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1. Introduction

For the last few decades, the study of integral inequalities has been a significant field of fractional
calculus and its applications, connecting with such other areas as differential equations, mathematical
analysis, mathematical physics, convexity theory, and discrete fractional calculus [1–13]. One
important type of integral inequalities consists of the familiar Chebyshev inequality which is related to
the synchronous functions. This has been intensively studied, with many book chapters and important
research articles dedicated to the Chebyshev type inequalities [14–18]. The Chebyshev inequality is
given as follows (see [16]):

1
b2 − b1

∫ b2

b1

ζ1(z)ζ2(z) dz =
(

1
b2 − b1

∫ b2

b1

ζ1(z) dz
) (

1
b2 − b1

∫ b2

b1

ζ2(z) dz
)
, (1.1)

where ζ1 and ζ2 are assumed to be integrable and synchronous functions on [b1, b2]. By definition, two
functions are called synchronous on [b1, b2] if the following inequality holds true:(

ζ1(z) − ζ1(y)
)(
ζ2(z) − ζ2(y)

)
= 0, ∀ z, y ∈ [b1, b2].

In particular, the Chebyshev inequality (1.1) is useful due to its connections with fractional calculus
and it arises naturally in existence of solutions to various integer-order or fractional-order differential
equations including some which are useful in practical applications such as those in numerical
quadrature, transform theory, statistics and probability [19–24].

In the context of fractional calculus, the study of the derivative and integral operators of calculus
is extended to non-integer orders [25–27], but most (if not all) of the potentially useful studies come
about only along the real line. The standard left-side and right-side Riemann-Liouville (RL) fractional
integrals of order µ > 0 are defined, respectively, by(

I
µ
b1+
ϕ
)

(z) =
1

Γ(µ)

∫ z

b1

(z − ξ)µ−1 ϕ(ξ) dξ (z > b1) (1.2)

and (
I
µ
b2−
ϕ
)

(z) =
1

Γ(µ)

∫ b2

z
(ξ − z)µ−1 ϕ(ξ) dξ (z < b2), (1.3)

where ϕ(z) is a function defined on z ∈ [b1, b2]. Furthermore, the left-side and right-side Riemann-
Liouville (RL) fractional derivatives are defined, respectively, by means of the following expressions
for<(µ) = 0:

Dµ
b1+
ϕ(z) B

dn

dznI
n−µ
b1+
ϕ(z)
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and
Dµ

b2−
ϕ(z) B

dn

dznI
n−µ
b2−
ϕ(z),

in each of which n B b<(µ)c + 1.
There are many ways to define fractional derivatives and fractional integrals, often related to or

inspired by the RL definitions (see, for example, [28–30]), with reference to some general classes
into which such fractional derivative and fractional integral operators can be classified. In pure
mathematics, we always consider the most general possible setting in which a specific behaviour or
result can be obtained. However, in applied mathematics, it is important to consider particular types of
fractional calculus, which are suited to the model of a given real-world problem.

Some of these definitions of fractional calculus have properties which are from those of the standard
RL definitions, and some of them can be used to the model of real-life data more effectively than
the RL model [31–37]. As described in many recent articles which are cited herein, the fractional
calculus definitions, which are discussed in this article, have been found to be useful, particularly in
the modelling of real-world problems.

Special functions have many relations with fractional calculus [1, 25, 38]. In particular, the Mittag-
Leffler (ML) type functions are remarkably significant in this area (see [39–42]).

The familiar Mittag-Leffler function Eα(z) and its two-parameter version Eα,β(z) are defined,
respectively, by

Eα(z) :=
∞∑

k=0

zk

Γ(αk + 1)
and Eα,β (z) :=

∞∑
k=0

zk

Γ(αk + β)
(1.4)

(
z, α, β ∈ C; <(α) > 0

)
,

which were first considered by Magnus Gustaf (Gösta) Mittag-Leffler (1846–1927) in 1903 and Anders
Wiman (1865–1959) in 1905.

In many recent investigations, the interest in the families of Mittag-Leffler type functions has grown
considerably due mainly to their potential for applications in some reaction-diffusion and other applied
problems and their various generalizations appear in the solutions of fractional-order differential and
integral equations (see, for example, [43]; see also [44] and [45]). The following family of the multi-
index Mittag-Leffler functions:

Eγ,κ,ε

[
(α j, β j)m

j=1; z
]

was considered and used as a kernel of some fractional-calculus operators by Srivastava et al. (see [46]
and [47]; see also the references cited in each of these papers):

Eγ,κ,δ,ε
(α j,β j)m

[z] = Eγ,κ,δ,ε

[
(α j, β j)m

j=1; z
]

:=
∞∑

n=0

(γ)κn (δ)εn
m∏

j=1
Γ(α jn + β j)

zn

n!
(1.5)

(
α j, β j, γ, κ, δ, ε ∈ C; <(α j) > 0 ( j = 1, . . . ,m); <

( m∑
j=1

α j

)
> <(κ + ε) − 1

)
,
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where (λ)ν denotes the general Pochhammer symbol or the shifted factorial, since

(1)n = n! (n ∈ N0 := N ∪ {0}; N := {1, 2, 3, . . .}),

defined (for λ, ν ∈ C and in terms of the familiar Gamma function) by

(λ)ν :=
Γ(λ + ν)

Γ(λ)
=


1 (ν = 0; λ ∈ C \ {0})

λ(λ + 1) · · · (λ + n − 1) (ν = n ∈ N; λ ∈ C) ,
(1.6)

it being assumed conventionally that (0)0 := 1 and understand tacitly that the Γ-quotient in (1.6) exists.
Some of the special cases of the multi-index Mittag-Leffler function:

Eγ,κ,ε

[
(α j, β j)m

j=1; z
]

include (for example) the following generalizations of the Mittag-Leffler type functions:

(i) By using the relation between the Gamma function and the Pochhammer symbol in (1.6), the case
when m = 2, δ = ε = 1, κ = q, α1 = α, β1 = β, and α2 = p, and β2 = δ, the definition (1.5) would
correspond to [Γ(δ)]−1 times the Mittag-Leffler type function Eγ,δ,q

α,β,p(z), which was considered by Salim
and Faraj [48].

(ii) A special case of the multi-index Mittag-Leffler function defined by (1.5) when m = 2 can be
shown to correspond to the Mittag-Leffler function Eγ,κ

α,β(z), which was introduced by Srivastava and
Tomovski [49] (see also [50]).

(iii) For m = 2 and κ = 1, the multi-index Mittag-Leffler function defined by (1.5) would readily
correspond to the Mittag-Leffler type function Eγ

α,β(z), which was studied by Prabhakar [51].
We now turn to the familiar Fox-Wright hypergeometric function pΨq(z) (with p numerator and q

denominator parameters), which is given by the following series (see Fox [52] and Wright [53,54]; see
also [1, p. 67, Eq (1.12 (68)] and [55, p. 21, Eq 1.2 (38)]):

pΨq


(α1, A1), . . . , (αp, Ap);

(β1, B1), . . . , (βq, Bq);
z

 :=
∞∑

n=0

p∏
j=1

Γ(α j + A jn)

q∏
k=1

Γ(βk + Bkn)

zn

n!

=

p∏
j=1

Γ(α j)

q∏
k=1

Γ(βk)

∞∑
n=0

p∏
j=1

(
α j

)
A jn

q∏
k=1

(βk)Bkn

zn

n!
, (1.7)

in which we have made use of the general Pochhammer symbol (λ)ν (λ, ν ∈ C) defined by (1.6), the
parameters

α j, βk ∈ C ( j = 1, . . . , p; k = 1, · · · , q)

and the coefficients
A1, . . . , Ap ∈ R

+ and B1, . . . , Bq ∈ R
+
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are so constrained that

1 +

q∑
k=1

Bk −

p∑
j=1

A j = 0, (1.8)

with the equality for appropriately constrained values of the argument z. Thus, if we compare the
definition (1.5) of the general multi-index Mittag-Leffler function:

Eγ,κ,δ,ε

[
(α j, β j)m

j=1; z
]

with the definition in (1.7), it immediately follows that

Eγ,κ,δ,ε
(α j,β j)m

[z] = Eγ,κ,δ,ε

[
(α j, β j)m

j=1; z
]

=
1

Γ(γ)Γ(δ) 2Ψm


(γ, κ), (δ, ε);

(β1, α1), . . . , (βm, αm);
z

 . (1.9)

In particular, for the above-mentioned Mittag-Leffler type functions Eγ,δ,q
α,β,p(z), Eγ,κ

α,β(z) and Eγ
α,β(z), we

have the following relationships with the Fox-Wright hypergeometric function defined by (1.7):

Eγ,δ,q
α,β,p(z) =

Γ(δ)
Γ(γ) 2Ψ2


(1, 1), (γ, q);

(δ, p), (β, α);
z

 , (1.10)

Eγ,κ
α,β(z) =

1
Γ(γ) 1Ψ1


(γ, κ);

(β, α);
z

 (1.11)

and

Eγ
α,β(z) =

1
Γ(γ) 1Ψ1


(γ, 1);

(β, α);
z

 . (1.12)

The relationships in (1.9), (1.10), (1.11) and (1.12) exhibit the fact that, not only this general multi-
index Mittag-Leffler function defined by (1.5), but indeed also all of the above-mentioned Mittag-
Leffler type functions and many more, are contained, as special cases, in the the extensively- and
widely-investigated Fox-Wright hypergeometric function pΨq(z) defined by (1.7). The interested reader
will find it to be worthwhile to refer also to the aforecited work of Srivastava and Tomovski [49, p. 199]
for similar remarks about the much more general nature of the Fox-Wright hypergeometric function
pΨq(z) than any of these Mittag-Leffler type functions.

It should be mentioned in passing that, not only Fox-Wright hypergeometric function pΨq(z) defined
by (1.7), but also much more general functions such as (for example) the Meijer G-function and the
Fox H-function, have already been used as kernels of various families of fractional-calculus operators
(see, for details, [56–58]; see also the references cited therein). In fact, Srivastava et al. [57] not only
used the Riemann-Liouville type fractional integrals with the Fox H-function and the Fox-Wright
hypergeometric function pΨq(z) as kernels, but also applied their results to the substantially more
general H-function (see, for example, [59, 60]).

Our present investigation is based essentially upon the operators of the fractional integrals of the
Riemann-Liouville type (1.2), which are defined below.
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Definition 1.1 (see [61]). For a given L1-function ϕ on an interval [b1, b2], the general left-side and
right-side fractional integral operators, applied to ϕ(z), are defined for λ, ρ > 0 and w ∈ R by(

Jσ
ρ,λ,b1+;wϕ

)
(z) =

∫ z

b1

(z − ξ)λ−1
F σ
ρ,λ

[
w(z − ξ)ρ

]
ϕ(ξ) dξ (z > b1) (1.13)

and (
Jσ
ρ,λ,b2−;wϕ

)
(z) =

∫ b2

z
(ξ − z)λ−1

F σ
ρ,λ

[
w(ξ − z)ρ

]
ϕ(ξ) dξ (z < b2) , (1.14)

where the function ϕ is so constrained that the integrals on the right-hand sides exit and F σ
ρ,λ is the

modified Mittag-Leffler function given by (see [62])

F σ
ρ,λ(z) = F

σ(0),σ(1),...
ρ,λ (z) =

∞∑
n=0

σ(n)
Γ (ρn + λ)

zn, (1.15)

where ρ, λ > 0, |z| < R, and {σ(n)}n∈N0 is a bounded sequence in the real-number set R.

The definition (1.15) should be credited, in fact, to Wright [63, p. 424] who studied this function
rather systematically as long ago as 1940.

Remark 1.1. Obviously, if we set

σ(n) =

p∏
j=1

Γ(α j + A jn)

Γ(n + 1)
q∏

k=1
Γ(βk + Bkn)

(n ∈ N0) (1.16)

in the definition (1.15), we are led to the following special case:

F σ
ρ,λ(z) = pΨq+1


(α1, A1), . . . , (αp, Ap);

(λ, ρ), (β1, B1), . . . , (βq, Bq);
z

 (1.17)

in terms of the Fox-Wright hypergeometric function pΨq(z) defined by (1.7).

A slightly modified version of the fractional integrals in Definition 1.1, which we find to be
convenient to use in this paper, is given by Definition 1.2 below.

Definition 1.2 (The ν-modified fractional integral operators). For a given L1-function ϕ on an interval
[b1, b2], the general left-side and right-side fractional integral operators, applied to ϕ(z), are defined for
λ, ρ, ν > 0 and w ∈ R by(

J
σ,ν
ρ,λ,b1+;wϕ

)
(z) =

∫ z

b1

(z − ξ)
λ
ν−1
F σ
ρν,λ

[
w(z − ξ)ρ

]
ϕ(ξ) dξ (z > b1) (1.18)

and (
J

σ,ν
ρ,λ,b2−;wϕ

)
(z) =

∫ b2

z
(ξ − z)

λ
ν−1
F σ
ρν,λ

[
w(ξ − z)ρ

]
ϕ(ξ) dξ (z < b2) , (1.19)

provided that each of the integrals in (1.18) and (1.19) exists.
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Remark 1.2. If we set ν = 1 in Definition 1.2, then we can immediately obtain Definition 1.1.

Remark 1.3. It is easy to verify that

J
σ,ν
ρ,λ,b1+;wϕ and J

σ,ν
ρ,λ,b2−;wϕ

are bounded integral operators on L1(b1, b2) if

M := F σ
ρν,λ+1 [w(b2 − b1)ρ] < ∞.

In fact, for ϕ ∈ L1 (b1, b2) , we have∥∥∥∥Jσ,ν
ρ,λ,b1+;wϕ

∥∥∥∥
1
5 M ‖ϕ‖1 and

∥∥∥∥Jσ,ν
ρ,λ,b2−;wϕ

∥∥∥∥
1
5 M ‖ϕ‖1 ,

where

‖ϕ‖p =

(∫ b2

b1

|ϕ(z)|p dz
)1/p

.

Remark 1.4. In view of the generality of the sequence {σ(n)}n∈N0 , the fractional integral operators
given by Definition 1.1 and Definition 1.2 can be appropriately specialized to yield all those Riemann-
Liouville type fractional integrals involving not only the Fox-Wright hypergeometric function pΨq(z)
kernel given by (1.17), but also involving all those multi-index Mittag-Leffler type kernels which are
further special cases of the Fox-Wright hypergeometric function pΨq(z) defined by (1.7).

There exist many classes integral inequalities related to the fractional integral operators given
by Definition 1.1 (see, for example, [64–68]). Our objective in this work is to present a study of
Chebyshev’s inequality in terms of the fractional integrals given by Definition 1.2. We also apply our
results to deduce several results by following the lines used in some of the earlier works.

2. Main results and their consequences

Throughout our study, we suppose that {σ(n)}n∈N0 is a sequence of non-negative real numbers.

Theorem 2.1. Let λ, ρ, ν > 0 and w ∈ R. Also let ζ1 and ζ2 be two synchronous functions on [0,∞).
Then

J
σ,ν
ρ,λ,0+;w(ζ1ζ2)(ξ) =

ξ−
λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w(ζ1)(ξ)Jσ,ν

ρ,λ,0+;w(ζ2)(ξ) (∀ ξ > 0).

Proof. Since the functions ζ1 and ζ2 are synchronous on [0,∞), we find for r, s = 0 that

(ζ1(r) − ζ1(s))(ζ2(r) − ζ2(s)) = 0.

It follows that
ζ1(r)ζ2(r) + ζ1(s)ζ2(s) = ζ1(r)ζ2(s) + ζ1(s)ζ2(r). (2.1)

By multiplying both sides of (2.1) by

(ξ − r)
λ
ν−1
F σ
ρν,λ

[
w(ξ − r)ρ

]
AIMS Mathematics Volume 6, Issue 10, 11167–11186.
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with r ∈ (0, ξ), we can deduce that

(ξ − r)
λ
ν−1
F σ
ρν,λ

[
w(ξ − r)ρ

]
ζ1(r)ζ2(r) + (ξ − r)

λ
ν−1
F σ
ρν,λ

[
w(ξ − r)ρ

]
ζ1(s)ζ2(s)

= (ξ − r)
λ
ν−1
F σ
ρν,λ

[
w(ξ − r)ρ

]
ζ1(r)ζ2(s) + (ξ − r)

λ
ν−1
F σ
ρν,λ

[
w(ξ − r)ρ

]
ζ1(s)ζ2(r),

which, upon integration over r ∈ (0, ξ), yields∫ ξ

0
(ξ − r)

λ
ν−1
F σ
ρν,λ

[
w(ξ − r)ρ

]
ζ1(r)ζ2(r) dr +

∫ ξ

0
(ξ − r)

λ
ν−1
F σ
ρν,λ

[
w(ξ − r)ρ

]
ζ1(s)ζ2(s) dr

=

∫ ξ

0
(ξ − r)

λ
ν−1
F σ
ρν,λ

[
w(ξ − r)ρ

]
ζ1(r)ζ2(s) dr

+

∫ ξ

0
(ξ − r)

λ
ν−1
F σ
ρν,λ

[
w(ξ − r)ρ

]
ζ1(s)ζ2(r) dr

or, equivalently,

J
σ,ν
ρ,λ,0+;w(ζ1ζ2)(ξ) + ζ1(s)ζ2(s)

∫ ξ

0
(ξ − r)

λ
ν−1
F σ
ρν,λ

[
w(ξ − r)ρ

]
dr

= ζ2(s)Jσ,ν
ρ,λ,0+;w(ζ1)(ξ) + ζ1(s)Jσ,ν

ρ,λ,0+;w(ζ2)(ξ).

Consequently, we have

J
σ,ν
ρ,λ,0+;w(ζ1ζ2)(ξ) + νζ1(s)ζ2(s)ξ

λ
νF σ

ρν,λ+1
[
w(ξ)ρ

]
= ζ2(s)Jσ,ν

ρ,λ,0+;w(ζ1)(ξ) + ζ1(s)Jσ,ν
ρ,λ,0+;w(ζ2)(ξ).

We now multiply this last inequality by

(ξ − s)
λ
ν−1
F σ
ρν,λ

[
w(ξ − s)ρ

]
with s ∈ (0, ξ), so that

(ξ − s)
λ
ν−1
F σ
ρν,λ

[
w(ξ − s)ρ

]
J

σ,ν
ρ,λ,0+;w(ζ1ζ2)(ξ)

+ ν (ξ − s)
λ
ν−1
F σ
ρν,λ

[
w(ξ − s)ρ

]
ζ1(s)ζ2(s)ξ

λ
νF σ

ρν,λ+1
[
w(ξ)ρ

]
= (ξ − s)

λ
ν−1
F σ
ρν,λ

[
w(ξ − s)ρ

]
ζ2(s)Jσ,ν

ρ,λ,0+;w(ζ1)(ξ)

+ (ξ − s)
λ
ν−1
F σ
ρν,λ

[
w(ξ − s)ρ

]
ζ1(s)Jσ,ν

ρ,λ,0+;w(ζ2)(ξ),

which, by integrating over s ∈ (0, ξ), yields

J
σ,ν
ρ,λ,0+;w(ζ1ζ2)(ξ)

∫ ξ

0
(ξ − s)

λ
ν−1
F σ
ρν,λ

[
w(ξ − s)ρ

]
ds

+ νξ
λ
νF σ

ρν,λ+1
[
w(ξ)ρ

] ∫ ξ

0
(ξ − s)

λ
ν−1
F σ
ρν,λ

[
w(ξ − s)ρ

]
ζ1(s)ζ2(s) ds

= Jσ,ν
ρ,λ,0+;w(ζ1)(ξ)

∫ ξ

0
(ξ − s)

λ
ν−1
F σ
ρν,λ

[
w(ξ − s)ρ

]
ζ2(s) ds

AIMS Mathematics Volume 6, Issue 10, 11167–11186.
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+Jσ,ν
ρ,λ,0+;w(ζ2)(ξ)

∫ ξ

0
(ξ − s)

λ
ν−1
F σ
ρν,λ

[
w(ξ − s)ρ

]
ζ1(s) ds.

If we simplify this last inequality, we get

J
σ,ν
ρ,λ,0+;w(ζ1ζ2)(ξ) =

ξ−
λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w(ζ1)(ξ)Jσ,ν

ρ,λ,0+;w(ζ2)(ξ),

which completes our proof of Theorem 2.1. �

Remark 2.1. If we take ν = 1 in Theorem 2.1, we obtain [21, Theorem 2] or [22, Corollary 3.11].

Remark 2.2. If we consider the interval [b1,∞) (b1 > 0 instead of the interval [0,∞) in Theorem 2.1
with slight modifications in the proof, then we can find that

J
σ,ν
ρ,λ,b1+;w(ζ1ζ2)(ξ) =

ξ−
λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,b1+;w(ζ1)(ξ)Jσ,ν

ρ,λ,b1+;w(ζ2)(ξ) (ξ > b1).

Remark 2.3. By appropriately specializing the parameters involved in Theorem 2.1 or Remark 2.2,we
can derive a number of known or new results including (for example) the known result [69, Theorem
3.1] Moreover, if we set λ = µ (λ, µ > 0), σ(0) = ν = 1 and w = 0 in Remark 2.2, we can obtain

I
µ
b1+

(ζ1ζ2)(ξ) =
Γ(µ + 1)

ξµ
I
µ
b1+

(ζ1)(ξ)Iµb1+
(ζ2)(ξ).

Additionally, if µ = ν = 1 and ξ = b2 with b2 > b1, then we can obtain (2.1). Furthermore, as
we pointed out in Remark 1.4, with appropriate choices of, and under sufficient conditions on, the
arguments and the parameters involved, we can express the result of Theorem 2.1 in terms of fractional
integrals with the Fox-Wright hypergeometric function pΨq(z) , given by (1.7), (1.16) and (1.17), but
also in terms of the aforementioned Mittag-leffler type kernels such as

Eγ,κ,ε

[
(α j, β j)m

j=1; z
]
,

given by (1.5) and (1.9), as well as its further special cases:

Eγ,δ,q
α,β,p(z), Eγ,κ

α,β(z) and Eγ
α,β(z),

given by (1.10), (1.11) and (1.12), respectively. The details of these and other derivations from
Theorem 2.1 or Remark 2.2 are fairly straightforward, so we choose to omit the details involved.

We next state and prove Theorem 2.2 below.

Theorem 2.2. Let λ, ρ, ν > 0 and w ∈ R. Also let {ζi}
n
i=1 be n positive and increasing functions defined

on [0,∞). Then

J
σ,ν
ρ,λ,0+;w

 n∏
i=1

ζi

 (ξ) =
 ξ−

λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]n−1 n∏
i=1

J
σ,ν
ρ,λ,0+;w (ζi) (ξ) (∀ ξ > 0). (2.2)
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Proof. The proof will make use of the principle of mathematical induction. Firstly, for n = 1, we have

J
σ,ν
ρ,λ,0+;w (ζ1) (ξ) = Jσ,ν

ρ,λ,0+;w (ζ1) (ξ) (∀ ξ > 0).

In the case when n = 2, by making use of Theorem 2.1, we have

J
σ,ν
ρ,λ,0+;w(ζ1ζ2)(ξ) =

ξ−
λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w(ζ1)(ξ)Jσ,ν

ρ,λ,0+;w(ζ2)(ξ) (∀ ξ > 0).

We now assume that the inequality (2.2) holds true for some n ∈ N. Then, since the n functions
{ζi}

n
i=1 are positive and increasing on [0,∞),

∏n
i=1 ζi is also an increasing function. Hence, we can apply

Theorem 2.1 with

ζ1 =

n−1∏
i=1

ζi and ζ2 = ζn

in order to obtain

J
σ,ν
ρ,λ,0+;w

 n∏
i=1

ζi

 (ξ) = Jσ,ν
ρ,λ,0+;w (ζ1ζ2) (ξ)

=
ξ−

λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w (ζ1) (ξ)Jσ,ν

ρ,λ,0+;w (ζ2) (ξ)

=
ξ−

λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w

 n−1∏
i=1

ζi

 (ξ)Jσ,ν
ρ,λ,0+;w (ζn) (ξ).

Thus, if we make use of our assumed inequality (2.2) in the last inequality, we have

J
σ,ν
ρ,λ,0+;w

 n∏
i=1

ζi

 (ξ)

=

 ξ−
λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]  ξ−
λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

](n−1)−1

·

n−1∏
i=1

J
σ,ν
ρ,λ,0+;w (ζi) (ξ)Jσ,ν

ρ,λ,0+;w (ζn) (ξ)

=

 ξ−
λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]n−1

J
σ,ν
ρ,λ,0+;w

 n∏
i=1

ζi

 (ξ).

This completes our proof of Theorem 2.2. �

Remark 2.4. If we set ν = 1 in Theorem 2.2, we obtain [21, Theorem 4].

Remark 2.5. Several particular cases can be obtained from Theorem 2.2 for the right-side Riemann-
Liouville fractional integral operator in Definition 1.1. For example, if we put λ = µ (λ, µ > 0),
σ(0) = ν = 1 and w = 0 in Theorem 2.2, we can obtain the following result:

I
µ
0+

 n∏
i=1

ζi

 (ξ) =
(
Γ(µ + 1)

ξµ

)n−1 n∏
i=1

I
µ
0+

(ζi) (ξ),
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which was considered in in [69, Theorem 3.3]. Moreover, just as we pointed out in Remark 2.3, with
appropriate choices of, and under sufficient conditions on, the parameters and the arguments involved,
we can express the result of Theorem 2.2 in terms of fractional integrals with the aforementioned
Mittag-leffler type kernels:

Eγ,δ,q
α,β,p(z), Eγ,κ

α,β(z) and Eγ
α,β(z),

given by (1.10), (1.11) and (1.12), respectively. The details involved are being skipped here.

We next state and prove Theorem 2.3 below.

Theorem 2.3. Let λ, ρ, ν > 0 and w ∈ R. Also let ζ1, ζ2 be two functions such that ζ1 is increasing and
ζ2 is differentiable. If there exists a real number m with m = infξ=0 ζ2

′(ξ), then

J
σ,ν
ρ,λ,0+;w (ζ1ζ2) (ξ) =

ξ−
λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w (ζ1) (ξ)Jσ,ν

ρ,λ,0+;w (ζ2) (ξ)

−
mξF σ

ρν,λ+2[wξρ]

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w (ζ1) (ξ) +mJσ,ν

ρ,λ,0+;w (Id ζ1) (ξ) (∀ ξ > 0),

where
Id(ξ) = ξ and (Id ζ1)(ξ) = Id(ξ) · ζ1(ξ) = ξ · ζ1(ξ).

Proof. Let us define the following function:

h(ξ) B ζ2(ξ) −m Id(ξ),

where Id(ξ) = ξ. One can easily verify that h is an increasing and differentiable function on [0,∞).
Then, by using Theorem 2.1, we have

J
σ,ν
ρ,λ,0+;w (ζ1h) (ξ) =

ξ−
λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w (ζ1) (ξ)Jσ,ν

ρ,λ,0+;w (h) (ξ)

=
ξ−

λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w (ζ1) (ξ)

(
J

σ,ν
ρ,λ,0+;w (ζ2) (ξ) −mJσ,ν

ρ,λ,0+;w(Id)(ξ)
)

=
ξ−

λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w (ζ1) (ξ)Jσ,ν

ρ,λ,0+;w (ζ2) (ξ)

−
mξF σ

ρν,λ+2[wξρ]

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w (ζ1) (ξ).

Moreover, since
J

σ,ν
ρ,λ,0+;w (ζ1h) (ξ) = Jσ,ν

ρ,λ,0+;w (ζ1ζ2) (ξ) −mJσ,ν
ρ,λ,0+;w (Idζ1) (ξ),

it follows that

J
σ,ν
ρ,λ,0+;w (ζ1ζ2) (ξ) =

ξ−
λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w (ζ1) (ξ)Jσ,ν

ρ,λ,0+;w (ζ2) (ξ)

−
mξF σ

ρν,λ+2[wξρ]

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w (ζ1) (ξ) +mJσ,ν

ρ,λ,0+;w (Idζ1) (ξ).

This evidently completes our proof of Theorem 2.3. �
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Remark 2.6. Upon setting ν = 1 in Theorem 2.3, we obtain [21, Theorem 5].

Corollary 2.1. Let λ, ρ, ν > 0 and w ∈ R. Also let ζ1 and ζ2 be two functions such that ζ1 is increasing
and ζ2 is differentiable. If there is a real number M with M = supξ=0 ζ2

′(ξ), then

J
σ,ν
ρ,λ,0+;w (ζ1ζ2) (ξ) =

ξ−
λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w (ζ1) (ξ)Jσ,ν

ρ,λ,0+;w (ζ2) (ξ)

−
MξF σ

ρν,λ+2[wξρ]

νF σ
ρν,λ+1

[
w(ξ)ρ

]Jσ,ν
ρ,λ,0+;w (ζ1) (ξ) + MJσ,ν

ρ,λ,0+;w (Idζ1) (ξ) (∀ ξ > 0),

where Id(ξ) is as defined in Theorem 2.3.

Proof. By the same technique as that used for proving Theorem 2.3, together with

h(ξ) B ζ2(ξ) − MId(ξ),

we can obtain the desired result asserted by Corollary 2.1. �

Corollary 2.2. Let λ, ρ, ν > 0 and w ∈ R. Also let ζ1 and ζ2 be two functions such that ζ1 is increasing
and both ζ1 and ζ2 are differentiable. If there exist real numbers m1 and m2 with

m1 = inf
ξ=0

ζ1
′(ξ) and m2 = inf

ξ=0
ζ2
′(ξ),

then

J
σ,ν
ρ,λ,0+;w (ζ1ζ2) (ξ) − m1J

σ,ν
ρ,λ,0+;w (Id ζ2) (ξ)

− m2J
σ,ν
ρ,λ,0+;w (Idζ1) (ξ) + m1m2J

σ,ν
ρ,λ,0+;w

(
Id2

)
(ξ)

=
ξ−

λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

][Jσ,ν
ρ,λ,0+;w (ζ1) (ξ)Jσ,ν

ρ,λ,0+;w (ζ2) (ξ) − m1J
σ,ν
ρ,λ,0+;w (Id) (ξ)Jσ,ν

ρ,λ,0+;w (ζ1) (ξ)

− m2J
σ,ν
ρ,λ,0+;w (Id) (ξ)Jσ,ν

ρ,λ,0+;w (ζ2) (ξ) + m1m2

(
J

σ,ν
ρ,λ,0+;w (Id) (ξ)

)2
]
,

where (Id)(ξ) is defined as in Theorem 2.3.

Proof. By the same technique used for Theorem 2.3 with the setting

h1(ξ) B ζ2(ξ) − m1Id(ξ) and h2(ξ) B ζ2(ξ) − m2Id(ξ),

we can obtain the desired result asserted by Corollary 2.2. �

Corollary 2.3. Let λ, ρ, ν > 0 and w ∈ R. Also let ζ1 and ζ2 be such functions that ζ1 is increasing and
both ζ1 and ζ2 are differentiable. If there exist real numbers

M1 = sup
ξ=0

ζ1
′(ξ) and M2 = sup

ξ=0
ζ2
′(ξ),

then

J
σ,ν
ρ,λ,0+;w (ζ1ζ2) (ξ) − M1J

σ,ν
ρ,λ,0+;w (Idζ2) (ξ)
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− M2J
σ,ν
ρ,λ,0+;w (Idζ1) (ξ) + M1M2J

σ,ν
ρ,λ,0+;w

(
Id2

)
(ξ)

=
ξ−

λ
ν

νF σ
ρν,λ+1

[
w(ξ)ρ

][Jσ,ν
ρ,λ,0+;w (ζ1) (ξ)Jσ,ν

ρ,λ,0+;w (ζ2) (ξ) − M1J
σ,ν
ρ,λ,0+;w (Id) (ξ)Jσ,ν

ρ,λ,0+;w (ζ1) (ξ)

− M2J
σ,ν
ρ,λ,0+;w (Id) (ξ)Jσ,ν

ρ,λ,0+;w (ζ2) (ξ) + M1M2

(
J

σ,ν
ρ,λ,0+;w (Id) (ξ)

)2
]
,

where (Id)(ξ) is defined as in Theorem 2.3.

Proof. By the same technique used for proving Theorem 2.3 with the setting

h1(ξ) B ζ2(ξ) − M1Id(ξ) and h2(ξ) B ζ2(ξ) − M2Id(ξ),

we can derive the desired result asserted by Corollary 2.3. �

Theorem 2.4. Let λ, ρ, ν1 > 0 and w ∈ R. Also let h be a positive function on [0,∞) and suppose that
ζ1 and ζ2 are two differentiable functions on [0,∞). If ζ1

′ ∈ Lr[0,∞) and ζ2
′ ∈ Ls[0,∞) with r > 1 and

r−1 + s−1 = 1, then

2
∣∣∣∣Jσ,ν1

ρ,λ,0+;w(hζ1ζ2)(z)Jσ,ν1
ρ,λ,0+;w(h)(z) − Jσ,ν1

ρ,λ,0+;w(hζ1)(z)Jσ,ν1
ρ,λ,0+;w(hζ2)(z)

∣∣∣∣
5 ‖ζ1

′‖r · ‖ζ2
′‖s · z

∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]

× F σ
ρν1,λ

[w(z − τ)ρ]h(ν)h(τ) dτ dν

5 ‖ζ1
′‖r · ‖ζ2

′‖s · z
(
J

σ,ν1
ρ,λ,0+;w(h)(z)

)2
. (2.3)

Proof. Let h, ζ1 and ζ2 be three functions that fulfill the hypotheses of Theorem 2.4. We define

H(τ, ν) B (ζ1(τ) − ζ1(ν))(ζ2(τ) − ζ2(ν))
(
τ, ν ∈ (0, z); z > 0

)
. (2.4)

If we first multiply (2.4) by
(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − τ)ρ]h(τ)

with τ ∈ (0, z), and then integrate over τ ∈ (0, z), we get∫ z

0
(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − τ)ρ]h(τ)H(τ, ν) dτ

= J
σ,ν1
ρ,λ,0+;w(hζ1ζ2)(z) − ζ1(ν)Jσ,ν1

ρ,λ,0+;w(hζ2)(z)

− ζ2(ν)Jσ,ν1
ρ,λ,0+;w(hζ1)(z) + ζ1(ν)ζ2(ν)Jσ,ν1

ρ,λ,0+;w(h)(z). (2.5)

We now multiply both sides of (2.5) by

(z − ν)
λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]h(ν)

with ν ∈ (0, z), and then integrate over ν ∈ (0, z). Upon some simplication, we thus find that

∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ]h(ν)h(τ)H(τ, ν) dτ dν
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= 2
(
J

σ,ν1
ρ,λ,0+;w(hζ1ζ2)(z)Jσ,ν1

ρ,λ,0+;w(h)(z) − Jσ,ν1
ρ,λ,0+;w(hζ1)(z)Jσ,ν1

ρ,λ,0+;w(hζ2)(z)
)
. (2.6)

In view of the following known result:

H(τ, ν) =

∫ ν

τ

∫ ν

τ

ζ1
′(u)ζ2

′(v) du dv,

if we use the Hölder’s inequality for double integrals, we have

|H(τ, ν)| 5
∣∣∣∣∣∫ ν

τ

∫ ν

τ

|ζ1
′(u)|r dudv

∣∣∣∣∣1/r ∣∣∣∣∣∫ ν

τ

∫ ν

τ

|ζ2
′(u)|s du dv

∣∣∣∣∣1/s

= |τ − ν|

∣∣∣∣∣∫ ν

τ

|ζ1
′(u)|r du

∣∣∣∣∣1/r ∣∣∣∣∣∫ ν

τ

|ζ2
′(v)|s dv

∣∣∣∣∣1/s

. (2.7)

By using (2.7) in (2.6), we can deduce that∣∣∣∣∣∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ]h(ν)h(τ)H(τ, ν) dτ dν
∣∣∣∣∣

5

∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ]h(ν)h(τ) |H(τ, ν)| dτ dν

5

∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ]

× |τ − ν| h(ν)h(τ)
∣∣∣∣∣∫ ν

τ

|ζ1
′(u)|r du

∣∣∣∣∣1/r ∣∣∣∣∣∫ ν

τ

|ζ2
′(v)|s dv

∣∣∣∣∣1/s

dτ dν. (2.8)

By applying the Hölder’s inequality to the right-hand side of (2.8), we get∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ]h(ν)h(τ) |H(τ, ν)| dτ dν

5

( ∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ]

× |τ − ν| h(ν)h(τ)
∣∣∣∣∣∫ ν

τ

|ζ1
′(u)|r du

∣∣∣∣∣ dτ dν
)1/r (∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1

× F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ] |τ − ν| h(ν)h(τ)
∣∣∣∣∣∫ ν

τ

|ζ2
′(v)|s dv

∣∣∣∣∣ dτ dν
)1/s

, (2.9)

which, by using the fact that ζ1
′ ∈ Lr[0,∞) and ζ2

′ ∈ Ls[0,∞), yields∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ]h(ν)h(τ) |H(τ, ν)| dτ dν

5

(
‖ζ1
′‖rr

∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ] |τ − ν| h(ν)h(τ) dτ dν
)1/r

×

(
‖ζ2
′‖ss

∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]
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× F σ
ρν1,λ

[w(z − τ)ρ] |τ − ν| h(ν)h(τ) dτ dν
)1/s

. (2.10)

Since r−1 + s−1 = 1, it follows that∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ]h(ν)h(τ) |H(τ, ν)| dτ dν

5 ‖ζ1
′‖r · ‖ζ2

′‖s

( ∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1

× F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ] |τ − ν| h(ν)h(τ) dτ dν
)
. (2.11)

Therefore, by using (2.8) and (2.11), we can obtain the first inequality in (2.3).
On the other hand, by using the fact that 0 < |τ − ν| < z, we can write∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1
F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ]h(ν)h(τ) |H(τ, ν)| dτ dν

5 ‖ζ1
′‖r · ‖ζ2

′‖s · z
(∫ z

0

∫ z

0
(z − ν)

λ
ν1
−1(z − τ)

λ
ν1
−1

× F σ
ρν1,λ

[w(z − ν)ρ]F σ
ρν1,λ

[w(z − τ)ρ]h(ν)h(τ) dτ dν
)

= ‖ζ1
′‖r · ‖ζ2

′‖s · z
(
J

σ,ν1
ρ,λ,0+;w(h)(z)

)2
, (2.12)

which gives the second inequality in (2.3). The proof of Theorem 2.4 is thus completed. �

Corollary 2.4. Let λ, ρ, ν > 0 and w ∈ R. Also let the functions ζ1 and ζ2 be differentiable on [0,∞). If

ζ1
′ ∈ Lr[0,∞) and ζ2

′ ∈ Ls[0,∞)

with r > 1 and r−1 + s−1 = 1, then∣∣∣∣∣∣∣∣Jσ,ν
ρ,λ,0+;w(ζ1ζ2)(z) −

1(
F σ
ρν,λ+1(z)

)Jσ,ν
ρ,λ,0+;w(ζ1)(z)Jσ,ν

ρ,λ,0+;w(ζ2)(z)

∣∣∣∣∣∣∣∣
5

1
2
‖ζ1
′‖r · ‖ζ2

′‖s · z
(
F σ
ρν,λ+1(z)

)
. (2.13)

Proof. The proof of Corollary 2.4 follows by applying Theorem 2.4 for h = 1. �

Remark 2.7. Some particularly simple cases of Theorem 2.4 are given below.

• If λ = µ, σ(0) = ν1 = 1, σ(k) = 0 (k ∈ N) and w = 0 in Theorem 2.4, then we obtain the
following inequality for the Riemann–Liouville fractional integral:

|Iµ(ζ1ζ2)(z)Iµ(h)(z) − Iµζ1(z)Iµ(ζ2)(z)| 5
1
2
‖ζ1
′‖r · ‖ζ2

′‖s · z (Iµ(h)(z))2 ,

which was given in [70, Theorem 3.1].
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• If we take h = 1 and ν1 = 1 in Theorem 2.4, we get∣∣∣∣∣ zµ

Γ(µ + 1)
Iµ(ζ1ζ2)(z) − Iµζ1(z)Iµ(ζ2)(z)

∣∣∣∣∣ 5 1
2
‖ζ1
′‖r · ‖ζ2

′‖s
z2µ+1

[Γ(µ + 1)]2 ,

which was derived in [70, Corollary 3.3].
• Just as we pointed out in Remark 1.4, with appropriate choices of, and under sufficient conditions

on, the arguments and the parameters involved, we can express the result of Theorem 2.4 in terms
of fractional integrals with kernels involving not only the Fox–Wright hypergeometric function
pΨq(z) , given by (1.7), (1.16) and (1.17), but also in terms of the aforementioned Mittag–Leffler
type kernels such as

Eγ,κ,ε

[
(α j, β j)m

j=1; z
]
,

given by (1.5) and (1.9), as well as its further special cases:

Eγ,δ,q
α,β,p(z), Eγ,κ

α,β(z) and Eγ
α,β(z),

given by (1.10), (1.11) and (1.12), respectively. The details of these and various other deductions
and derivations from Theorem 2.4 are being left as an exercise for the interested reader.

3. Conclusions

In the development of the present work, the Chebyshev inequality was established via a certain
family of modified fractional integral operators in Theorem 2.1. Moreover, Chebyshev’s inequality was
proved for more than two functions in Theorem 2.2. Several inequalities of this type were established
in Theorem 2.3 as well as in and Corollaries 2.1, Corollary 2.2 and 2.3 for functions whose derivatives
are bounded above or bounded below. Furthermore, an estimate for the Chebyshev functional was
established in Theorem 2.4 by using the above-mentioned family of modified fractional integrals.
Finally, from the main results, similar inequalities can be deduced for each of the aforementioned
simpler Riemann-Liouville fractional integrals with other specialized Fox-Wright and Mittag-Leffler
type kernels.
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Ciencia, Innovaci ón y Universidades, grant number PGC2018-097198-B-I00, and by Fundaci ón
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34. E. İlhan, İ. O. Kıymaz, A generalization of truncated M-fractional derivative and applications to

fractional differential equations, Appl. Math. Nonlinear Sci., 5 (2020), 171–188.
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50. Ž. Tomovski, R. Hilfer, H. M. Srivastava, Fractional and operational calculus with generalized
fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct.,
21 (2010), 797–814.

51. T. R. Prabhakar, A singular integral equation With a generalized Mittag-Leffler function in the
kernel, Yokohama Math. J., 19 (1971), 7–15.

52. C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. London Math.
Soc. (Ser. 2), 27 (1928), 389–400.

53. E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London
Math. Soc., 10 (1935), 286–293.

54. E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc.
London Math. Soc. (Ser. 2), 46 (1940), 389–408.

55. H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis
Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and
Toronto, 1985.

AIMS Mathematics Volume 6, Issue 10, 11167–11186.

https://doi.org/10.1002/mma.6188


11186

56. H. M. Srivastava, R. K. Saxena, Operators of fractional integration and applications, Appl. Math.
Comput., 118 (2001), 1–52.

57. H. M. Srivastava, P. Harjule, R. Jain, A general fractional differential equation associated with an
integral operator with the H-function in the kernel, Russian J. Math. Phys., 22 (2015), 112–126.

58. H. M. Srivastava, K. C. Gupta, S. P. Goyal, The H-Functions of One and Two Variables with
Applications, South Asian Publishers, New Delhi and Madras, 1982.

59. R. G. Buschman, H. M. Srivastava, The H-function associated with a certain class of Feynman
integrals, J. Phys. A: Math. Gen., 23 (1990), 4707–4710.

60. H. M. Srivastava, S. D. Lin, P. Y. Wang, Some fractional-calculus results for the H-function
associated with a class of Feynman integrals, Russian J. Math. Phys., 13 (2006), 94–100.

61. R. P. Agarwal, M. J. Luo, R. K. Raina, On Ostrowski type inequalities, Fasc. Math., 56 (2016),
5–27.

62. R. K. Raina, On generalized Wright’s hypergeometric functions and fractional calculus operator,
East Asian Math. J., 21 (2005), 191–203.

63. E. M. Wright, The asymptotic expansion of integral functions defined by Taylor series, Philos.
Trans. Roy. Soc. London Ser. A Math.Phys. Sci., 238 (1940), 423–451.

64. S. B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y. M. Chu, Integral inequalities via
Raina’s fractional integrals operator with respect to a monotone function, Adv. Differ. Equ., 2020
(2020), Article ID 647, 1–20.

65. J. Choi, P. Agarwal, Certain fractional integral inequalities involving hypergeometric operators,
East Asian Math. J., 30 (2014), 283–291.

66. J. E. H. Hernández, M. Vivas-Cortez, Hermite-Hadamard inequalities type for Raina’s fractional
integral operator using η-convex functions, Rev. Mat. Teor. Apl., 26 (2019), 1–19.

67. S. D. Purohit, R. K. Raina, Certain fractional integral inequalities involving the Gauss
hypergeometric function, Rev. Téc. Ing. Univ. Zulia, 37 (2014), 167–175.

68. D. Baleanu, A. Kashuri, P. O. Mohammed, B. Meftah, General Raina fractional integral
inequalities on coordinates of convex functions, Adv. Differ. Equ., 2021 (2021), Article ID 82,
1–23.

69. S. Belardi, Z. Dahmani, On some new fractional integral inequalities, JIPAM J. Inequal. Pure
Appl. Math., 10 (2009), 1–5.

70. Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev’s functional
involving a Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38–44.

© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 10, 11167–11186.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Main results and their consequences
	Conclusions

