sin θ and cos θ.
We structured the paper as follows. In Section 2, we have discussed the transformation and some

essential formulae to calculate periodic multiplicity. In Section 3, we recall some lemma and theorems
for the origin. The significant results and conclusions are discussed in Sections 4 and 5 accordingly.

2. First order cubic system

In the present article, we are considering the differential equation given as:

·

U = κ(τ)U3 + ρ(τ)U2 + υ(τ)U. (2.1)

Where the coefficients κ, ρ, υ and involved variable are real-valued functions and U ∈ C. This paper’s
central result is the determination of possible maximum periodic solutions with perturbation of the
coefficients on the plane. This equation is the part of the following equation, described in [5]:

·

U = ρ0(τ)Un + ρ1(τ)Un−1 + ρ2(τ)Un−2 + ... + ρn(τ). (2.2)

With ρ0(τ) = 1. For n = 3, the Eq (2.2) is known as Abel’s differential equation, we focused on
it because of its connection with the second part of Hilbert 16th problem (maximal number of limit
cycles and their relative locations of planar polynomial real vector fields of given degree); it is related
to ODEs and dynamical systems. The fascination of the problem comes from the fact that it sits at the
confluence of analysis, algebra, geometry and even logic. It is known, for instance, that when ρ3(t)
does not change sign, the upper bound for the number of limit cycles is 3, see [6, 7]. When ρ3(t) ≡ 1
this upper bound also holds taking into account complex limit cycles, see [5, 8]. In [6], we see that
when ρ0(t) ≡ 0 and ρ2(t) does not change sign, the maximum number of limit cycles of Abel’s equation
is also 3. We likewise refer reader to the articles [9–11], for additional data with respect to this issue.
For the Eq (2.1) , we are considering a complex dependent variable, so that the number of zeros of a
function in a bounded region of the complex plane can’t be changed by any small perturbations. We
substitute υ (τ) =̃ 0 in (2.1) , as was in [12]. Consequently, the Eq (2.1) becomes as:

·

U = κ(τ)U3 + ρ(τ)U2. (2.3)

Here κ and ρ may be polynomials in (i) τ (ii) cosτ and sinτ, for more detail see [12, 13]. Also suppose
that ∃ β ∈ R such that:

U (β) = U (0) , are periodic.
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For U = 0, the method for computing multiplicity “µ” is explained in [9, 10, 12, 14, 15]. For t in [0, β]
and c small, let

U (t, 0, c) =

∞∑
i=1

ξi (t) ci. (2.4)

Since U (0, 0, c) = c, we have ξ1 (0) = 1 and ξi (0) = 0 for i > 1. The solution U = 0 is a centre for
the Eq (2.3) if all the solutions are periodic for c in neighborhood of 0. The solution U = 0 is a centre
if ξ1 (β) = 1 and ξi (β) = 0 for i > 1. Substituting the Eq (2.4) in the Eq (2.3) and equating coefficients
of c yields

·

ξ1 (τ) = 0. Hence, ξ1 (τ) = 1. Moreover, the functions
·

ξi (τ) , for i > 1 are obtained with the
help of following equation:

·

ξi = κ
∑
j+k+l=i
j,k,l ≥ 1

ξ jξkξl + ρ
∑
j+k=i

j,k ≥ 1

ξ jξk. (2.5)

With ξ1 (τ) = 1. Expect to be that κi = ξi (β) , at that point κ = i if κ1 = 1 and κk = 0 for 2 ≤ k ≤ i − 2
but κi , 0, shown in Theorem 2.1. Alwash in [12], presented ξi (τ) and κi for i ≤ 8, for i = 9 are
in [16], for i = 10 we calculated ξ10 (τ) and κ10 in [9], also presented in Theorem 2.1.

The following Theorem is the modification of Theorem 2 in [12], with the help of this Theorem
periodic multiplicity is calculated. Here, in integral;

∫
κ (τ) ρ (τ)dτ, bar “ − ” function is like ρ (τ) =∫

ρ (τ) dτ.

Theorem 2.1. The solution U = 0 of the Eq (2.3) has a multiplicity k, wherever 2 ≤ k ≤ 10 if κn = 0
for 2 ≤ n ≤ k − 1 and κn , 0 where

κ2 =
∫ β

0
ρ,

κ3 =
∫ β

0
κ,

κ4 =
∫ β

0
κρ,

κ5 =
∫ β

0
κρ2,

κ6 =
∫ β

0

(
κρ3
− 1

2κ
2ρ

)
,

κ7 =
∫ β

0

(
κρ4

+ 2κρ2κ
)
,

κ8 =
∫ β

0

(
κρ5

+ 3κρ3κ + κρ2ρκ − 1
2κ

3ρ
)
,

κ9 =
∫ β

0

(
κρ6
− 5κρ4κ − 2ρ3ρκ + 20ρκ2

+ 2ρκρκ2
)
,

and

κ10 =
∫ β

0

(
κρ7
− 1235

6 κκρ5
− 970

3 κκ
2ρ3
− 237ρρ2κ3

− 24κκ2ρρ2
− 70ρ3κ2κ − 21κ4ρ − 74κκ3ρ+

5
2κ

2ρρ4
+ 32ρ4κρκ − 16ρ4ρκ − 15ρ5κ2 − 36ρρκ2ρκ − 8ρρ4κκ

)
.

3. Conditions for centre

For U = 0 as a centre, conditions that are useful for calculating maximum multiplicity κk, 2 ≤ k ≤
10 are from [12] and are defined below.

Theorem 3.1. Consider that f , g are continuous functions defined on interval I = δ
([

0, β
])

and a
differentiable function δ with δ (β) = δ (0) such that:

κ (τ) = f (δ (τ))
·

δ
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ρ (τ) = g (δ (τ))
·

δ,

then origin is the centre for the Eq (2.3).

Corollary 3.1. If κ is a constant multiple of ρ and
∫ β

0
ρ (τ) dτ = 0, then the origin is a centre for the

Eq (2.3) .

Corollary 3.2. If any ρ or κ is identically zero and other has mean value zero then the origin is a
centre.

Remark 1. In [12], bifurcation method is described that when the coefficients of ρ(τ) and κ(τ) are
slightly perturbed, two periodic solutions bifurcate out of the origin, when bifurcation method is
applied. For the number of real periodic solutions, we conclude that if multiplicity µ is even, the
origin is stable κµ < 0 and unstable if κµ > 0. If µ is odd, then the origin is stable on the right and
unstable on the left if κµ < 0; however, if κµ > 0, the origin is stable on the left and unstable on the
right.

4. Results

4.1. Polynomial coefficients

This section describes the method for computing the maximum number of limit cycles of a
polynomial differential equation in a plane for various classes of different degrees. Suppose Cr,q

indicates the class for the Eq (2.3) , with degree r, q for κ (τ) and ρ (τ) accordingly, for more examples
see [9, 10, 13, 14, 17]. The confirmation of the accompanying theorems, stems from papers in [12, 18].
We use Theorem 2.1 with β = 1, as is done in Lloyd et al. If we use all coefficients for polynomials
κ (τ) and ρ (τ) then we can easily see that the periodic solutions greater than 4 can’t obtained. So,
some possible suitable coefficients are restricted in the following classes to find as many periodic
solutions as possible. All calculations regarding the different classes are carried out using Maple 18.

Theorem 4.1. Suppose the class C9,4 for the Eq (2.3), if

κ(τ) = a + bτ + eτ4 + f τ5 + iτ8 + jτ9.

ρ(τ) = m + qτ4.

Then we come to conclusions µmax
(
C9,4

)
≥ 10.

Proof. From Theorem 2.1, we extract that:

κ2 = m +
1
5

q,

κ3 = a +
1
2

b +
1
5

e +
1
6

f +
1
9

i +
1

10
j.

Thus multiplicity of U = 0 is µ = 2, if κ2 , 0. And is µ = 3, if κ2 = 0 but κ3 , 0. If κ2 = κ3 = 0, then
κ(τ) and ρ(τ) are as below:

ρ(τ) = q
(
τ4 −

1
5

)
. (4.1)
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κ(τ) = b(τ −
1
2

) + e
(
τ4 −

1
5

)
+ f

(
τ5 −

1
6

)
+ i

(
τ8 −

1
9

)
+ j

(
τ9 −

1
10

)
, (4.2)

And also we compute κ4 as given below:

κ4 = −
q(−189 j − 176i − 75 f + 495b)

103950
.

If κ4 = 0, then either q = 0 or:

j = −
176
189

i −
75
189

f +
495
189

b. (4.3)

If q = 0, then ρ(τ) = 0 and for κ3 = 0, origin is the centre derived from Corollary 3.2. So, assuming
(4.3) holds and q , 0, κ5 is given as:

κ5 = −
q2(992i + 1425 f + 8550b)

553014000
.

If κ5 = 0, as q , 0 implies:

i = −
1425
992

f −
8550
992

b. (4.4)

And by using (4.4) we take κ6 as:

κ6 = −
q(6b + f )(41753450b + 11105688q2 − 753375 f )

2599788102912000
.

If κ6 = 0, then, as q , 0 either f = −6b or

f =
41753450
753375

+
11105688
753375

q2. (4.5)

If f = −6b, then the Eqs (4.2) and (4.1) become:

κ(τ) =
[
e + b

(
5τ5 − 5τ

)] ·
δ(τ),

ρ(τ) = q
·

δ(τ).

Where,
·

δ (τ) = τ4− 1
5 , also δ (0) = δ (1) . As a result of Theorem 3.1, the origin is the centre, as follows:

f (δ) =
[
e + b

(
5τ5 − 5τ

)]
, and g (δ) = q.

So, f , −6b. If (4.5) holds then κ7 is computed as:

κ7 = −
1357q2(6q2 + 25b)(2064342502325b + 519733807086q2 + 68060500200e)

6600027084364350000000
.

If κ7 = 0, since q , 0, either b = − 6
25q2 or,

b = −
519733807086
2064342502325

q2 −
68060500200

2064342502325
e. (4.6)
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If b = − 6
25q2 then,

κ(τ) = e
(
τ4 −

1
5

)
+ q2

(
−

6
5
τ9 +

36
25
τ5 −

6
25
τ

)
,

ρ(τ) = q
(
τ4 −

1
5

)
.

The origin is the centre with f (δ) =
[
e + q2

(
−6

5τ
5 + 6τ

)]
and g (δ) = q according to Theorem 3.1. So,

consider b , − 6
25q2. Using (4.6) we calculate κ8 as:

κ8 =
59q(167936q2 + 470525e)φ

150634300488681571068724220482868399006689875000000
.

Where,
φ = −3325005947550744260462549014528q4 − 345198526986114785414664480eq2 +

21339337823946954208255625e2.

Now, if κ8 = 0 then either φ = 0 or

e = −
167936
470525

q2. (4.7)

As q , 0. If (4.7) holds but φ , 0, q , 0, κ9 is calculated as follows:

κ9 = −
512q5(286469068411235 + 2477977842432q)

1739923360152086484375
.

If κ9 = 0 then, as q , 0, it results q5 , 0, we examine q as:

q = −
286469068411235
2477977842432

. (4.8)

If Eq (4.7) , 0, q , 0, but φ = 0 holds then e = yim2 for i = 1, 2 with y1 = 133.1766309, y2 =

−116.9999242. If (4.8) holds, we can calculate κ10 as:

κ10 = −

7673519990994366038540055062000965309663986417675028265819816229061952336893
558680903372883465099072077990856900968043

11853474951918400099122214493761615083774360743656615787259615581071495
849560849865267140893236719872441495060480000

.

Here κ10 is not zero. As a result, we can deduce that µmax
(
C9,4

)
≥ 10.

For non zero different but the same (either positive or negative) values of the constants in κ and ρ,
we can see that only one root is real and rest all the zeros are complex and are also in conjugate pairs.
It gives stable limit cycles from Remark 1. The stability analysis is shown in Figure 2.

Theorem 4.2. For given below equation:

·

U = κ(τ)U3 + ρ(τ)U2. (4.9)

Consider:
κ(τ) = 167936

2352625 (−286469068411235
2477977842432 + ε1)2 + 1989561074

412868500465ε2 −
641861
103320ε3 −

301
2976ε4 −

17
945ε5 −

1
10ε6 + ε7 +

AIMS Mathematics Volume 6, Issue 10, 11286–11304.
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Figure 2. Stability of Class C9,4.

(− 6
25 (−286469068411235

2477977842432 + ε1)2 − 2722420008
82573700093ε2 + ε3)τ + (−286469068411235

2477977842432 + ε1)2 + ε2)τ4 + ( 36
25 (−286469068411235

2477977842432 +

ε1)2 − 754408015152
412868500465ε2 + 1670138

30135 ε3 + ε4)τ5 + (240204612285
82573700093 ε2 −

1418065
16072 ε3 −

1425
992 ε4 + ε5)τ8 + (−170939097560

82573700093 ε2 +
162185
2583 ε3 + 175

186ε4 −
176
189ε5 −

6
5 (−286469068411235

2477977842432 + ε1)2 + ε6)τ9,

ρ(τ) =
57293813682247
2477977842432

−
1
5
ε1 + ε8 + (−

286469068411235
2477977842432

+ ε1)τ4.

Choose εp , 0 for 1 ≤ p ≤ 8 and small as compared to εp−1. Then there are eight non-trivial real
periodic solutions to Eq (4.9).

Proof. See [14].

Theorem 4.3. For class C9,5 with

κ(τ) = a + b (A1) + e (A1)4 + f (A1)5 + j (A1)9 . (4.10)

ρ(τ) = m + r (B1)5 . (4.11)

Then we conclude µmax
(
C9,5

)
≥ 8, where A1 = B1 = (τ − 1) .

Proof. By utilizing Theorem 2.1, we calculate:

κ2 = m −
1
6

r,

κ3 = a −
1
2

b +
1
5

e −
1
6

f −
1
10

j.

If κ2 = κ3 = 0, we calculated κ4 as:

κ4 = −
r(−27 j − 16e + 110b)

22176
.

If κ4 = 0 then, either r = 0 or:

j = −
16
27

e +
110
27

b. (4.12)

If r = 0 then, κ2 = 0 gives m = 0, hence, ρ(τ) = 0. If κ2 = 0, using Corollary 3.2, origin is the centre.
As a result, take r , 0. By using (4.12) we compute:

κ5 =
25r2(10e + 121b)

132324192
.
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If κ5 = 0 then:

e = −
121
10

b. (4.13)

Because we have already suppose r , 0. If (4.13) holds then:

κ6 = −
br(43163r2 + 365769b)

315412755840
.

If κ6 = 0, either b = 0 or:

b = −
43163

365769
r2, (4.14)

as r , 0. If b = 0, the Eqs (4.10) and (4.11) becomes:

κ(τ) = f
(
(τ − 1)5 +

1
6

)
,

ρ(τ) = r
(
(τ − 1)5 +

1
6

)
.

Let δ (τ) =
(τ−1)6

6 + τ
6 then,

·

δ (τ) = (τ − 1)5 + 1
6 . Also δ (0) = δ (1) . Using these results we write as

below:
κ(τ) = f

·

δ(τ),

ρ(τ) = r
·

δ(τ).

From Theorem 3.1, origin is the centre with f (δ) = f and g (δ) = r. So, suppose b , 0. If (4.14) holds
then κ7 is:

κ7 =
2539r4(−509767294467341r2 + 197071523361900 f )

23238641778643142259408000
.

Now if κ7 = 0, as r , 0 then:

f =
509767294467341
197071523361900

r2. (4.15)

Using (4.15) we obtain:

κ8 = −
805954125349663269090873431

8509913196765133836251899932940800000
r7.

Thus, µmax
(
C9,5

)
≥ 8.

For non zero different but the same (either positive or negative) values of the constants in κ and ρ,
we can see that only two roots are real and rest all the zeros are complex and are also in conjugate
pairs. It gives stable limit cycles from Remark 1. The stability analysis is as shown in Figure 2.

Theorem 4.4. Consider class C9,6 for the Eq (2.3), if

κ(τ) = a + bA2 + e (A2)4 + g (A2)6 + j (A2)9 .

ρ(τ) = m + s (B2)6 .

Then we conclude µmax
(
C9,6

)
≥ 8 with A2 = B2 = (2τ − 1) .
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Proof. By utilizing Theorem 2.1, we obtain:

κ2 = m +
1
7

s,

κ3 = a +
1
5

e +
1
7

g.

Thus, multiplicity of U = 0 is µ = 2 if κ2 , 0, And is µ = 3 if κ2 = 0 but κ3 , 0. If κ2 = κ3 = 0 then:

a = −
1
5

e −
1
7

g, (4.16)

m = −
1
7

s. (4.17)

By using Eqs (4.16) and (4.17) , we have:

κ(τ) = b (A2) + e
(
(A2)4

−
1
5

)
+ g

(
(A2)6

−
1
7

)
+ j (A2)9 , (4.18)

ρ(τ) = s
(
(2τ − 1)6

−
1
7

)
. (4.19)

Also we calculate κ4 as:

κ4 = −
s(187b + 27 j)

11781
.

If κ4 = 0 then, either s = 0 or:

j = −
187
27

b. (4.20)

If s = 0 then, (4.17) gives m = 0 so ρ(τ) = 0, and also for κ2 = 0, origin is the centre. So, s , 0 is
taken. If (4.20) holds κ5 is given as:

κ5 = −
592es2

19062225
.

If κ5 = 0, then, e = 0 because we had already seen that s , 0. Thus, by substituting e = 0, we have:

κ6 = −
6848bs(3956283s2 + 126422030b)

5558447535465825
.

Now if κ6 = 0, as s , 0 either b = 0 or:

b = −
3956283

126422030
s2. (4.21)

If we take b = 0 gives j = 0 and e = 0 from κ5 then, Eqs (4.18) and (4.19) take given below form:

κ(τ) = g
(
(2τ − 1)6

−
1
7

)
,

and:

ρ(τ) = s
(
(2τ − 1)6

−
1
7

)
.
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Let δ (τ) =
(2τ−1)7

14 − τ
7 , Also δ (0) = δ (1) . So:

κ(τ) = g
·

δ(τ),

ρ(τ) = s
·

δ(τ).

From Theorem 3.1, origin is the centre, with f (δ) = g and g (δ) = s. By using (4.21), we have κ7 as:

κ7 =
3630411881856

17850688946859894125
gs4.

If κ7 = 0, recalling that s , 0 (considered above) then by substituting g = 0, we found:

κ8 = −
84179003432468973571503675648

117457437673623380246906789570873815625
s7.

As s , 0 considered above, we can’t proceed further. So, µmax
(
C9,6

)
≥ 8.

For non zero different but the same (either positive or negative) values of the constants in κ and ρ,
we can see that only one root is real and rest all the zeros are complex conjugate pairs. It gives stable
limit cycles from Remark 1, as shown in Figure 2.

Theorem 4.5. If for the Eq (2.3) ,

κ(τ) = −υ1 + b (A1) + e (A1)4 + f (A1)5 + j (A1)9 ,

ρ(τ) =
1
6

r + ε6 + r(A1)5.

With A1 = τ − 1.

υ1 = −
1255109217691397
27195870223942200

r2 +
182
45

ε2 −
7

27
ε3 +

1
10
ε4 +

1
6
ε1 + ε5,

b = −
43163
365769

r2 + ε2,

e =
5222723
3657690

r2 −
121
10

ε2 + ε3,

f =
509767294467341
197071523361900

r2 + ε1,

and
j = −

949586
715635

r2 +
506
45

ε2 −
16
27
ε3 + ε4.

For εl , 0, (1 ≤ l ≤ 6) if we take |ε6| � |ε5| � ... � |ε1| . Then there are six different real periodic
solutions.

Proof. See [9].

Theorem 4.6. For the class C11,3 , consider that

κ(τ) = a + bt + dt3 + et4 + ht7 + kt11,

ρ(τ) = m + pt3.

Then µmax
(
C11,3

)
≥ 10.
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Proof. We write w = a + 1
2b + 1

4d + 1
5e + 1

8h + 1
12k, w1 = m + 1

4 p; using Theorem 2.1, we see κ2 = w1,

κ3 = w. If w,w1 = 0, then by putting ‘a’ and ‘m’, κ4 is as shown below:

κ4 = −
p(−495k − 455h − 208e + 780b)

187200
.

Now, for κ4 = 0, we put

k = −
455
495

h −
208
495

e +
780
495

b,

and calculate

κ5 =
p2(−30065h − 21088e + 14820b)

2405894400
.

From κ5 = 0, by substituting value of h, κ6 is

κ6 = −
p$(2574821080b − 154952704e + 1256094225p2)

253139462896320000
.

Here $ = e + 5b. If κ6 = 0; as p , 0, using value of e from
2574821080b − 154952704e + 1256094225p2 = 0, κ7 is

κ7 = −
6499p2$1(1739973262973695256b + 714825408941861737p2 + 160220944663422720d)

58245572569628075653689507840
,

with$1 = 3p2+8b. For κ6, κ7 = 0, suppose that$ = $1 = 0, (as possible) then for e = −5b, b = −3
8 p2;

κ (t) and ρ (t) can be written as below:

κ(τ) = d
(
τ3 −

1
4

)
+ p2

(
3
2
τ7 −

15
8
τ4 +

3
8
τ

)
,

ρ(τ) = p
(
τ3 −

1
4

)
.

Let δ (τ) = τ4

4 −
τ
4 then,

·

δ (τ) = τ3 − 1
4 , also δ (0) = δ (1) . So, above equations may written as

κ(τ) =

[
d + p2

(
3
2
τ4 −

3
2
τ

)]
·

δ(τ), ρ(τ) = p
·

δ(τ).

As a result of Theorem 3.1, the origin is the centre with f (δ) =
[
d + b

(
4τ4 − 4τ

)]
, g (δ) = p; and for

b = −3
8 p2 having f (δ) =

[
d + p2

(
3
2τ

4 − 3
2τ

)]
, g (δ) = p. Thus, suppose e , −5b, b , −3

8 p2. Now, we
put

b = −
714825408941861737
1739973262973695256

p2 −
160220944663422720

1739973262973695256
d,

and obtain

κ8 =
p(15853669p2 + 40748730d)$2

41554377350374103300109394556114641589935936125226285384516927488

where $2 = −13428577611822818269376896810070582196773931p4 −

17734094726830067851160472587240248614dp2 +
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2205020838128046275374234026162794502d2.

If κ8 = 0, then we substitute d = −15853669
40748730 p2 and obtain κ9 as follows:

κ9 = −
p5(2120781350311700544 + 21005802551120299p)

15782277536318400307200
.

If κ9 = 0, recalling that p , 0, we put p = −2120781350311700544
21005802551120299 , and calculate

κ10 = −

148312985671995988003729017715939409655677312353027592856538937285314571147
688849965164074881942681067572482920541674843884546367310095475293169647616

337550822945425779544304546672699987291432678249406618814296950972604047945
2572614597625736233466957885006352405207528733624321549580247373225685625

.

It is a non-zero constant number. Therefore, it is concluded that µmax
(
C11,3

)
≥ 10.

For non zero different but the same (either positive or negative) values of the constants in κ, and ρ,
we can see that one root is real and others are complex. It gives stable limit cycles from Remark 1, as
shown in Figure 2.

Corollary 4.1. For the equation:
·

U = κ(τ)U3 + ρ(τ)U2 + υ + υ1. (4.22)

If the polynomials κ(τ), ρ(τ) are as used in Theorem 4.2 and Theorem 4.6. If υ, υ1 are enough small,
then (4.22) has ten real periodic solutions.

Theorem 4.7. For the Eq (2.3) consider that

κ(τ) = −ω1 + bt + dt3 + et4 + ht7 + kt11,

ρ(τ) =
530195337577925136
21005802551120299

−
1
4
ε1 + ε8 + (−

2120781350311700544
21005802551120299

+ ε1)t3.

With
υ1 = (−2120781350311700544

21005802551120299 + ε1)2 + 4709898985434859
434993315743423814ε2 −

4224512475
1491419776ε3 −

8667
66143ε4 −

115
2376ε5 −

1
12ε6 + ε7

b = −(−2120781350311700544
21005802551120299 + ε1)2 − 20027618082927840

217496657871711907ε2 + ε3,

d = −(−2120781350311700544
21005802551120299 + ε1)2 + ε2,

h = (−2120781350311700544
21005802551120299 + ε1)2 + 1011560654078040

984147773175167 ε2 −
47294663
4236988 ε3 −

21088
30065ε4 + ε5,

e = −(−2120781350311700544
21005802551120299 + ε1)2 − 102398557040420025

66922048575911356 ε2 + 321852635
19369088 ε3 + ε4,

and
k = −439851904713900

984147773175167ε2 + 64632555
13316248ε3 + 10608

47245ε4 −
91
99ε5 + ε6.

If εl for (1 ≤ l ≤ 8) , have the property that

|ε8| � |ε5| � ... � |ε1| .

Then there exists eight distinct non-trivial periodic solutions.

4.2. Trigonometric coefficients

Now, we consider the Eq (2.3), with polynomials κ(τ), ρ(τ) in sin τ and cos τ; here upper limit β is
2π (period of these trigonometric functions) for Theorem 2.1.
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4.2.1. Non-homogeneous coefficients

Theorem 4.8. Consider the class C14,7, If the coefficients are:

κ(τ) =
(
(c) cos τ sin5 τ + (e) cos5 τ sin τ

) (
cos2 τ + sin2 τ

)4
,

ρ(τ) = (a) cos6 τ sin τ + (b) cos τ sin6 τ.

Then κmax
(
C14,7

)
≥ 9.

Proof. Using Theorem 2.1, we calculate

κ2 = κ3 = κ4 = 0, and κ5 = −
11abπ(c + e)

458752
.

If κ5 = 0, either a, b = 0 or:
c + e = 0. (4.23)

If a, b = 0 then ρ(τ) = 0, and κ3 = 0, gives origin is the centre. Using (4.23) we calculate κ6 = 0 and
κ7 as:

κ7 =
323abcπ

(
a2 − b2

)
6576668672

.

If κ7 = 0 as abc , 0, we put a = −b, and calculate κ8 = 0, and κ9 as shown below:

κ9 =
393321cb4π

1012806974588
.

If κ9 = 0, for c, b = 0 the origin is the centre. Hence, concluded that µmax
(
C14,7

)
≥ 9.

Theorem 4.9. For the Eq (2.3) , consider coefficients as:

κ(τ) =
[
(c) cos2 τ sin6 τ + (e) cos6 τ sin2 τ

] (
cos2 τ + sin2 τ

)4
,

ρ(τ) = (a) cos7 τ sin τ + (b) sin7 τ cos τ.

Then µmax
(
C16,8

)
≥ 9 is presented.

Proof. With Theorem 2.1, we calculate κ2 = 0 and:

κ3 =
5π(c + e)

64
.

If κ2 = κ3 = 0, as π , 0, we calculate κ4 as:

κ4 = −
3eπ(a + b)

1024
.

For κ4 = 0, as π , 0, either e = 0 or a = −b. If we substitute e = 0 then κ(τ) = 0, and κ2 = 0, origin is
centre. Hence suppose that e , 0. We substitute for a = −b and take κ5 = κ6 = κ7 = κ8 = 0 with κ9 as:

κ9 =
287bc2π

589824
.

If κ9 = 0, then c, b = 0 it can be easily seen that origin is the centre. Hence, concluded that µmax
(
C16,8

)
≥

9.
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4.2.2. Homogeneous coefficients

Theorem 4.10. Let the class C5,5 with:

κ(τ) = (a) cos4 τ sin τ + (c) cos3 τ sin2 τ + (d) cos τ sin4 τ + ( f ) cos5 τ,

ρ(τ) = (m) sin5 τ.

Then µmax
(
C5,5

)
≥ 10 is calculated as follows.

Proof. Using Theorem 2.1, κ2 = κ3 = 0 and by proceeding further we calculate as:

κ4 = −
mπ(161c + 189d + 689 f )

1920
.

If κ4 = 0, either m = 0 or:

d = −
167
189

c −
689
189

f . (4.24)

If m = 0, then ρ (τ) = 0 and for κ3 = 0, κ (τ) has mean value as zero. So, origin is a centre, by Corollary
3.2. Also with holding the Eq (4.24) , we calculate κ5 = 0 and κ6 as:

κ6 = −
187m3π(247c + 1510 f )

8847360
.

For κ6 = 0, we substitute value of c as:

c = −
1510
247

f ,

and obtained:

κ7 = −
1753m2a fπ

2655744
.

If κ7 = 0, then we substitute a = 0, because f m2π , 0 and get:

κ8 = −
29m fπ(46125464931m4 + 3146842112 f 2)

1667637037760512
.

For κ8 = 0, we put f 2 = −46125464931
3146842112 m4 and obtained κ9 = 0 whereas κ10 comes out as:

κ10 = −
1840750191m9π(59976855709863203909055069m6+2195549986673047538458624m2−1043525219711433352151040)

102111532729282706230029677127270400 .

Hence we conclude that µmax
(
C5,5

)
≥ 10.

Theorem 4.11. For the class C6,6, if:

κ(τ) = (a) sin6 τ + (b) cos5 τ sin τ + (d) cos τ sin5 τ + (e) cos6 τ,

ρ(τ) = (g) cos τ sin5 τ + (i) cos5 τ sin τ.

Then µmax
(
C6,6

)
≥ 10 is given below.
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Proof. By using Theorem 2.1, it is calculated that κ2 = 0, κ3 =
5π(e+a)

8 and by substituting a = −e from
κ3 = 0, we calculate κ4 as:

κ4 = −
113eπ(i + g)

1536
.

If κ4 = 0 then, as π is nonzero, either e = 0 or:

i = −g. (4.25)

If e = 0, then e, a = 0, gives κ (τ) and ρ(τ) are same with only different coefficients; i.e. κ (τ) is
constant multiple of ρ(τ). As a result of Corollary 3.1, the origin is a centre. So, suppose e , 0. Also
with holding Eq (4.25) , we calculate κ5 = 0 and κ6 as:

κ6 = −
215geπ(d + b)

49152
.

If κ6 = 0, consider that g, e , 0, because for g = 0, the Eq (4.25) gives i = 0; so ρ (τ) = 0. For κ3 = 0,
origin is the centre. By substituting d = −b, we calculate κ7 = 0, κ8 = 0 and by proceeding further, we
get κ9 as:

κ9 =
5gπ(29896704b2 + 34927bg3 − 43473024e2)

1019215872
.

If κ9 = 0, then the only possible substitution is as follows:

e2 =
29896704
43473024

b2 +
34927

43473024
bg3. (4.26)

With holding the Eq (4.26) , κ10 comes out as:

κ10 = −

g3bπ(361424202582272bg3 − 20937295726323g5 + 341930657292484608b2−

18978246855069696bg2)
30247865046792142848 .

Now, due to lack of formula for κ11, we can’t proceed further to calculate focal value greater than 10.
Hence we conclude that µmax

(
C6,6

)
≥ 10.

5. Further examples

In this section, we have discussed various examples. Here, we are considering the series expansion
of some functions. For finding the maximum possible periodic solutions, we shall restrict these
expansions up to some extent, for n = 5 (say). All the coefficients used below in series expansion are
the equal to 1, in general.

Example 5.1. For the Eq (2.3) , suppose the series expansion upto power five of the functions; κ (t) =
1

1+t = c − dt + et2 − f t3 + gt4 − ht5 and ρ (t) = tanh−1 (t) = it + 1
3kt3 + 1

5mt5. Then we calculate the
periodic multiplicity.

Solution 5.1. For finding maximum periodic solutions, we make suitable restrictions of the coefficients
and put e, k = 0. We write w = c − 1

2d − 1
4 f + 1

5g − 1
6h, w1 = 1

2 i + 1
30m; using Theorem 2.1, we see

κ2 = w1, κ3 = w. If w,w1 = 0, then by putting ‘c’ and ‘i’, κ4 is as shown below:

κ4 =
m(275h − 384g + 528 f + 825d)

831600
.
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Now, for κ4 = 0, as m = 0 gives origin is the centre. We put

h =
384
275

g −
528
275

f −
825
275

d,

and calculate

κ5 = −
m2(−4096g + 7837 f )

25061400000
.

From κ5 = 0, by substituting g = 7837
4096 f , κ6 is

κ6 =
f m(−45701267456m2 + 244257686775 f )

653902675653427200000
.

As for f ,m = 0, origin is centre, using value of f, κ7 is

κ7 = −
3433088m4(35352838974082506928m2 + 2309277728312691976125d)

30313492252257758311549607950072265625
.

For κ7 = 0, by substituting ‘d’ in terms of ‘m2’ we obtain:

κ8 =
54967321080033631347885428585189499412

37029463973097751593942607347816206875958442333984375
m7.

Thus, the multiplicity is 8.

Example 5.2. For the Eq (2.3) , suppose the series expansion upto power five of the functions; κ (t) =

ln (1 + t) = ct − e
2 t2 +

f
3 t3 − k

4 t4 + h
5 t5 and ρ (t) = sinh (t) = it + 1

3! lt
3 + 1

5!mt5. Then we calculate the
periodic multiplicity.

Solution 5.2. For finding maximum periodic solutions, we make suitable restrictions of the coefficients
and put l = 0. We write w = 1

2c− 1
3e− 1

4 f + 1
5k− 1

6h, w1 = 1
2 i + 1

30m; using Theorem 2.1, we see κ2 = w1,

κ3 = w. If w = 0 = w1, then by putting values of ‘c’ and ‘i’, κ4 is as shown below:

κ4 =
m(27k − 77 f + 154e)

39916800
.

If κ4 = 0, we put k = 77
27 f − 154

27 e, and calculate

κ5 =
m2(−18293 f + 96256e)

857460764160000
.

Now, if κ5 = 0, we substitute f = 96256
18293e and obtained

κ6 =
em(4028768833m2 + 7178039836650e)

1899860121187855706880000
.

From κ6 = 0, if e,m = 0, origin is the centre. So, we put value of ‘e’ and calculate

κ7 = −
2422591m4(3613155317291143m2 + 1238164754507743536h)

78757396676696854269380552528627424000000
.

and

κ8 =
26909352233187779710123599707954458867

117724822732769444947775178271894319926764517651230720000000000
m7.

Thus, the multiplicity is 8.
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6. Conclusions

We obtained periodic solutions for two-dimensional non-autonomous differential equations. We
discussed two types of coefficients called algebraic and trigonometric (non-homogeneous and
homogeneous) coefficients for various classes. Maximum possible upper bound is executed for
classes C14,7, C16,8 with non-homogeneous and C5,5 with homogeneous trigonometric coefficients,
while C9,4, C9,5, C9,6 and C11,3 with the polynomial coefficients. We attained the highest multiplicity as
10 for classes C9,4, C11,3 C5,5, and C6,6 which is the highest one. All the result has been done using
computer algebra package Maple 18. We have concluded from this extensive analysis that there is no
connection between the degree of polynomial and the number of limit cycles. The higher degree
classes like C14,7, C16,8 ends up with maximum multiplicity eight in contrast to lower degree
polynomial classes C5,5, C6,6 and C9,4,C11,3 having ten limit cycles. This conclusion is in accordance
with the 2nd part of Hilbert’s 16th problem. We have calculated the formulae in Section 2; which
extends previous works of Alwash [12] and Yasmin [16] and attempt to step forward in the
comprehension of the case n > 9, in the Eq (2.5). In future, one can generalize the same concept of
multiplicity and can calculate multiplicity greater than ten by extending Theorem 2.1. The same
results can be validated by the use of simulation against time domain.
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