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1. Introduction

In this work, we consider the odd-order quasi-linear neutral differential equations of the form(
r (t) [(x (t) + p (t) x (τ (t)))(n−1)]α

)′
+

m∑
κ=1

qκ (t) xα (σκ (t)) = 0, for t ≥ t0, (1.1)

where n ≥ 3 is an odd integer, α is a ratio of positive odd integers and m is a positive integer.
Throughout this work, we assume the following:

(H1) r ∈ C1 [t0,∞) and r′ (t) ≥ 0, where ∫ ∞

t0
r−1/α (t) dt = ∞;

(H2) p, qκ ∈ C [t0,∞), p (t) ∈
[
0, p0

]
such that p0 is a constant and qκ (t) > 0;
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(H3) τ, σκ ∈ C [t0,∞), τ (t) ≤ t, σκ (t) ≤ t, limt→∞ τ (t) = ∞ and limt→∞ σκ (t) = ∞ for all κ = 1, 2, ...,m.

By a solution of (1.1), we mean x ∈ C ([Tx,∞),R) with Tx ≥ t0, which satisfies the properties

(x + p · x ◦ τ) ∈ C(n−1) ([Tx,∞),R)

and
r ·

(
(x + p · x ◦ τ)(n−1)

)α
∈ C1 ([Tx,∞),R)

and moreover satisfies (1.1) on [Tx,∞). We consider the nontrivial solutions of (1.1) existing on some
half-line [Tx,∞) and satisfying the condition sup{|x (t)| : t ≥ t∗} > 0 for any t∗ ≥ Tx. If there exists a
t1 ≥ t0 such that either x (t) > 0 or x (t) < 0 for all t ≥ t1, then x is said to be a nonoscillatory solution;
otherwise, it is said to be an oscillatory solution.

Delay differential equations as a subclass of functional differential equations take into account the
dependence on the systems past history where the theory of delay differential equations has enhanced
our understanding of the qualitative behavior of their solutions and it has benefited significantly and
wide from it, where many applications showed in various fields as mathematical biology and
epidemiology (for instance, transport phenomena, distributed networks, interaction of species) and
other related fields, etc., see [1–3].

Neutral delay differential equations are differential equations with delays, where the delays can
appear in both the state variables and their time derivatives. There is considerable interest in studying
of this type of equation because they are deemed to be adequate prescribing tool in modelling of the
countless processes in all areas including problems concerning electric networks containing lossless
transmission lines (as in high speed computers where such lines are used to interconnect switching
circuits), in the study of vibrating masses attached to an elastic bar or in the solution of variational
problems with time delays, or in the theory of automatic control and in neuro-mechanical systems in
which inertia plays a major role, and in many areas of science as physical, biological and chemical, etc.,
see [4, 5]. In addition, systems of delay differential equations were used to study stability properties
of electrical power systems also, properties of delay differential equations were used in the study of
singular fractional order differential equations, see [6, 7] and the references cited therein.

As a matter of fact, quasilinear (i.e., half-linear) (neutral) differential equations with deviating
arguments (delayed or advanced arguments or mixed arguments) have numerous applications in
physics and engineering (e.g., quasilinear (i.e., half-linear) differential equations arise in a variety of
real world problems such as in the study of p-Laplace equations, porous medium problems,
chemotaxis models, and so forth), see [8–12].

For several years, an increasing interest in obtaining sufficient conditions for oscillatory and
nonoscillatory behavior of different classes of differential equations has been observed, see [13–18]
for second-order equations. While the development of the study of the second-order equations was in
turn reflected on the even-order equations in the works [19–28]. The development of the study of the
odd-order equations can also be traced through works [29–34], some of which are special cases of the
studied equation.

Many authors as Ladde and Zhang in [22, 28] established a criterion for oscillatory behavior of the
higher-order differential equation ((

x (t)(n−1)
)α)′

+ q (t) xβ (τ (t)) = 0. (1.2)
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Grace [20] extended some new results to the equation(
r (t)

(
x (t)(n−1)

)α)′
+ q (t) xβ (τ (t)) = 0, (1.3)

under the assumptions that α is even,∫ ∞

t0
r−1/α (t) dt = ∞ and r′ (t) ≥ 0.

Agarwal et al. [19] studied Eq (1.3) under conditions∫ ∞

t0
r−1/α (t) dt < ∞ and

∫ ∞

t0
q (t) dt = ∞.

Karpuz et al. [21] investigated the oscillatory behavior of linear neutral differential equations

(x (t) + p (t) x (τ (t)))(n) + q (t) x (τ (t)) = 0,

where n is an odd integer and 0 ≤ p (t) < 1.
Li and Thandapani [31] established some oscillation criteria for certain higher-order neutral

differential equation
(x (t) + p (t) x (a + bt))(n) + q (t) x (c + dt) = 0,

with 0 ≤ p (t) ≤ p0 < ∞.

Yildiz et al. [27] examined the oscillation of odd-order neutral differential equation

(x (t) + p (t) x (τ (t)))(n) + q (t) xα (τ (t)) = 0,

where 0 ≤ p (t) ≤ p1 < 1.
In the present paper, we aim to improve the results in previous studies and present some new

sufficient conditions which ensure that every solution of (1.1) oscillates or tends to zero.

2. Auxiliary lemmas

Here are some lemmas that we need during the next results.

Lemma 2.1. [18, Lemma (2.3)] Let g (v) = Cv−Dvα+1/α where C,D > 0. Then g attains its maximum
value on R at v∗ = (αC/ (α + 1) D)α and

max
v∈R

g (v) = g (v∗) =
αα

(α + 1)α+1

Cα+1

Dα
. (2.1)

Lemma 2.2. [34] Assume that c1, c2 ∈ [0,∞) and γ > 0. Then

(c1 + c2)γ ≤ µ
(
cγ1 + cγ2

)
, (2.2)

where

µ :=
{

1 if γ ≤ 1
2γ−1 if γ > 1.

Lemma 2.3. [35] Let f ∈ Cn ([t0,∞) , (0,∞)) . Assume that f (n) (t) is of fixed sign and not
identically zero on [t0,∞) and that there exists a t1 ≥ t0 such that f (n−1) (t) f (n) (t) ≤ 0 for all t ≥ t1.
If limt→∞ f (t) , 0, then for every µ ∈ (0, 1) there exists tµ ≥ t1 such that

f (t) ≥
µ

(n − 1)!
tn−1

∣∣∣ f (n−1) (t)
∣∣∣ for t ≥ tµ.
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3. Main results

Through the rest of this paper, we will use the following definitions:

z := x + p · x ◦ τ,

η (t) :=
∫ t

t0
r−1/α (s) ds

and
σ (t) = min {σκ (t) : κ = 1, 2, ...,m} . (3.1)

Lemma 3.1. Let x be a positive solution of (1.1). Then z (t) > 0,
(
r
(
(z)(n−1)

)α)′
≤ 0 and there are two

possible cases for derivatives of z :

(I) z′ (t) > 0, z′′ (t) > 0, z(n−1) (t) > 0, zn (t) ≤ 0;
(II) z′ (t) < 0, z′′ (t) > 0, z(n−1) (t) > 0, zn (t) ≤ 0.

Proof. Assume that x is a positive solution of (1.1) on [t0,∞). Then, there exists t1 ≥ t0 such that
x (t) > 0, x (σκ (t)) > 0 and x (τ (t)) > 0, for t ≥ t1. By the definition of z, it is easy to see that
z (t) ≥ x (t) > 0. Furthermore, from (1.1), we have

(
r
(
(z)(n−1)

)α)′
≤ 0. The rest of the proof is similar to

proof of Lemma in [29]. Thus, the proof is complete. �

Lemma 3.2. Let x (t) be a positive solution of (1.1) and z (t) satisfy (II). If∫ ∞

t0
η̃ (s) sn−2ds = ∞, (3.2)

then limt→∞ x (t) = limt→∞ z (t) = 0, where

η̃ (t) =

 1
r (t)

∫ ∞

t

m∑
κ=1

qκ (s) ds


1
α

.

Proof. Let x be a positive solution of (1.1) on [t0,∞). Then, there exists t1 ≥ t0 such that x (t) > 0,
x (σκ (t)) > 0 and x (τ (t)) > 0, for t ≥ t1. Since the corresponding function z (t) > 0 and z′ (t) < 0, then
there exists a finite limit limt→∞ z (t) = c ≥ 0. Let c > 0. Then for any ε > 0, we have ε + c > z (t) > c,
eventually. It is easy to see that

x (t) = z (t) − p (t) x (τ (t)) ≥ z (t) − p (t) z (τ (t)) ,

thus,

x (t) ≥ c − p0 (ε + c) =
c − p0 (ε + c)

ε + c
(ε + c) .

This implies that
x (t) ≥ %z (t) , (3.3)

where % = c − p0 (ε + c) /ε + c > 0, that is,

xα (σκ (t)) ≥ %αzα (σκ (t)) .
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Using (3.3) in (1.1), we obtain

(
r (t)

(
(z (t))(n−1)

)α)′
+

m∑
κ=1

qκ (t) %αzα (σκ (t)) ≤ 0.

By (3.1) and σ (t) < t, we see that

(
r (t)

(
(z (t))(n−1)

)α)′
+ %αzα (σ (t))

m∑
κ=1

qκ (t) ≤ 0.

Integrating last inequality from t to∞, we get

r (t)
(
(z (t))(n−1)

)α
≥ %α

∫ ∞

t
zα (σ (s))

m∑
κ=1

qκ (s) ds.

By limt→∞ z (σ (t)) > c, it follows that

z(n−1) (t) ≥ %cη̃ (t) . (3.4)

Integrating (3.4) twice from t to∞, we have

z(n−3) (t) ≥ %c
∫ ∞

t

∫ ∞

u
η̃ (s) dsdu = %c

∫ ∞

t
η̃ (s) (s − t) ds.

Repeating this procedure, we arrive at

−z′ (t) ≥
%c

(n − 3)!

∫ ∞

t
η̃ (s) (s − t)n−3 ds.

Now, integrating from t1 to∞, we see that

z (t1) ≥
%c

(n − 2)!

∫ ∞

t1
η̃ (s) (s − t1)n−2 ds ≥

%c
2n−2 (n − 2)!

∫ ∞

2t1
η̃ (s) sn−2ds.

This contradicts (3.2). Then we have limt→∞ z (t) = 0. �

In the following lemma, we will use the notions

q̃κ1 (t) := min {qκ (t) , qκ (τ (t))} , q̃κ2 (t) := min
{
qκ

(
σ−1 (t)

)
, qκ

(
σ−1 (τ (t))

)}
and

τ′ ≥ τ0 > 0; (3.5)(
σ−1 (t)

)′
≥ σ0 > 0. (3.6)

Lemma 3.3. If x (t) is a positive solution of (1.1) and z (t) satisfy (I), (3.5) and σκ ◦ τ = τ ◦ σκ hold,
then (

r (t)
(
z(n−1) (t)

)α
+

pα0
τ0

r (τ (t))
(
z(n−1) (τ (t))

)α)′
+

zα (σ (t))
µ

m∑
κ=1

q̃κ1 (t) ≤ 0. (3.7)
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Moreover, if (3.6) and
(
σκ ◦ σ

−1
)
◦ τ = τ ◦

(
σκ ◦ σ

−1
)

hold, then

0 ≥

(
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α)′
σ0

(3.8)

+
pα0

(
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α)′
σ0τ0

+
zα (t)
µ

m∑
κ=1

q̃κ2 (t) .

Proof. Let x be a positive solution of (1.1). Then, there exists t1 ≥ t0 such that x (t) > 0, x (σκ (t)) > 0
and x (τ (t)) > 0 for t ≥ t1. By Lemma 2.2 , we see that

zα (σ (t)) ≤ µ
(
xα (σ (t)) + pα0 xα (τ (σ (t)))

)
. (3.9)

From (1.1), (3.5) and property σκ ◦ τ = τ ◦ σκ, we get

0 =
pα0
τ′ (t)

(
r (τ (t))

(
z(n−1) (τ (t))

)α)′
+ pα0

m∑
κ=1

qκ (τ (t)) xα (σκ (τ (t)))

≥
pα0
τ0

(
r (τ (t))

(
z(n−1) (τ (t))

)α)′
+ pα0

m∑
κ=1

qκ (τ (t)) xα (τ (σκ (t))) .

Using (1.1) with above inequality and taking (3.9) into account, we have

0 ≥
(
r (t)

(
z(n−1) (t)

)α)′
+

pα0
τ0

(
r (τ (t))

(
z(n−1) (τ (t))

)α)′
+

m∑
κ=1

qκ (t) xα (σκ (t)) + pα0
m∑
κ=1

qκ (τ (t)) xα (τ (σκ (t)))

≥
(
r (t)

(
z(n−1) (t)

)α)′
+

pα0
τ0

(
r (τ (t))

(
z(n−1) (τ (t))

)α)′
+

1
µ

m∑
κ=1

q̃κ1 (t) zα (σκ (t))

=

(
r (t)

(
z(n−1) (t)

)α
+

pα0
τ0

(
r (τ (t))

(
z(n−1) (τ (t))

)α))′
+

1
µ

m∑
κ=1

q̃κ1 (t) zα (σκ (t)) .

By (3.1), we see that

0 ≥
(
r (t)

(
z(n−1) (t)

)α
+

pα0
τ0

(
r (τ (t))

(
z(n−1) (τ (t))

)α))′
+

1
µ

zα (σ (t))
m∑
κ=1

q̃κ1 (t) .

Using (3.1) and (3.6) in (1.1), we are led to

0 =
1(

σ−1 (t)
)′ (r (

σ−1 (t)
) (

z(n−1)
(
σ−1 (t)

))α)′
+

m∑
κ=1

qκ
(
σ−1 (t)

)
xα

(
σκ

(
σ−1 (t)

))
≥

1
σ0

(
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α)′
+

m∑
κ=1

qκ
(
σ−1 (t)

)
xα

(
σκ

(
σ−1 (t)

))
. (3.10)
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Also, using (3.1) and (3.5) in (1.1), we obtain

0 =
pα0(

σ−1 (τ (t))
)′ (r (

σ−1 (τ (t))
) (

z(n−1)
(
σ−1 (τ (t))

))α)′
+ pα0

m∑
κ=1

qκ
(
σ−1 (τ (t))

)
xα

(
σκ

(
σ−1 (τ (t))

))
≥

pα0
σ0τ0

(
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α)′
+ pα0

m∑
κ=1

qκ
(
σ−1 (τ (t))

)
xα

(
τ
(
σκ

(
σ−1 (t)

)))
. (3.11)

Combining (3.10) with (3.11) and taking into account (3.9), one can see that

0 ≥
1
σ0

(
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α)′
+

pα0
σ0τ0

(
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α)′
+

1
µ

m∑
κ=1

q̃κ2 (t)
(
x
(
σκ

(
σ−1 (t)

))
+ x

(
τ
(
σκ

(
σ−1 (t)

))))α
.

That is,

0 ≥
1
σ0

(
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α)′
+

pα0
σ0τ0

(
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α)′
+

m∑
κ=1

1
µ

q̃κ2 (t) zα
(
σκ

(
σ−1 (t)

))
.

By the fact z′ > 0, we note that z
(
σκ

(
σ−1 (t)

))
> z (t) which implies that

0 ≥
1
σ0

(
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α)′
+

pα0
σ0τ0

(
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α)′
+zα (t)

m∑
κ=1

1
µ

q̃κ2 (t) .

The proof of lemma is complete. �

Theorem 3.1. Assume that (3.2), (3.5), σ (t) ≤ τ (t), σ′ (t) > 0 and σκ ◦ τ = τ ◦ σκ hold. If there exists
a function δ ∈ C1 ([t0,∞) , (0,∞)), such that

lim sup
t→∞

∫ t

t2

δ (s)
µ

m∑
κ=1

q̃κ1 (s) −
((n − 2)!)α

µα (α + 1)α+1

(
1 +

pα0
τ0

)
r (s) (δ′ (s))α+1(

δ (s)σn−2 (s)σ′ (s)
)α  ds = ∞, (3.12)

then every solution of (1.1) is oscillatory or tends to zero.

Proof. Let x be a positive solution of (1.1). Then, there exists t1 ≥ t0 such that x (t) > 0, x (σκ (t)) > 0
and x (τ (t)) > 0 for t ≥ t1. Let z satisfying case (I). Define the positive function ω (t) by

ω (t) = δ (t)
r (t)

(
z(n−1) (t)

)α
zα (σ (t))

. (3.13)

Hence, by differentiating (3.13), we get
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ω′ (t) = δ′ (t)
r
(
(z)(n−1)

)α
zα (σ (t))

+ δ (t)

(
r (t)

(
z(n−1) (t)

)α)′
zα (σ (t))

−
αδ (t) r (t)

(
z(n−1) (t)

)α
zα−1 (σ (t)) z′ (σ (t))σ′ (t)

z2α (σ (t))
. (3.14)

Since z
′

> 0, z
′′

> 0,we see that limt→∞ z
′

, 0, using Lemma 2.3 with f = z
′

, we see that

z
′

(t) ≥
µ

(n − 2)!
tn−2z(n−1) (t) ,

for every µ ∈ (0, 1). By zn (t) ≤ 0, we get

z
′

(σ (t)) ≥
µ

(n − 2)!
(σ (t))n−2 z(n−1) (σ (t)) ≥

µ

(n − 2)!
(σ (t))n−2 z(n−1) (t) . (3.15)

Substituting (3.13) and (3.15) into (3.14) implies

ω′ (t) ≤ δ′ (t)
r (t)

(
z(n−1) (t)

)α
zα (σ (t))

+ δ (t)

(
r (t)

(
z(n−1) (t)

)α)′
zα (σ (t))

−

(
z(n−1) (t)
z (σ (t))

)α+1
αδ (t) r (t) µσn−2 (t)σ′ (t)

(n − 2)!

≤ δ (t)

(
r (t)

(
z(n−1) (t)

)α)′
zα (σ (t))

+
δ′ (t)
δ (t)

ω (t) −
αδ (t) r (t) µσn−2 (t)σ′ (t)

(n − 2)!

(
ω (t)

δ (t) r (t)

) α+1
α

,

that is,

ω′ (t) ≤ δ (t)

(
r (t)

(
z(n−1) (t)

)α)′
zα (σ (t))

+
δ′ (t)
δ (t)

ω (t) −
αµσn−2 (t)σ′ (t)

(n − 2)!δ1/α (t) r1/α (t)
ω(α+1)/α (t) . (3.16)

Now, define another positive function v (t) by

v (t) = δ (t)
r (τ (t))

(
z(n−1) (τ (t))

)α
zα (σ (t))

. (3.17)

By differentiating (3.17), we get

v′ (t) = δ′ (t)
r (τ (t))

(
z(n−1) (τ (t))

)α
zα (σ (t))

+
δ (t)

(
r (τ (t))

(
z(n−1) (τ (t))

)α)′
zα (σ (t))

−
αδ (t) r (τ (t))

(
z(n−1) (τ (t))

)α
zα−1 (σ (t)) z′ (σ (t))σ′ (t)

z2α (σ (t))
. (3.18)

From (3.15), σ (t) ≤ τ (t) and zn (t) ≤ 0, we have

z
′

(σ (t)) ≥
µ

(n − 2)!
(σ (t))n−2 z(n−1) (σ (t)) ≥

µ

(n − 2)!
(σ (t))n−2 z(n−1) (τ (t)) . (3.19)
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Substituting (3.19) and (3.17) into (3.18), implies

v′ (t) ≤ δ′ (t)
r (τ (t))

(
z(n−1) (τ (t))

)α
zα (σ (t))

+ δ (t)

(
r (τ (t))

(
z(n−1) (τ (t))

)α)′
zα (σ (t))

−

(
z(n−1) (τ (t))

z (σ (t))

)α+1
αδ (t) r (τ (t)) µσn−2 (t)σ′ (t)

(n − 2)!

≤ δ (t)

(
r (τ (t))

(
z(n−1) (τ (t))

)α)′
zα (σ (t))

+
δ′ (t)
δ (t)

v (t) −
αδ (t) r (τ (t)) µσn−2 (t)σ′ (t)

(n − 2)!

(
v (t)

δ (t) r (τ (t))

) α+1
α

.

By r
′ (t) > 0, we get

v′ (t) ≤ δ (t)

(
r (τ (t))

(
z(n−1) (τ (t))

)α)′
zα (σ (t))

+
δ′ (t)
δ (t)

v (t) −
αµσn−2 (t)σ′ (t)

(n − 2)!δ1/α (t) r1/α (t)
v(α+1)/α (t) . (3.20)

Now, using inequalities (3.16) and (3.20), we get

ω′ (t) +
pα0
τ0

v′ (t) ≤ δ (t)

(
r (t)

(
z(n−1) (t)

)α)′
+

pα0
τ0

(
r (τ (t))

(
z(n−1) (τ (t))

)α)′
zα (σ (t))

+
δ′ (t)
δ (t)

ω (t) −
αµσn−2 (t)σ′ (t)

(n − 2)!δ1/α (t) r1/α (t)
ω(α+1)/α (t)

+
pα0
τ0

(
δ′ (t)
δ (t)

v (t) −
αµσn−2 (t)σ′ (t)

(n − 2)!δ1/α (t) r1/α (t)
v(α+1)/α (t)

)
. (3.21)

By (3.7), we obtain

ω′ (t) +
pα0
τ0

v′ (t) ≤ −δ (t)

m∑
κ=1

q̃κ1 (t)

µ
+
δ′ (t)
δ (t)

ω (t) −
αµσn−2 (t)σ′ (t)

(n − 2)!δ1/α (t) r1/α (t)
ω(α+1)/α (t)

+
pα0
τ0

(
δ′ (t)
δ (t)

v (t) −
αµσn−2 (t)σ′ (t)

(n − 2)!δ1/α (t) r1/α (t)
v(α+1)/α (t)

)
.

Applying the following inequality inequality (2.1) with

A =
αµσn−2 (t)σ′ (t)

(n − 2)!δ1/α (t) r1/α (t)
and B =

δ′ (t)
δ (t)

,

we get

ω′ (t) +
pα0
τ0

v′ (t) ≤ −
δ (t)
µ

m∑
κ=1

q̃κ1 (t) +
((n − 2)!)α

µα (α + 1)α+1

r (t) (δ′ (t))α+1(
δ (t)σn−2 (t)σ′ (t)

)α
+

pα0 ((n − 2)!)α

τ0µα (α + 1)α+1

r (t) (δ′ (t))α+1(
δ (t)σn−2 (t)σ′ (t)

)α .
Integrating the last inequality from t2 to t, we obtain∫ t

t2

δ (s)
µ

m∑
κ=1

q̃κ1 (s) −
((n − 2)!)α

µα (α + 1)α+1

(
1 +

pα0
τ0

)
r (s) (δ′ (s))α+1(

δ (s)σn−2 (s)σ′ (s)
)α  ds ≤ ω (t2) +

pα0
τ0

v (t2) .

The proof is complete. �
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Theorem 3.2. Assume that (3.2), (3.5), (3.6), σ (t) ≤ τ (t) and σκ ◦σ
−1 ◦ τ = τ ◦σκ ◦σ

−1 hold. If there
exists a function δ ∈ C1 ([t0,∞) , (0,∞)), such that

lim sup
t→∞

∫ t

t2

δ (s)
µ

m∑
κ=1

q̃κ2 (s) −
((n − 2)!)α

µασ0 (α + 1)α+1

(
1 +

pα0
τ0

) r
(
σ−1 (s)

)
(δ′ (s))α+1(

δ (s) sn−2)α
 ds = ∞, (3.22)

then every solution of (1.1) is oscillatory or tends to zero.

Proof. Let x be a positive solution of (1.1). Then, there exist t1 ≥ t0 such that x (t) > 0, x (σκ (t)) > 0
and x (τ (t)) > 0 for t ≥ t1. Let z satisfying case (I). Define the positive function by

ω (t) = δ (t)
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α
zα (t)

. (3.23)

Hence, by differentiating (3.23), we get

ω′ (t) = δ′ (t)
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α
zα (t)

+ δ (t)

(
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α)′
zα (t)

−
αδ (t) r

(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α
zα−1 (t) z′ (t)

z2α (t)
. (3.24)

Since z
′

> 0, z
′′

> 0,we see that limt→∞ z
′

, 0, using Lemma 2.3 with f = z
′

, we obtain

z
′

(t) ≥
µ

(n − 2)!
tn−2z(n−1) (t) , (3.25)

for every µ ∈ (0, 1). Thus, by σ−1 (t) > t and zn (t) ≤ 0, we get

z
′

(t) ≥
µ

(n − 2)!
tn−2z(n−1) (t) ≥

µ

(n − 2)!
tn−2z(n−1)

(
σ−1 (t)

)
. (3.26)

Substituting (3.23) and (3.26) into (3.24) implies

ω′ (t) ≤ δ′ (t)
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α
zα (t)

+ δ (t)

(
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α)′
zα (t)

−

z(n−1)
(
σ−1 (t)

)
z (t)


α+1

αδ (t) r
(
σ−1 (t)

)
µtn−2

(n − 2)!

≤ δ (t)

(
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α)′
zα (t)

+
δ′ (t)
δ (t)

ω (t)

−
αδ (t) r

(
σ−1 (t)

)
µtn−2

(n − 2)!

(
ω (t)

δ (t) r
(
σ−1 (t)

)) α+1
α

,

that is,

ω′ (t) ≤ δ (t)

(
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α)′
zα (t)

+
δ′ (t)
δ (t)

ω (t) −
αµtn−2

(n − 2)!δ1/α (t) r1/α (
σ−1 (t)

)ω(α+1)/α (t) .

(3.27)
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Now, define another positive function v (t) by

v (t) = δ (t)
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α
zα (t)

. (3.28)

By differentiating (3.28), we get

v′ (t) = δ′ (t)
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α
zα (t)

+
δ (t)

(
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α)′
zα (t)

−
αδ (t) r

(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α
zα−1 (t) z′ (t)

z2α (t)
. (3.29)

From (3.25), σ−1 (τ (t)) ≥ t and zn (t) ≤ 0, we have

z
′

(t) ≥
µ

(n − 2)!
tn−2z(n−1) (t) ≥

µ

(n − 2)!
tn−2z(n−1)

(
σ−1 (τ (t))

)
. (3.30)

Substituting (3.30) and (3.28) into (3.29), implies

v′ (t) ≤ δ′ (t)
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α
zα (t)

+
δ (t)

(
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α)′
zα (t)

−

z(n−1)
(
σ−1 (τ (t))

)
z (t)


α+1

αδ (t) r
(
σ−1 (τ (t))

)
µtn−2

(n − 2)!

≤
δ (t)

(
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α)′
zα (t)

+
δ′ (t)
δ (t)

v (t)

−
αδ (t) r

(
σ−1 (τ (t))

)
µtn−2

(n − 2)!

(
v (t)

δ (t) r
(
σ−1 (τ (t))

)) α+1
α

,

By r
′ (t) > 0, we get

v′ (t) ≤
δ (t)

(
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α)′
zα (t)

+
δ′ (t)
δ (t)

v (t) −
αµtn−2

(n − 2)!δ1/α (t) r1/α (
σ−1 (t)

)v(α+1)/α (t) .

(3.31)
Now, using inequalities (3.27) and (3.31), we get

1
σ0
ω′ (t) +

pα0
σ0τ0

v′ (t) ≤ δ (t)
1
σ0

(
r
(
σ−1 (t)

) (
z(n−1)

(
σ−1 (t)

))α)′
zα (t)

+δ (t)
pα0
σ0τ0

(
r
(
σ−1 (τ (t))

) (
z(n−1)

(
σ−1 (τ (t))

))α)′
zα (t)

+
δ′ (t)
σ0δ (t)

ω (t) −
αµtn−2

σ0 (n − 2)!δ1/α (t) r1/α (
σ−1 (t)

)ω(α+1)/α (t)

+
pα0
σ0τ0

(
δ′ (t)
δ (t)

v (t) −
αµtn−2

(n − 2)!δ1/α (t) r1/α (
σ−1 (t)

)v(α+1)/α (t)
)
.

By (3.9), we obtain
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1
σ0
ω′ (t) +

pα0
σ0τ0

v′ (t) ≤ −
δ (t)
µ

m∑
κ=1

q̃κ2 (t) +
δ′ (t)
σ0δ (t)

ω (t) −
αµtn−2

σ0 (n − 2)!δ1/α (t) r1/α (
σ−1 (t)

)ω(α+1)/α (t)

+
pα0
τ0

(
δ′ (t)
σ0δ (t)

v (t) −
αµtn−2

σ0 (n − 2)!δ1/α (t) r1/α (
σ−1 (τ (t))

)v(α+1)/α (t)
)
.

Applying the following inequality (2.1) with

A =
αµtn−2

σ0 (n − 2)!δ1/α (t) r1/α (
σ−1 (t)

) and B =
δ′ (t)
σ0δ (t)

,

we get

1
σ0
ω′ (t) +

pα0
σ0τ0

v′ (t) ≤ −
δ (t)
µ

m∑
κ=1

q̃κ2 (t) +
((n − 2)!)α

µασ0 (α + 1)α+1

r
(
σ−1 (t)

)
(δ′ (t))α+1(

δ (t) tn−2)α
+

pα0 ((n − 2)!)α

τ0σ0µα (α + 1)α+1

r
(
σ−1 (t)

)
(δ′ (t))α+1(

δ (t) tn−2)α .

Integrating last the inequality from t2 to t, we obtain∫ t

t2

δ (s)
µ

m∑
κ=1

q̃κ2 (s) −
((n − 2)!)α

µασ0 (α + 1)α+1

(
1 +

pα0
τ0

) r
(
σ−1 (s)

)
(δ′ (s))α+1(

δ (s) sn−2)α
 ds ≤

1
σ0
ω (t2) +

pα0
σ0τ0

v (t2) .

The proof is complete. �

Example 3.1. Consider the odd order neutral delay differential equation(
x (t) +

17
18

x
( t
b

))(n)

+

m∑
k=1

q0

tn x
(

t
b2
κ

)
= 0, n ≥ 3, t ≥ 1, (3.32)

we note that

µ = α = r (t) = 1, b = b1 > 1, q̃κ2 (s) =
q0

b2ntn
, σ (t) =

t
b2 , τ (t) =

t
b

and set δ (t) = tn−1.

It is easy to see that the conditions (3.5), (3.6) and (3.2) hold.
Applying Theorem 3.2, we have that every solution of (3.32) is oscillatory or tends to zero as t → ∞

when

q0 >
(n − 2)! (n − 1)2 b2n−2

4m

(
1 +

17
18

b
)
.

Remark 3.1. If we consider the special case
(
x (t) + 17

18 x (t/2)
)(3)

+
q0
t3 x

(
t/22

)
= 0, then every solution

is oscillatory or tends to zero if q0 > 46. 22, while by using the result in [21], we have that every
solution is oscillatory or tends to zero if q0 > 144. Consequently, our results apply to the equation(
x (t) + 17

18 x (t/2)
)(3)

+ 70
t3 x

(
t/22

)
= 0, while the other results fail to study this equation.
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4. Conclusions

In this study, oscillatory properties of a class of odd-order quasi-linear neutral differential equations
are established. By introducing some Riccati substitution, we obtained new conditions that guarantee
that all nonoscillatory solutions of (1.1) converge to zero. Our results extend and complement the
previous results in the literature. An interesting issue is obtaining new criteria that ensure that all
solutions of (1.1) oscillate.
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21. B. Karpuz, Ö. Öcalan, S. Öztürk, Comparison theorems on the oscillation and asymptotic behavior
of higher-order neutral differential equations, Glasgow Math J., 52 (2010), 107–114.

22. G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with
deviating arguments, New York: Marcel Dekker, 1987.

23. T. X. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-
Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59.

24. O. Moaaz, R. A. El-Nabulsi, O. Bazighifan, Oscillatory behavior of fourth-order differential
equations with neutral delay, Symmetry, 12 (2020), 371.

25. O. Moaaz, I. Dassios, O. Bazighifan, Oscillation criteria of higher-order neutral differential
equations with several deviating arguments, Mathematics, 8 (2020), 412.

26. G. J. Xing, T. X. Li, C. H. Zhang, Oscillation of higher-order quasi-linear neutral differential
equations, Adv. Differ. Equations, 2011 (2011), 45.

27. M. K. Yıldız, Ö. Öcalan, Oscillation results of higher-order nonlinear neutral delay differential
equations, Selcuk J. Appl. Math., 11 (2010), 55–62.

28. B. G. Zhang, G. S. Ladde, Oscillation of even order delay differential equations, J. Math. Appl.
Anal., 127 (1987), 140–150.
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