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1. Introduction

In practical engineering application field, many controlled objects have natural second-order forms.
Generally speaking, we analyze and design the control system under the second-order model, but when
some conditions in practical applications are harsh or changed, or the model can not be simplified,
it is more in line with the objective reality that the controlled object is equivalent to a high-order
model. Therefore, the research on the control strategy of high-order systems is very significant and
has attracted much attention recently [1–3]. Moreover, high-order systems are widely used in real life,
including multi-body system control [4], large-scale flexible space structure controlled fluid mechanics
[5], damping gyroscope system [6], robot control design [7], and other applications [8–10].

Eigenstructure assignment is a major and significant subject in the research of control system
strategy. Compared with pole assignment, eigenstructure assignment can accurately grasp the
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comprehensive performance of the system, such as the system stability and the response speed of the
system to instructions [11, 12]. Hence, the research on eigenstructure assignment problem has always
been the focus of many scholars. At present, pieces of literature concentrates on the second-order
dynamic systems, and many effective results have been achieved in [13–16]. However, the above
literature are all about the second-order systems, the research on high-order systems are less.
In [17–19], Duan et al. have established a complete set of parametric methods for eigenstructure
assignment. Meanwhile, the robust eigenstructure assignment of high-order and descriptor high-order
systems is established in [20]. Besides, based on the eigenstructure assignment theory, Gu et al.
established parametric control methods for quasi-linear high-order and descriptor high-order systems
in [21–23].

In the eigenstructure assignment problem, we usually assign all the eigenvalues and the
corresponding eigenvectors of the original system, which is also called “entire eigenstructure
assignment”. However, in most cases, only a small number of eigenstructures do not meet the
requirements of the system. In this paper, we define this small number of eigenstructures as
“unsatisfactory eigenstructures”. Therefore, a natural idea is to replace the unsatisfactory
eigenstructures while leaving the satisfactory ones in the open-loop system. It has many applications
in real life. For example, in vibration systems, in order to eliminate the influence of unsatisfactory
eigenvalues on the system such as resonance, we need to reassign those unsatisfactory part, while
leaving the rest part unchanged in the original system [24]. This gives birth to the issue of partial
eigenstructure assignment (PESA). In the author’s work, the problem of PESA for high-order linear
time-invariant (LTI) systems is well considered. In our article, this problem is closely related to the
solutions of Sylvester matrix equations, and its generalized versions have been recently utilized in
applied linear algebra and is proved to be very practical in the areas related to this topic [25, 26].

As a result of the sophisticated characteristic of the high-order systems, the problem of PESA has
not been paid attention until recent years, and the current related achievements are few. Therefore, we
mainly list the latest research results on PESA in recent years. Yu proposed two orthogonal relations
to transform the PESA problem of second-order LTI systems into solving an “entire eigenstructure
assignment” problem with a low-order system in [27] and utilized gradient-based method to minimize
norms. Meanwhile, the state observer is innovatively added to estimate the system state for the PESA
problem by Silva et al. in power system [28]. Combined with parametric method, the observed states
are directly used as inputs to the controller. Recently, a new type of PESA algorithm aiming to a
class of undamped vibration systems was proposed by Ouyang et al. They used state feedback and
static output feedback control law to modify the mass and stiffness matrices to preserve the partial
eigenstruture. The main advantages of the above method is numerically stable and allow the relative
matrices (input and output matrices) to be given beforehand [29,30]. Finally, for the high-order system
studied in this paper, Zhang employed the differential equation algorithm to solve this kind of problem.
Under this circumstances, it does not reduce the order of the system like the traditional method, but
directly acts on the high-order system, which realizes the no spill-over property of the system and
reduces the computational load [31].

In general, the references and methods discussed above are very diverse, but they have some
common limitations. For example, the expression results lack of degrees of freedom and the design
process is complicated. Based on the above consideration, a parametric approach for proportional plus
derivative (PD) state feedback to a type of high-order LTI systems based on the solution of a class of
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high-order generalized Sylvester equation (HGSE) is proposed in [35, 36, 38]. In [39, 40], they have
done preliminary research on the parametric method of this issue. Compared with the different given
methods in [24,32–34], the core superiority of the parametric approach is that it provides all analytical
solutions, which are expressed by a group of parameters. Furthermore, the desired closed-loop system
and eigenstructure can be obtained by changing and choosing these kinds of arbitrary parameters.

The main contribution of this work is reflected on the following two aspects. On the one hand, the
unsatisfactory eigenstructure is replaced by the expected eigenstructure, and the complete parametric
expression is directly established in the framework of the high-order system. On the other hand, the
degrees of design freedom in arbitrary parameter matrix Z is fully utilized to achieve additional system
design requirements such as robustness.

The structure of this paper is organized as follows. Section 2 formulates the PESA problem and
gives some lemmas and preliminaries. Section 3 puts forward a solution to PESA problem by utilizing
the degrees of freedom in arbitrary parameters and discusses the different expressions of the parametric
solution in different forms of the matrix Λ. Section 4 summarizes the previous content and proposes
a specific algorithm to solve this problem. Section 5 illustrates two examples to demonstrate the
availability of the proposed method. Finally, Section 6 concludes the results of this paper.

Notation. We present some notation that will be used throughout this paper. Rn represents set
of all real vectors of dimension n. Cn represents set of all complex vectors of dimension n. Rn×m

denotes set of all real matrices of dimension n × m. Rn×m [s] denotes set of all polynomial matrices of
dimension n × m with real coefficients. In denotes the identity matrix with n dimensions. rank A and
det A represent the rank and determinant of the matrix A, respectively. deg A(s) denotes the degree n
of polynomial matrix A(s) = A0 + sA1 + · · · + snAn. diag

{
s1, s2, · · · , snu

}
indicates the diagonal matrix

with diagonal elements si, i = 1, 2, . . . , nu.

2. Problem formulation

Consider a type of the dynamic high-order LTI systems

m∑
i=0

Aiq(i) =

m∑
i=0

Biu(i), (2.1)

where q ∈ Rn, and u ∈ Rr are the state vector and the control input vector, respectively; Ai ∈ R
n×n, i =

0, 1, . . . ,m, are the coefficient matrices of the system, and Bi ∈ R
n×r are the input matrices of the system.

When Bi = 0, i = 1, 2, . . . ,m, and B0 is substituted by B, then the above system can be simplified as

m∑
i=0

Aiq(i) = Bu, (2.2)

which is encountered more often than Eq (2.1) in many practical applications. Therefore, we mainly
discuss this kind of system in our paper.

Assumption 1. det Am , 0.

Assumption 2. rank B = r≤ n.

Assumption 3. rank
[ ∑m

i=0 siAi B
]

= n,∀s ∈ C.
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Based on the above assumptions, let

xT =

[
qT q̇T · · ·

(
q(m−1)

)T
]T
,

then the system (2.2) can be rewritten in the following first-order space form

ẋ = Aex + Beu, (2.3)

where

Ae =


0 In · · · 0
...

...
. . .

...

0 0 · · · In

−A−1
m A0 −A−1

m A1 · · · −A−1
m Am−1

 , Be =


0
...

0
A−1

m B

 . (2.4)

For the high-order linear system (2.2), the following PD feedback control law is proposed

u =

m−1∑
i=0

Fiq(i), (2.5)

where Fi ∈ R
r×n, i = 0, 1, . . . ,m − 1, are the PD feedback gain matrices which need to design in the

next section. Then the closed-loop system can be transformed into the following form

Amq(m) +

m−1∑
i=0

Ac
i q

(i) = 0, (2.6)

where
Ac

i = Ai − BFi, i = 0, 1, . . . ,m − 1. (2.7)

The above system can be rewritten in the following first-order form

ẋ = Aecx, (2.8)

with

Aec =


0 In · · · 0
...

...
. . .

...

0 0 · · · In

−Ad
0 −Ad

1 · · · −Ad
m−1

 , (2.9)

where
Ad

i = A−1
m (Ai − BFi), i = 0, 1, . . . ,m − 1. (2.10)

According to linear system theory, the stability and performance of system (2.8) depends on the
closed-loop matrix Aec.

To introduce the problem of PESA, we firstly express the Jordan matrix Ae of the open-loop system
as follows

Λos = blockdiag(Λ0,Λu) ∈ Cmn×mn, (2.11)
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with 

Λu = diag(Λu
1,Λ

u
2, · · · ,Λ

u
qu

) ∈ Cnu×nu ,

Λu
i =


su

i 1

su
i

. . .

. . . 1
su

i


(pu

i ×pu
i )

,
(2.12)

and 

Λ0 = diag(Λ0
1,Λ

0
2, · · · ,Λ

0
qs

) ∈ Cns×ns ,

Λ0
i =


s0

i 1

s0
i

. . .

. . . 1
s0

i


(p0

i ×p0
i )

,
(2.13)

with
qu∑
i=1

pu
i = nu,

qs∑
i=1

p0
i = ns, nu + ns = mn.

In this paper, matrices Λ0 and Λu represent satisfactory and unsatisfactory eigenstructures,
respectively, that is to say, Λ0 contains ns stable eigenvalues while the matrix Λu has nu unstable
eigenvalues. Meanwhile, p0

i , pu
i represent the order of the Jordan block corresponding to satisfactory

and unsatisfactory eigenvalues among s0
i and su

i .
With the above description, we similarly partition the right eigenvector matrix Vr of Ae into two

parts
Vr =

[
V0 Vu

]
,

where V0 ∈ C
mn×ns , Vu ∈ C

mn×nu are both full-column matrices satisfying

Ae

[
V0 Vu

]
=

[
V0 Vu

] [ Λ0

Λu

]
. (2.14)

In this paper, we focus on keeping the satisfactory eigenstructure Λ0 as well its corresponding right
eigenvector matrix V0 in the open-loop system. Conversely, the unsatisfactory part Λu and Vu will be
altered by the matrix Λ ∈ Cnu×nu and a full-column matrix Val ∈ C

mn×nu . Specifically, by introducing a
proper controller in (2.5), we let the reassigned part of the matrix Aec be similar to an arbitrary constant
matrix Λ ∈ Cnu×nu with desired eigenstructure.

Denote the Jordan matrix Λ as

Λ = blockdiag(Λ1,Λ2, · · · ,Λq) ∈ Cnu×nu , (2.15)

with

Λi =


si 1

si
. . .
. . . 1

si


(pi×pi)

, (2.16)
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and
p1 + p2 + · · · + pq = nu, (2.17)

where pi, i = 1, 2, . . . , nu represent the order of the Jordan block corresponding to the eigenvalues
si, i = 1, 2, . . . , nu which can be selected arbitrarily.

2.1. The right eigenvector matrix of altered part in closed-loop system

Let the matrix Val be the substitution matrix of the matrix Vu in right eigenvector matrix. For the
right eigenvector matrix of the altered part in closed-loop system, we introduce the following lemma.

Lemma 1. Let the matrix Aec be given in Eq (2.9). There exists the following matrix Val

Val =
[

VT
1 VT

2 · · · VT
m

]T
,Vi ∈ R

n×nu , i = 1, 2, . . . ,m, (2.18)

satisfying

Aec

[
VT

1 VT
2 · · · VT

m

]T
=

[
VT

1 VT
2 · · · VT

m

]T
Λ, (2.19)

if and only if

AmVΛm +

m−1∑
i=0

Ac
i VΛi = 0, (2.20)

and  V1 = V,

Vi = VΛi−1, i = 1, 2, . . . ,m.
(2.21)

Then, the matrix Val can be written in the following form

Val =


V1

V2
...

Vm

 =


V

VΛ
...

VΛm−1

 . (2.22)

Proof. since

Aec

[
VT

1 VT
2 · · · VT

m

]T

=


0 In · · · 0
...

...
. . .

...

0 0 · · · In

−Ad
0 −Ad

1 · · · −Ad
m−1




V1

V2
...

Vm


=


V2

V3
...

−
∑m−1

i=0 Ad
i Vi+1

 ,
(2.23)
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and

[
VT

1 VT
2 · · · VT

m

]T
Λ =


V1Λ

V2Λ
...

VmΛ

 . (2.24)

For convenience, let V1 = V . Thus, combine Eqs (2.23), (2.24) with Ad
i in (2.10), Eqs (2.20) and

(2.21) naturally hold. Then, taking Eq (2.21) into (2.18), Eq (2.22) can be easily deduced. The proof
is finished. �

2.2. Problem statement

Based on the above preparation, we propose the problem statement of partial eigenstructure
assignment in high-order LTI systems via PD feedback.

Problem 1 (PESAH). Given a type of high-order LTI systems (2.2) satisfying Assumptions 1–2, the
satisfactory eigenstructure {Λ0, V0} as described previously satisfying Eq (2.14), and a constant matrix
Λ ∈ Cnu×nu in Eqs (2.15)–(2.17) with desired eigenstructure. Find all the PD feedback gain matrices
Fi ∈ R

r×n, i = 0, 1, . . . ,m − 1, and the right full-column rank eigenvector matrix Val ∈ C
mn×nu to be

altered such that [
Val V0

]−1
Aec

[
Val V0

]
=

[
Λ 0
0 Λ0

]
. (2.25)

3. Solutions to Problem 1 (PESAH)

In this paper, the key of solving Problem 1 (PESAH) is to transform it into solving a kind of high-
order generalized Sylvester equation (HGSE), and the specific transformation process will be given in
the following section.

Based on the above viewpoints, we propose the following HGSE

m∑
i=0

AiVΛi = BW, (3.1)

where Ai, Λ and B are the given matrices, while V and W are unknown matrices to be determined.

Remark 1. In fact, introducing a set of right coprime polynomials is a necessary procedure before
solving the Sylvester Eq (3.1). Thus, there exists a pair of right coprime polynomial matrices N(s) ∈
Rn×r, D(s) ∈ Rr×r, satisfying the following Right coprime factorization (RCF)

A(s)N(s) − BD(s) = 0, (3.2)

with

A(s) =

m∑
i=0

siAi. (3.3)

Denote N(s) =
[
ni j(s)

]
n×r

, D(s) =
[
di j(s)

]
r×r

, and
µ = max{deg(di j(s)), i = 1, 2, . . . , n, j = 1, 2, . . . , r}. Then matrices N(s),D(s) can be written in the
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following form 
N(s) =

µ∑
i=0

Nisi,Ni ∈ R
n×r,

D(s) =

µ∑
i=0

Disi,Di ∈ R
r×r.

(3.4)

For the solution to HGSE (3.1), we introduce the following lemma.

Lemma 2. [37, 38] Let Λ ∈ Cnu×nu be given in Eqs (2.15)–(2.17) and Assumptions 1–2 hold.
Furthermore, let N(s) ∈ Rn×r and D(s) ∈ Rr×r be a pair of polynomial matrices satisfying the RCF
(3.2) and have the form of Eq (3.4). Then, a general solution to HGSE (3.1) is given by

V =

µ∑
i=0

NiZΛi,

W =

µ∑
i=0

DiZΛi,

(3.5)

where Z ∈ Rr×nu is an arbitrary parameter matrix.

3.1. Λ is an arbitrary matrix

With the above preparations, we propose the following theorem to solve Problem 1 (PESAH).

Theorem 1. Let N(s) and D(s) be a pair of right polynomial matrices satisfying RCF (3.2), then
1. Problem 1 (PESAH) has a solution if and only if there exists a group of arbitrary parameter

matrix Z ∈ Rr×nu satisfying the following constraint

Constraint 1. det Vec(Z) , 0,

where
Vec(Z) =

[
Val(Z) V0

]
, (3.6)

with the matrix V in Val can be given by

V =

µ∑
i=0

NiZΛi, (3.7)

and Val in Eq (2.22) can be written as

Val(Z) =


∑µ

i=0 NiZΛi∑µ
i=0 NiZΛi+1

...∑µ
i=0 NiZΛi+m−1

 . (3.8)

2. When the above Constraint 1 is met, the PD feedback gain matrix F in Eq (2.5) is solved by

F =
[

F0 F1 · · · Fm−1

]
=

[
W 0

]
V−1

ec , (3.9)
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where

W =

µ∑
i=0

DiZΛi. (3.10)

Proof. This proof is carried out in two steps.
Step 1. Obtain the parametric forms of matrices Val,W.
Firstly, consider Eq (2.25), the eigenstructure assignment for unsatisfactory part can be written as

AecVal = ValΛ. (3.11)

This process has been shown in Eqs (2.18)–(2.22).
Secondly, substituting Ac

i in (2.7) into (2.20), we can obtain
m∑

i=0

AiVΛi = B
m−1∑
i=0

FiVΛi. (3.12)

Let

W =

m−1∑
i=0

FiVΛi = F0V + F1VΛ + · · · + Fm−1VΛm−1

=
[

F0 F1 · · · Fm−1

] 
V

VΛ
...

VΛm−1


= FVal,

(3.13)

then Eq (3.12) can be transformed into the HGSE in Eq (3.1)
m∑

i=0

AiVΛi = BW. (3.14)

By using Lemma 2, we can obtain the matrix W in Eq (3.10). Besides, owing to the results in Eqs
(3.5) and (2.22), the matrix Val can be written in the form of Eq (3.8). Thus, we complete the proof of
the first step.

Step 2. Derive the parametric solutions of the PD feedback gain matrix F.
Combining Eqs (2.9), (2.10), (2.14) and (2.25), we can easily obtain

BeFV0 = 0. (3.15)

Due to the Assumption 2, Be is a full rank matrix, the above formula is equivalent to

FV0 = 0. (3.16)

Thus, according to Eqs (3.13) and (3.16)[
FVal FV0

]
=

[
W 0

]
, (3.17)

and the Constraint 1 ensures the following equation holds

F =
[

W 0
] [

Val V0

]−1
=

[
W 0

]
V−1

ec . (3.18)

Therefore, we prove the Eq (3.9), the proof of this step has been completed.
With the above two steps, we finish the whole proof. �
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3.2. Λ is a diagonal matrix

Normally, we choose the matrix Λ as a diagonal form since it is often encountered in many practical
applications. Besides, it can reduce the complexity of calculation and simplify the expression, which
means

Λ = diag{s1, s2, · · · , snu}, (3.19)

where si ∈ C
−, i = 1, 2, . . . , nu, are a set of self-conjugate complex poles to be determined.

In this form, we propose the following theorem regarding to Problem 1 (PESAH).

Theorem 2. Let N(s) and D(s) be a pair of right polynomial matrices satisfying RCF (3.2), then
1. Problem 1 (PESAH) has a solution if and only if there exists a group of arbitrary parameter

vectors zi ∈ C
r, i = 1, 2, . . . , nu, satisfying the following constraints, then the matrices V,W,Val have the

following form  V =
[

v1 v2 · · · vnu

]
,

vi = N(si)zi, i = 1, 2, . . . , nu,
(3.20)

 W =
[

w1 w2 · · · wnu

]
,

wi = D(si)zi, i = 1, 2, . . . , nu,
(3.21)

and  Val =
[

val1 val2 · · · valnu

]
,

vali = N(si)zi, i = 1, 2, . . . , nu,
(3.22)

where
N(si) =

[
I siI · · · sm−1

i I
]T

N(si), i = 1, 2, . . . , nu. (3.23)

with
Z =

[
z1 z2 · · · znu

]
, (3.24)

satisfying the following constraints

Constraint 2. det Vec(zi, i = 1, 2, . . . , nu) , 0.

Constraint 3. zi = z̄ j if si = s̄ j, i, j = 1, 2, . . . , nu.

2. When the above conditions are satisfied, the coefficient matrices of PD feedback controller (2.5)
can be obtained as Eq (3.9), and matrices V,W given by Eq (3.5) and Val in Eq (3.8) can be parametrized
by columns as Eqs (3.20)–(3.24), and zi ∈ C

r are a group of parameter vectors satisfying Constraints
2–3.

Proof. When the matrix Λ is chosen to be a diagonal form, V in Eq (3.7) and W in Eq (3.10) can be
written in Eqs (3.20) and (3.21) (see [36]). Now we only need to prove Eqs (3.22) and (3.23).

According to Eqs (2.24) and (3.20), the i-th column of the matrix Val can be written as

vali =


N(si)zi

siN(si)zi
...

sm−1
i N(si)zi

 =


I

siI
...

sm−1
i I

 N(si)zi

= N(si)zi, i = 1, 2, . . . , nu.

(3.25)

Obviously, Eq (3.23) holds. The proof is completed. �
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4. A general step for solving Problem 1 (PESAH)

Based on the discussion and proof of the above results, we give the following steps to solve Problem
1 (PESAH).

Step 1. Partition the right eigenvector matrix Vr of the open-loop matrix Ae into two parts satisfying
Eq (2.14).

Step 2. Choose a Hurwitz matrix Λ with desired eigenstructure.
Step 3. Solve a pair of polynomial matrices N(s) and D(s) according to the RCF (3.2).
Step 4. Find a group of parameters zi, i = 1, 2, . . . , nu, satisfying the Constraints 2–3.
Step 5. Compute the matrices V,W,Val according to Eqs (3.5) and (3.8) or (3.20)–(3.23) based on

the chosen parameters in Step 4.
Step 6. Obtain the PD feedback gain matrix F through Eq (3.9) based on the solutions in Step 5.

Remark 2. In practical systems, the robustness of the system needs to be considered due to the
existence of disturbances. There are arbitrary parameters in the parametric design method proposed in
this paper, so these arbitrary parameters can be utilized to optimize the performance index of
robustness to achieve the purpose of anti-interference. Therefore, we can optimize the following index

J(Z) = ‖Vec(Z)‖2‖V−1
ec (Z)‖2

as small as possible [17].
Noteworthy, the index J is closely related to the arbitrary parameter Z. Therefore, the desired index

can be optimized by selecting appropriate parameter matrix Z or parameter vectors zi, i = 1, 2, . . . , nu.

5. Two illustrative examples

5.1. A numerical example

5.1.1. System description

Consider a third-order system in the form of Eq (2.2) in [18], which the coefficient matrices are
shown as follows

A3 =


1 0 0
0 0 4
0 2 0

 , A2 =


1 0 0
0 2 0
0 0 1

 , A1 =


−1 0 0
1 0 1
0 1 0

 ,
A0 =


0 1 0
−2 0 0
3 0 −1

 , B =


1 0
0 0
0 1

 .
For the system, it can be easily compute that

det A3 = −8 , 0, rank B = 2,

rank
[ ∑3

i=0 siAi B
]

= rank


s3 + s2 − s 1 0 1 0

s − 2 2s2 4s3 + s 0 0
3 2s3 + s s2 − 1 0 1

 = 3,∀s ∈ C.
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Therefore, Assumptions 1–3 hold. Meanwhile, it is easy to obtain the open-loop system eigenvalues
as

Γo = {0.329544, 1.000000,−1.682559,
0.544587 + 0.897497i, 0.544587 − 0.897497i,
−0.632982 + 0.731230i,−0.632982 − 0.731230i,
−0.235097 + 0.618154i,−0.235097 − 0.618154i}.

We can see that the eigenvalues {0.329544, 1.000000, 0.544587 + 0.897497i, 0.544587−0.897497i}
are unstable eigenvalues. Therefore, we need to replace the above unstable eigenvalues and the related
eigenvector matrices while others unchanged.

In this situation, we design the following PD feedback control law

u = F0q + F1q̇ + F2q̈,

and choose the diagonal matrix with expected eigenvalues

Λ = diag{−1,−2,−3,−4}.

The matrix V0 in Eq (2.14) can be obtained as

V0 =
[

v3 v6 v7 v8 v9

]
,

where

v3 =



0.2803167
0.070014
−0.0306645
−0.471649
−0.117803
0.051595
0.793577
0.198210
−0.086812


, v6 = v̄7 =



0.205320 + 0.190384i
−0.481404

−0.009185 − 0.213544i
−0.269179 + 0.029626i
0.304720 − 0.352017i
0.161964 + 0.128453i
0.148722 − 0.215585i
0.064523 + 0.445641i
−0.196449 + 0.037124i


, v8 = v̄9 =



0.323470 + 0.041067i
−0.096109 + 0.330457i

0.623884i
−0.101433 + 0.190299i
−0.181678 − 0.137099i
−0.146673 + 0.385657i
−0.093788 − 0.107440i
0.127461 − 0.080074i
−0.203913 − 0.181334i


.

A pair of polynomial matrices N(s),D(s) satisfying RCF (3.2) can be easily obtained as
N(s) =


−8s6 − 4s4 − 3s2 4s3 + s

11s3 + 2s2 + 4s − 2 −(4s3 + s)(s3 + s2 − s)
2s4 − 4s3 − 5s2 − 2s 2s5 + 2s4 − 2s3 − s + 2

 ,
D(s) =

[
d(s) 0

0 d(s)

]
,

where d(s) = −8s9 − 8s8 + 4s7 − 4s6 + s5 − 3s4 + 14s3 + 2s2 + 4s − 2.
We specially choose the parameters as

z1 =

[
1
0

]
, z2 =

[
0
1

]
, z3 =

[
1
1

]
, z4 =

[
1
−1

]
, (5.1)
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based on Eqs (3.20)–(3.24), we obtain the following particular solution

V =


−15 −34 −6294 −33580
−15 −68 −1958 10750

3 −12 −34 2098

 ,
W =

[
−30 0 92452 1488270

0 1086 92452 −1488270

]
,

Val =



−15 −34 −6294 −33580
−15 −68 −1958 10750

3 −12 −34 2098
15 68 18882 134320
15 136 5874 −43000
−3 24 102 −8392
−15 −136 −56646 −537280
−15 −272 −17622 172000

3 −48 −306 33568


.

Then, based on Eqs (3.6) and (3.9), the PD feedback gain matrices can be obtained as

F0 =

[
−37.150958 −4.460113 −9.243717
55.364172 5.227715 19.953050

]
,

F1 =

[
−20.365519 −20.036122 −11.958461
11.238224 23.426327 31.980468

]
,

F2 =

[
−6.330645 1.096616 −44.932040
1.565738 −12.176145 88.612062

]
.

With the above controller, the closed-loop system in Eq (2.6) can be given by
1 0 0
0 0 4
0 2 0

 ...q +


7.330645 −1.096616 44.932040

0 2 0
−1.565738 12.176145 −87.612062

 q̈

+


19.365519 20.036122 11.958461

1 0 1
−11.238224 −22.426327 −31.980469

 q̇

+


37.150958 5.460113 9.243717
−2 0 0

−52.364172 −5.227715 −20.953050

 q = 0,

and the closed-loop eigenvalues are assigned to

ΓC = { − 1.682558,−4.000000,−2.999999,−1.000000,−2.000000,
− 0.632982 − 0.731230i,−0.632982 + 0.731230i,
− 0.235097 − 0.618154i,−0.235097 + 0.618154i}.
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5.1.2. Simulation results

Choose the initial value as follows


q0 =

[
2 −1 3

]T
m,

q̇0 =
[
−1 −2 3

]T
m/s,

q̈0 =
[
−2 3 −1

]T
m/s2,

then the simulation results are shown in the following figures.
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Figure 1. Variation diagram of q(t) in closed-loop system.
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Figure 2. Variation diagram of q̇(t) in the closed-loop system.
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Figure 3. Variation diagram of q̈(t) in the closed-loop system.
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Figure 4. Variation diagram of control inputs u(t) in the closed-loop system.

It is obvious to see that the final high-order closed-loop system achieves the desired eigenstructure.
At the same time, it can be seen from the simulation diagrams that the final states of the closed-loop
system tend to be zero in a very short time, which means that the closed-loop system is eventually
stable. The above process reflects the feasibility of the parametric method proposed in this paper.

5.2. Three-axis dynamic flight motion simulator system

5.2.1. System description

Consider a three-axis dynamic flight motion simulator system shown in Figure 5, which possesses
a linearized model in the form of [41]

A3
...q + A2q̈ + A1q̇ + A0q = Bu + f ,
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Figure 5. The three-axis dynamic flight motion simulator.

where

A3 =


1

Kmω
2
m

0 0
0 1

Kpω
2
p

0

0 0 KeTsTm

 , A2 =


2ξm
ωmKm

K6
Km

0
K2
Kp

2ξp

Kpωp
0

0 0 KeTm

 ,
A1 =


1

Km
0 K6

Km
K1
Kp

1
Kp

K1+K2
Kp

0 0 Ke

 , A0 = 03×3, B = I3, f =


0
K3
Kp

0

 ,
The state vector q and the control input vector u can be written as

q =
[
α β γ

]T
, u =

[
u1 u2 u3

]T
,

with the variables α, β, γ, u1, u2, u3 respectively represent the angles of three directions and the voltage
inputs along the three axises.

For the particular experimental system, the values of these parameters are given by

Kp = 0.741,Km = 0.635,Ke = 3.11,Ts = 1.2 × 10−3,Tm = 3.19 × 10−2,

ωp = 215.37, ξm = 0.0332, ωm = 205.62, ξp = 0.0794,K1 = 1.51 × 10−5,

K2 = 4.80 × 10−7,K3 = 2.12 × 10−2,K6 = −1.78 × 10−7,

thus yields

A3 = 10−5 ×


3.724737 0 0

0 2.909453 0
0 0 11.90508

 ,
A2 = 10−7 ×


5085.445 −2.80315 0
6.477733 9950.55 0

0 0 992090

 ,
A1 = 10−7 ×


1.5748030 0 −2.80315
203.7787 13495280 210.2564

0 0 31100000

 , f =


0

0.0286
0

 .
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For this system, it can be easily obtain the eigenvalues of the open-loop system are

Γo = {0, 0, 0,−0.000310,−13.652856,−32.625251,−800.708083,
− 17.100379 + 214.690076i,−17.100379 − 214.690076i}.

We assign eigenvalues {0, 0, 0,−0.000310,−13.652856} to s1 = −110, s2 = s̄3 = −30 + 25i, s4 =

s̄5 = −50 + 25i, respectively, while keeping the rest of eigenvalues unchanged in the open-loop system.
In order to achieve the above objectives, we design the following PD feedback control law

u = F0q + F1q̇ + F2q̈.

Choose the diagonal matrix with expected eigenvalues

Λ = diag{−110,−30 + 25i,−30 − 25i,−50 + 25i,−50 − 25i},

and the matrix V0 can be easily obtained as

V0 =
[

v6 v7 v8 v9

]
,

with

v6 = 10−8 ×



1.142320
1.464660

93904.883781
37.268491
47.784903

3063670.381647
1215.893860
1558.994443

99953014.470565


, v7 = 10−8 ×



0.000002
0.000171

155.973650
0.001493
0.136720

124889.362541
1.195231

109.472759
99999922.013024


,

v8 = v̄9 = 10−8 ×



0.013158 + 0.074408i
2128.697996 + 341.272990i

0
16.199730 + 1.552432i

36866.380974 − 462846.232379i
0

56.270227 − 3504.468480i
99998921.980702

0


.

With the coefficient matrices Ai, i = 0, 1, . . . , 3, we have

A(s) = 10−5 ×


3.7247s3 + 50.8544s2 + 0.0157s −0.0280s2

0.0647s2 + 2.0377s 2.9094s3 + 99.5055s2 + 134952.8s
0 0
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−0.0280s
2.1025s

11.9050s3 + 9920.9s2 + 3.11s

 , (5.2)

and
det A3 , 0, rank B = rankI3 = 3, rank

[
A(s) B

]
= 3,∀s ∈ C.

Therefore, Assumptions 1–3 hold. Meanwhile, noted that the matrix B = I3×3, a pair of N(s) and
D(s) satisfying RCF (3.2) can be easily obtained as N(s) = I3×3,

D(s) = A(s) = A3s3 + A2s2 + A1s.

5.2.2. Non-optimized solution

Simply choose the parameters as follows

z1 =


1
1
1

 , z2 = z̄3 =


1 + i
1 − i

0

 , z4 = z̄5 =


1 − i
1 + i

0

 , (5.3)

based on Eqs (3.20)–(3.24), we obtain the following particular solution

V =


1 1 + i 1 − i 1 − i 1 + i
1 1 − i 1 + i 1 + i 1 − i
1 0 0 0 0

 ,

W = 102 ×


−0.4342 0.0006 + 0.0239i 0.0006 − 0.0239i
−1.7512 −0.0560 + 0.7311i −0.0560 − 0.7311i
6.9987 0 0

0.0491 + 0.0534i 0.0491 − 0.0534i
−1.0277 − 0.3026i −1.0277 + 0.3026i

0 0

 ,

Val =



1 1 + i 1 − i 1 − i 1 + i
1 1 − i 1 + i 1 + i 1 − i
1 0 0 0 0
−110 −55 − 5i −55 + 5i −25 + 75i −25 − 75i
−110 −5 + 55i −5 − 55i −75 − 25i −75 + 25i
−110 0 0 0 0
12100 1775 − 1225i 1775 + 1225i −625 − 4375i −625 + 4375i
12100 −1225 − 1775i −1225 + 1775i 4375 − 625i 4375 + 625i
12100 0 0 0 0


.

Then, based on Eqs (3.6) and (3.9), the PD feedback gain matrices can be obtained as
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F0 =


75.130781 18.577501 115.501021
−5638.566851 −1391.053449 −7765.701058

0 0 −342.100000

 ,
F1 =


2.756854 0.013469 107.942226

137.666399 −831.285208 154.240920
656.573555 409.071918 835.675344

 ,
F2 = 10−3 ×


32.978808 0.400884 4.421377
−2660.192146 −30.018179 −297.270918

0 0 −13.095588

 .
Denote the non-optimized index as Ju. In this situation, it can be calculated that the index Ju =

2.4 × 1010.
With the above controller, the closed-loop system can be given by

10−5 ×


3.724737 0 0

0 2.909453 0
0 0 11.90508

 ...q +


−0.032470 −0.000401 −0.004421
2.660193 0.031013 0.297271

0 0 0.112305

 q̈

+


−2.756854 −0.013469 −3.684481
212.800876 2.356680 247.725786

0 0 14.022990

 q̇ +


−75.130781 −18.577501 −115.501021
5638.566851 1391.053449 7765.701058

0 0 342.1

 q = 0,

(5.4)
and the closed-loop eigenvalues are assigned to

Γc1 = { − 109.999999,−32.625251,−800.708083,
− 30.000000 + 25.000000i,−30.000000 − 25.000000i,
− 50.000000 + 24.999999i,−49.999999 − 24.999999i,
− 17.100379 + 214.690076i,−17.100379 − 214.690076i}.

5.2.3. Optimized solution

Consider the optimized index in Remark 2. Choose the initial value in Eq (5.3), the optimized
parameters can be obtained by using the fminsearch function in MATLAB Optimization Toolboxr

z1 = 10−2 ×


4.860297
2.158062
1.112924

 ,
z2 = z̄3 =


0.583609 + 0.583609i
0.057831 − 0.115663i

0.011220

 ,
z4 = z̄5 =


−0.019288

0.001369 + 0.000684i
0.001658 − 0.001658i

 ,
yields the following optimized solution
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Val =



0.0486 0.5836 + 0.5836i 0.5836 − 0.5836i
0.0215 0.0578 − 0.1156i 0.0578 + 0.1156i
−0.0111 0.1122 0.1122
−5.3463 −32.0985 − 2.9180i −32.0985 + 2.9180i
−2.3738 1.1566 + 4.9157i −4.6265 + 2.0241i
1.2242 −0.3366 + 0.2805i −0.3366 − 0.2805i

588.0959 1035.9069 − 714.9216i 1035.9069 + 714.9216i
261.1254 −157.5919 − 118.5553i 189.3994 + 54.9403i
−134.6638 3.0856 − 16.8307i 3.0856 + 16.8307i

−0.0192 −0.0192
0.0013 + 0.0006i 0.0013 − 0.0006i
0.0016 − 0.0016i 0.0016 + 0.0016i
0.9644 − 0.4822i 0.9644 + 0.4822i
−0.0855 −0.0855

−0.0414 + 0.1243i −0.0414 − 0.1243i
−36.1662 + 48.2217i −36.1662 − 48.2217i

4.2794 − 2.1397i 4.2794 + 2.1397i
−1.0365 − 7.2558i −1.0365 + 7.2558i


,

V =


0.0486 0.5836 + 0.5836i 0.5836 − 0.5836i −0.0192 −0.0192
0.0215 0.0578 − 0.1156i 0.0578 − 0.1156i 0.0013 + 0.0007i 0.0013 − 0.0007i
−0.0111 0.0112 0.0112 0.0016 − 0.0016i 0.0016 + 0.0016i

 ,

W =


−2.1105 0.0350 + 1.3999i 0.0350 − 1.3999i 0.0040 − 0.0989i 0.0040 + 0.0989i
−3.7791 1.6278 + 6.5042i −6.1805 + 2.6010i −0.1159 + 0.0041i −0.1159 − 0.0041i
−7.7890 −0.7016 − 0.7280i −0.7016 + 0.7280i −0.2040 − 0.2928i −0.2040 + 0.2928i

 .
In this situation, we obtain the optimized feedback gain matrices

F0 =


−9.252498 + 1.737117i −9.484921 − 7.578255i 22.486012 − 1.969368i
−27.393143 + 4.568609i −85.444955 − 31.000000i 154.896848 − 54.057544i
−400.150791 + 13.191180i −72.034143 − 57.548078i 16.067503 − 14.959001i

 ,

F1 = 10−2 ×


45.081882 + 8.513724i 0.694068 − 0.559499i 71.730758 − 6.281906i

126.527852 + 40.595990i 6.287425 − 2.290644i 494.124992 − 172.442084i
−180.750293 + 64.652375i −5.294508 − 4.248745i 51.258666 − 47.716337i

 ,

F2 = 10−4 ×


73.821762 + 10.346934i 2.045423 − 1.633685i 8.607691 − 0.753829i
179.620357 + 67.476393i −18.422758 − 6.682806i 59.295000 − 20.693051i
−238.721576 + 78.575135i −15.532260 − 12.405943i 6.151041 − 5.725961i

 .
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Denote the optimized index as Jo. On this condition, it can be calculated that the index Jo =

3.8 × 107.
With the above controller, the closed-loop system can be given by

A3
...q + Ac

2q̈ + Ac
1q̇ + Ac

0q = 0, (5.5)

where

Ac
2 = 10−3 ×


7.890721 − 1.034693i 0.204262 + 0.163368i −0.860769 + 0.075383i

17.962684 − 6.747639i 2.837331 + 0.668281i −5.929500 + 2.069305i
23.872158 − 7.857513i 1.553226 + 1.240594i 98.593896 + 0.572596i

 ,
Ac

1 =


0.450819 − 0.085131i 0.006941 + 0.005595i −0.717308 + 0.062819i
1.265299 − 0.405960i 1.412402 + 0.022906i −4.941229 + 1.724421i
1.807503 − 0.646524i 0.052945 + 0.042487i 2.597413 + 0.477163i

 ,
Ac

0 =


9.252498 − 1.737117i 9.484922 + 7.578256i −22.486012 + 1.969368i

27.393144 − 4.568610i 85.444955 + 31.000056i −154.896849 + 54.057544i
40.015079 − 13.191180i 72.034143 + 57.548079i −16.067503 + 14.959001i

 ,
(5.6)

and the closed-loop eigenvalues are assigned to

Γc2 = { − 110.000000,−32.625251,−800.708083,
− 30.000000 + 24.999999i,−30.000000 − 24.999999i,
− 49.999999 + 25.000000i,−49.999999 − 25.000000i,
− 17.100379 + 214.690076i, 17.100379 − 214.690076i}.

It can be seen that through the above optimization process, we have

Jo = 3.8 × 107, Ju = 2.4 × 1010.

Obviously, Jo < Ju, which illustrates that the robustness of the system is improved effectively by fully
utilizing the degrees of freedom in the solution. In order to illustrate the effectiveness of optimization
more intuitively, simulation and comparison will be given in next subsection.

5.3. Simulation and comparison

To test the effectiveness of the proposed approach, we give the following simulation between non-
optimized solution, optimized solution and open-loop system.

Choose the initial value as follows
q0 =

[
−0.2 −0.1 0.1

]T
m,

q̇0 =
[
−0.3 −0.2 0.2

]T
m/s,

q̈0 =
[

0.1 0.2 0.3
]T

m/s2,

then the simulation results are shown in the following Figures.
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Figure 6. Comparison of the input u(t) in closed-loop system between non-optimized
solution and optimized solution
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Figure 7. Comparison of the variable q1(t) between three solutions
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Figure 8. Comparison of the variable q2(t) between three solutions.
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Figure 9. Comparison of the variable q3(t) between three solutions.
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Figure 10. Comparison of the variable q̇1(t) between three solutions.
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Figure 11. Comparison of the variable q̇2(t) between three solutions.
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Figure 12. Comparison of the variable q̇3(t) between three solutions.
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Figure 13. Comparison of the variable q̈1(t) between three solutions.
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Figure 14. Comparison of the variable q̈2(t) between three solutions.
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Figure 15. Comparison of the variable q̈3(t) between three solutions.

5.4. Simulation analysis

The analysis of simulation can be described from the following three aspects. Firstly, from Figures
7–10, we can clearly see that some unstable states in original open-loop system finally tend to be
stable while the rest of the stable states are still stable after PESA (in Figures 11–15), which illustrates
that the parametric approach we utilize is effective. Secondly, from the above figures, the optimized
solutions obviously reduce the amplitude of oscillation and have faster convergence time while the non-
optimized solutions have no such benefits. This indicates that the closed-loop eigenvalues in optimized
solution are less sensitive than non-optimized solution when encountered external disturbance (Jo <

Ju). Finally, from Figure 6, it can be seen that the optimized solution control inputs are less than non-
optimized solution, which means that the optimized solution lead to better control performance and
cost less energy. To sum up, on the premise of ensuring the stability of the closed-loop system, the
unsatisfactory eigenstructures in the open-loop system are reassigned into the closed-loop system with
desired eigenstructure.

Through above example, it can be seen that only a subset of eigenstructures need to be assigned
into the closed-loop system, which is more often encountered in many practical applications. Under
this circumstances, the design of the controller can be simplified and becomes more economical and
efficient compared to “entire eigenstructure assignment”.

Remark 3. In this paper, the parameter selection is arbitrary. The parameter selection needs to satisfy
only a few simple constraints. In fact, it is almost possible to find parameter matrix Z or vectors zi to
meet the Constraints 1–3 in state feedback. To simplify the calculation process, we just choose several
groups of simple arbitrary parameters and meanwhile verify all the constraints are satisfied. From this
point of view, we can argue that the choice of free parameters is valid.

Remark 4. In previous problem of PESA in high-order systems [24, 41], the design process of the
controller is complicated and the expression results lack of degrees of freedom. However, through the
deduction in our paper, the core advantage of the parametric approach is very simple and neat, and the
degrees of freedom can be well increased by the arbitrary parameter matrix Z, which can be utilized to
improve the additional performance of the system and will play an important role in the optimization
of system performances [17, 23, 39]. In this paper, we just give a simple example to show that the
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desired control objectives (robust index in Remark 2) can be achieved by selecting different arbitrary
parameter Z, which reflects the convenience and feasibility of the parameterization approach.

Remark 5. To solve Problem 1 (PESAH), the choice of controller has a crucial influence on the final
control result. The state feedback is a common control strategy in most research. In high-order
system, displacement, velocity and acceleration sensors can be utilized to achieve real-time
measurement of system state. Although the parametric method of this paper solves this problem well,
it also has some limitations. For example, in many practical applications, the state of the system is not
accessible. Therefore, a natural idea is to deal with it through static output feedback or adding
dynamic compensator, which is a direction and will be fully considered in our future research.

6. Conclusions

In this paper, a fully parametric method inspired by the HGSE for partial eigenstructure assignment
in high-order systems is proposed. Firstly, by partitioning the open-loop system into the altered part and
the unchanged part, a general parametric expression of PD feedback controller concerning the matrices
Λ and Z with the desired eigenstructure is established. In the meanwhile, through drawing into a group
of arbitrary parameters providing all the degrees of freedom, the optimization problem of the system
is taken into consideration and well met the design requirements of the system. Finally, a numerical
example and a practical example with simulation results prove the feasibility and effectiveness of the
parametric method.
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