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1. Introduction

It is well known that the level sets of the functions

Tp(x, y) = (|x|p + |y|p)
1
p , (x, y) ∈ R2, p > 0

can be easily described by the equation rp = c if one makes use of polar or standard triangle coordinates
in the cases p = 2 and p = 1, respectively. In [22], Richter considered r1 and r2 as special cases of
the p-generalized radius coordinate rp = (|x|p + |y|p)

1
p , p > 0 and the functions sinϕ, cosϕ as special

cases of certain p-generalized trigonometric functions. In fact, Richter dealt with ln,p-spherical and
simplicial coordinates. Here, we only discussed the l2,p-generalized trigonometric functions(or called
p-generalized trigonometric functions) as a generalization to classical trigonometric functions. Next,
we show some definitions and formulas found by Richter. For the details, the reader may refer to
references( [22, 23]).

Definition 1.1. The p-generalized sine and cosine values of an angle ϕ ∈ (0, 2π) between the directions
of the positive x-axes and the line through the points (0, 0) and (x, y) ∈ R2 are defined for each p > 0
as

sinp ϕ =
y

(|x|p + |y|p)
1
p

and
cosp ϕ =

x

(|x|p + |y|p)
1
p

.
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Obviously, it holds
∣∣∣sinp ϕ

∣∣∣ ≤ 1,
∣∣∣cosp ϕ

∣∣∣ ≤ 1 and∣∣∣sinp ϕ
∣∣∣p +

∣∣∣cosp ϕ
∣∣∣p = 1.

It is obvious to see that for each p > 0, ϕ ∈ (0, 2π),

sinp ϕ =
sinϕ
Npϕ

(1.1)

and
cosp ϕ =

cosϕ
Npϕ

(1.2)

where Npϕ = (|sinϕ|p + |cosϕ|p)
1
p . For ϕ , kπ

2 , k = 1, 2, 3, the first derivatives of sinp and cosp are

sin′p ϕ = cosp ϕ
|cosϕ|p−2(

Npϕ
)p (1.3)

and

cos′p ϕ = − sinp ϕ
|sinϕ|p−2(

Npϕ
)p . (1.4)

In particular, for p > 0 and x ∈
(
0, π2

)
, we have

sin′p x =
(cos x)p−1

((sin x)p + (cos x)p)
p+1

p

, (1.5)

cos′p x = −
(sin x)p−1

((sin x)p + (cos x)p)
p+1

p

(1.6)

and
sin′p x

cos′p x
= − (cot x)p−1 . (1.7)

The generalized tangent function tanp x is defined as

tanp x =
sinp x
cosp x

, x ∈ R\
{
kπ +

π

2
: k ∈ Z

}
. (1.8)

It is easy to see that tanp x = tan x for any p > 0. From 1.8, it follows that

tan′p x = 1 + | tan x|2, x ∈
(
−
π

2
,
π

2

)
. (1.9)

It is clear that all these generalized functions coincide with the classical ones when p = 2.
In this paper, we mainly show some bounds, classical inequalities and Turán type inequalities to

parameters for the p-generalized trigonometric functions. This paper presents an attempt to study these
functions, although many of the results are not perfect. We hope to provide some basic conclusions
and research directions for interested researchers.
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2. Turán type inequalities

Lemma 2.1 ( [20, Lemma 1]). The two variable power mean Mp(a, b) is concave in p for p ≥ 1 and
convex in p for p ≤ −1. That is, ∂2

∂p2

[
Mp(a, b)

]
≤ 0 for p ≥ 1 and ∂2

∂p2

[
Mp(a, b)

]
≥ 0 for p ≤ −1 with

equality if and only if a = b.

Theorem 2.1. For fixed x ∈
(
0, π2

)
and k > 1, the function p 7→ 2

k
p sinp x is log-convex on p ∈ [1,∞).

In particular, for fixed x ∈
(
0, π2

)
and k > 1, p, q ≥ 1, we have

sin p+q
2

x ≤ 2
k

2p + k
2q−

2k
p+q sin

1
2
p x sin

1
2
q x. (2.1)

Proof. By using the formula 1.1, we easily obtain

2
k
p sinp x =

2
k
p sin x

(sinp x + cosp x)
1
p

=
2

k−1
p(

1+cotp x
2

) 1
p

=
2

k−1
p

Mp(1, λ)

and
log

(
2

k
p sinp x

)
=

k − 1
p

log 2 − log Mp(1, λ)

where λ = cot x. On the one hand, we have

d
dp

(
k − 1

p
log 2

)
= −

k − 1
p2 log 2

and
d2

dp2

(
k − 1

p
log 2

)
=

2(k − 1)
p3 log 2 > 0.

This implies the function 2
k−1

p is strictly log-convex for p ≥ 1 and k > 1. On the other hand, simple
computation yields [

Mpt(1, λ)
]t

= Mp(1, λt),

and
t log

(
Mpt(1, λ)

)
= log

(
Mp(1, λt)

)
. (2.2)

Differentiating (2.2) with respect to p while holding λ fixed, we get

t2
[
log

(
Mpt(1, λ)

)]′
=

[
log

(
Mp(1, λt)

)]′
,

and
t3

[
log

(
Mpt(1, λ)

)]′′
=

[
log

(
Mp(1, λt)

)]′′
.

Furthermore, we have
t3 [

log (Mt(1, λ))
]′′
≤ 0

by setting p = 1, using Lemma 2.1 and the fact that the concave function meant log-concave function.
So it is easy to see that the function 2

k
p sinp x is log-convex on p ∈ [1,∞). This completes the proof. �
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Corollary 2.1. For fixed x ∈
(
0, π2

)
, the function p 7→ 2

1
p sinp x is log-convex on p ∈ [1,∞). In

particular, for fixed x ∈
(
0, π2

)
and p, q ≥ 1, we have

sin p+q
2

x ≤ 2
1

2p + 1
2q−

2
p+q sin

1
2
p x sin

1
2
q x. (2.3)

Proof. By taking k 7→ 1, we easily complete the proof. For the sake of simplicity, we omit the details.
�

Similar to proof of Theorem 2.1, we easily obtain the following Theorem 2.2.

Theorem 2.2. For fixed x ∈
(
0, π2

)
and k > 1, the function p 7→ 2

k
p cosp x is log-convex on p ∈ [1,∞).

In particular, for fixed x ∈
(
0, π2

)
and k > 1, p, q ≥ 1, we have

cos p+q
2

x ≤ 2
k

2p + k
2q−

2k
p+q cos

1
2
p x cos

1
2
q x. (2.4)

Corollary 2.2. For fixed x ∈
(
0, π2

)
, the function p 7→ 2

1
p cosp x is log-convex on p ∈ [1,∞). In

particular, for fixed x ∈
(
0, π2

)
and p, q ≥ 1, we have

cos p+q
2

x ≤ 2
1

2p + 1
2q−

2
p+q cos

1
2
p x cos

1
2
q x. (2.5)

3. Bounds for the p-generalized trigonometric functions

Lemma 3.1 ( [18]). Let x ∈
(
0, π2

)
and n ≥ 2. Then

sinn x + cosn x ≤ 1. (3.1)

Lemma 3.2 ( [18, cp-inequality]). Let a, b ∈ R and p > 0. Then

(|a| + |b|)p
≤ cp (|a|p + |b|p) (3.2)

where cp =

{
1 , 0 < p ≤ 1,
2p−1 , p > 1.

Lemma 3.3 ( [18]). For x ∈ (0, 1), we have

x < tan x <
x

√
1 − x2

.

Theorem 3.1. For fixed x ∈
(
0, π2

)
and p ≥ 2, the following inequalities hold true:

(i) sin x ≤ sinp x ≤ 2
p−1

p sin1 x;
(ii) cos x ≤ cosp x ≤ 2

p−1
p cos1 x.

Proof. By using Lemma 3.1, Lemma 3.2 and definitions of the functions sinp x, cosp x, we have

sin x ≤ sinp x ≤
sin x

2
1−p

p (sin x + cos x)
= 2

p−1
p sin1 x

and
cos x ≤ cosp x ≤

cos x

2
1−p

p (sin x + cos x)
= 2

p−1
p cos1 x.

�
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Theorem 3.2. For fixed x ∈
(
0, π2

)
and p ≥ 2, the following inequalities hold true:

(i) (cos x)p−1 ≤ sin′p x ≤ 2
p2−1

p (cos x)p−1

(sin x+cos x)p+1 ;

(ii) −2
p2−1

p (sin x)p−1

(sin x+cos x)p+1 ≤ cos′p x ≤ −(sin x)p−1.

Proof. By applying Lemma 3.1, Lemma 3.2 and the formulas (1.5), (1.6), we easily complete the proof.
�

Theorem 3.3. For x ∈
(
0, π2

)
and k, l > 0, we have

0 ≤ sink
p x cosl

p x ≤
(

kkll

(k + l)k+l

) 1
p

. (3.3)

Proof. Since the function ln x is strictly concave on (0,∞), we take α = k
l+k , β = l

l+k , x1 = 1
k sinp

p x and
x2 = 1

l cosl
p x in Jessen inequality

α ln x1 + β ln x2 ≤ ln(αx1 + βx2).

This implies the inequality (3.3). �

Theorem 3.4. For x ∈
(
0, π2

)
, the following inequalities hold true:

(i)
(
sinp x

)cosp x
≤

(
cosp x

)sinp x
, for x ∈

(
0, π4

)
;

(ii)
(
cosp x

)sinp x
≤

(
sinp x

)cosp x
, for x ∈

(
π
4 ,

π
2

)
;

(iii)
(
sinp x

)sinp x
≤

(
cosp x

)cosp x
, for x ∈

(
0, π4

)
.

Proof. Considering to ln x
x is strictly increasing on (0,∞) and the inequalities

x ∈
(
0,
π

4

)
, sinp x ≤ cosp x,

x ∈
(
π

4
,
π

2

)
, cosp x ≤ sinp x,

we easily obtain proofs of (i) and (ii).
Due to (iii), the formula (x ln x)′ = 1 + ln x > 0 for x ∈

(
0,
√

2
2

)
implies that the function x ln x is

strictly increasing. So, we have

sinp x ln(sinp x) ≤ cosp x ln(cosp x).

The proof is complete. �

Theorem 3.5. For fixed x ∈
(
0, π2

)
and p ≥ 0, we have

(
sinp x

)p sinp
p x

+
(
cosp x

)p cosp
p x
≥
√

2. (3.4)

Proof. The convexity of function xx implies the above inequality. we omit the detail for the sake of
simplicity. �
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Theorem 3.6. For fixed x ∈ (0, 1) and p ≥ 0, we have
√

1 − x2[
xp +

(√
1 − x2

)p] 1
p

< cosp x <
1

(1 + xp)
1
p

. (3.5)

Proof. By using Lemma 3.3 and the formula 1
cosp

p x − 1 = tanp x, we easily complete the proof. �

4. Classical inequalities

Lemma 4.1 ( [4, Lemma 3, p246]). Let us consider the function f : (a,∞) → R, where a > 0. If the
function g, defined by g(x) = 1

x ( f (x) − 1), is increasing on (a,∞), then for the function h, defined by
h(x) = f (x2), we have the following Grünbaum type inequality

1 + h(z) > h(x) + h(y), (4.1)

where x, y > a and z2 = x2 + y2. If the function g is decreasing, then the inequality (2.1) is reversed.

Theorem 4.1. For fixed x, y, z ∈
(
0, π2

)
and x2 + y2 = z2, we have

z2 sinp

(
z2
)
≥ x2 sinp

(
x2

)
+ y2 sinp

(
y2

)
(4.2)

and
z2 cosp

(
z2

)
≥ x2 cosp

(
x2

)
+ y2 cosp

(
y2

)
. (4.3)

Proof. We only prove the inequality (4.2). In fact, putting f (x) = x sinp(x) + 1, we get the function
g(x) =

f (x)−1
x = sinp(x) is increasing on

(
0, π2

)
. by using Lemma (4.1), we easily obtain inequality (4.2).

Similarly, the inequality (4.3) follows from the Lemma (4.1).
�

Lemma 4.2 ( [21, Mitrinović-Adamović inequality]). Let x ∈
(
0, π2

)
. Then(

sin x
x

)3

≥ cos x.

Theorem 4.2. For p > 0 and x ∈
(
0, π2

)
, we have

sin3
p x

x3 ≥
cos3

p x

cos2 x
. (4.4)

Proof. Using the definition of sinp x, cosp x and Lemma 4.1, we have

sin3
p x

x3 = sin3 x

x3(sinp x+cosp x)
3
p

≥

[
cos x

(sinp x+cosp x)
1
p

]3
1

cos2 x =
cos3

p x
cos2 x .

This completes the proof. �
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The above inequality in the Theorem 4.2 is the so called Mitrinović-Adamović inequality. The next
theorem 4.3 shows the famous Huygens-type inequality for the p-generalized trigonometric functions.

Theorem 4.3. For p > 0 and x ∈
(
0, π2

)
, we have

3 sinp x
x

+
cos2 x
cos3

p x
> 4. (4.5)

Proof. The weighted AG inequality shows that

ta + (1 − t)b > atb1−t

for a > 0, b > 0 and 0 < t < 1. Taking t = 3
4 , a =

sinp x
x and b = cos2 x

cos3
p x

and applying Theorem 4.3, we get

3
4

sinp x
x

+
1
4

cos2 x
cos3

p x
>

(
sinp x

x

) 3
4
(

cos2 x
cos3

p x

) 1
4

≥ 1.

So, we complete the proof. �

Theorem 4.4. For t, p > 0 and x ∈
(
0, π2

)
, the following inequalities hold true:

(i)
[
1 +

( sinp x
x

)2t
] [

1 +
( tanp x

x

)t
]
> 4;

(ii)
( sinp x

x

)2t
+

( tanp x
x

)t
≥ 2

√[
1 +

( sinp x
x

)2t
] [

1 +
( tanp x

x

)t
]
− 2 > 2;

(iii)
[
1 +

( sinp x
x

)t
]2 [

1 +
( tanp x

x

)t
]
> 8;

(iv) 2
( sinp x

x

)t
+

( tanp x
x

)t
≥ 3 3

√[
1 +

( sinp x
x

)t
] [

1 +
( tanp x

x

)t
]
− 3 > 3.

Proof. By using the known inequality (See the reference [24])

a + b ≥ 2
√

(1 + a)(1 + b) − 2 > 2
√

ab

and taking a =
( sinp x

x

)2t
, b =

( tanp x
x

)t
and applying Theorem 3.1, Theorem 4.2, we can obtain (i) and

(ii).
For (iii) and (iv), by using formula (See the reference [24])

2a + b ≥ 3 3
√

(1 + a)2(1 + b) − 3 > 3
3√
a2b

and putting a =
( sinp x

x

)2t
, b =

( tanp x
x

)t
, we easily obtain the expected results (iii) and (iv). �

Remark 4.1. Inequality (i) of Theorem 4.4 could be called multiplicative Wilker inequality, and
likewise inequality (iii) of Theorem 4.4 as a multiplicative Huygens inequality.
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5. Comments and open problems

The another generalized trigonometric and hyperbolic functions depending on a parameter p >

1 were studied by P. Lindqvist in a highly cited paper (see [19]). Motivated by this work, many
authors have studied the equalities and inequalities related to generalized trigonometric and hyperbolic
functions in [5, 6, 10]. Recently, S. Takeuchi [25] has investigated the (p, q)-trigonometric functions
depending on two parameters and in which the case of p = q coincides with the p-function of Lindqvist,
and for p = q = 2 they coincide with familiar elementary functions. These functions are differently
defined from the above p-trigonometric functions , they are all defined by integration. These functions
have been thoroughly studied, such as the multiple angle formula, classical inequalities, monotonicity
of parameters, relations with hypergeometric functions, and generalized elliptic integrals defined by
these functions. The reader may refer references [1–3, 11–13, 16, 17, 26–36]. As an example, we
introduce generalized trigonometric function with one parameter to illustrate the difference between
them.

For 1 < q < ∞ and 0 ≤ x ≤ 1, the arcsine may be generalized as

arcsinq x =

∫ x

0

1
(1 − tq)1/q dt

and
πq

2
= arcsinq 1 =

∫ 1

0

1
(1 − tq)1/q dt.

The inverse of arcsinq on [0, πq

2 ] is called the generalized sine function, denoted by sinq and may be
extended to (−∞,∞). See [7, 10] and closely related references therein.

For x ∈ [0, πq

2 ], the generalized cosine function cosq x is defined by

cosq x =
d sinq x

dx
.

It is easy to see that
cosq x = (1 − sinq

q x)1/q

and
d cosq x

dx
= − cos2−q

q x sinq−1
q x.

Very naturally, we can define the following generalized elliptic integrals. We repeat the definition of
complete q−elliptic integrals of the first kind Kq(k) and of the second kind Eq(k): for k ∈ (0, 1)

Kq(k) :=
∫ πq

2

0

dθ

(1 − kq sinq
q θ)

1− 1
q

=

∫ 1

0

dt

(1 − tq)
1
q (1 − kqtq)1− 1

q

,

Eq(k) :=
∫ πq

2

0
(1 − kq sinq

q θ)
1
q dθ =

∫ 1

0

(
1 − kqtq

1 − tq

) 1
q

dt.

Takeuchi made a detailed, in-depth study of integrals of this kind. He showed Legendre’s relation for
Kq(k) and Eq(k) and established relationship between the complete p-elliptic integrals and the Gaussian
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hyperbolic functions. As applications of complete p-elliptic, he also gave a computation formula of πq

with q = 3 and an elementary proof of Ramanujan’s cubic transformation. The reader can see [28] and
closely related references therein.

Remark 5.1. Since the functions of the inverse of arcsinq and two complete q-elliptic integrals are
represented by rather some complicated integrals, they can be approximated by some numerical
quadrature techniques such as [8,9]. Moreover, they can be bounded and controlled by some improved
and generalized inequalities such as [14, 15].

In contrast to Lindqvist’s trigonometric functions and Takeuchi’s generalized elliptic integrals,
similar elliptic integrals can be defined using the definition of p-trigonometric functions. But
unfortunately, this is a very difficult subject to study. Here are some questions for further study.

Open Problem 5.1. (i) Discuss the complete monotonicity, concavity or convexity of these functions
sinp x, cosp x and their inverse functions;
(ii) Discuss the complete monotonicity of these functions sinp x, cosp x and their inverse to parameter
p;
(iii) Establish some classical inequalities of these functions sinp x, cosp x and their inverse, such as
Wilker type inequality, Cusa-Huygens type inequality, Kober inequality, Lazerević inequality et. al.;
(iv) Establish series representations, integral representations of sinp x, cosp x and their inverse to
parameter p;
(v) Establish representations of hypergeometric function of sinp x, cosp x and their inverse functions
to parameter p.

By using the definition of p-trigonometric functions, we may define similar p-elliptic integrals Kp(k)
and Ep(k). For these kinds of integral, we pose the following interesting question.

Open Problem 5.2. (i) Study Legendre identity of p-elliptic integrals Kp(k) and Ep(k);
(ii) Study multiple angle formula of p-elliptic integrals Kp(k) and Ep(k);
(iii) Establish the complete monotonicity, concavity or convexity of p-elliptic integrals Kp(k) and
Ep(k) to parameter p;
(iv) Establish representations of hypergeometric function of p-elliptic integrals Kp(k) and Ep(k).

6. Conclusions

In this work, we study the p-generalized trigonometric functions defined by Richter. Some new
Turán type inequalities and classical inequalities such as Mitrinović-Adamović type inequality and
Huygens-type inequality are obtained. Further, we establish some bounds for the p-generalized
trigonometric functions. Finally, several comments and open problems are posed.
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