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Abstract: Let G be a graph with vertex set V(G). A function f : V(G) → {0, 1, 2} is a Roman
dominating function on G if every vertex v ∈ V(G) for which f (v) = 0 is adjacent to at least one
vertex u ∈ V(G) such that f (u) = 2. The Roman domination number of G is the minimum weight
ω( f ) =

∑
x∈V(G) f (x) among all Roman dominating functions f on G. In this article we study the Roman

domination number of direct product graphs and rooted product graphs. Specifically, we give several
tight lower and upper bounds for the Roman domination number of direct product graphs involving
some parameters of the factors, which include the domination, (total) Roman domination, and packing
numbers among others. On the other hand, we prove that the Roman domination number of rooted
product graphs can attain only three possible values, which depend on the order, the domination
number, and the Roman domination number of the factors in the product. In addition, theoretical
characterizations of the classes of rooted product graphs achieving each of these three possible values
are given.
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1. Introduction

Let G be a simple graph with vertex set V(G) and order n(G) = |V(G)|. Given a vertex v of G,
NG(v) will denote the open neighborhood of v in G. The closed neighborhood, denoted by NG[v],
equals NG(v) ∪ {v}. As usual, the graph obtained from G by removing the vertex v (and all the edges
incident with it) will be denoted by G − v. Given a set S ⊆ V(G), its open neighborhood is the set
NG(S ) = ∪v∈S NG(v), and its closed neighborhood is the set NG[S ] = NG(S ) ∪ S . In all the notations
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above, we shall remove the subindex G, whenever the graph G is clear from the context. A vertex v is
called universal if NG[v] = V(G). By G[S ] we denote the subgraph of G induced by S .

A set S ⊆ V(G) is a dominating set of G if NG[S ] = V(G). The domination number of G, denoted
by γ(G), is the minimum cardinality among all dominating sets of G. A dominating set of G with
minimum cardinality is called a γ(G)-set. More information on domination in graphs can be found in
the books [1, 2]. In the last two decades, dominating functions have been extensively studied. One of
the reasons may be due to the fact that dominating functions generalize the concept of dominating sets.
A function f : V(G) → {0, 1, . . .} on G is said to be a dominating function if for every vertex v such
that f (v) = 0, there exists a vertex u ∈ N(v), such that f (u) ≥ 1. If we restrict ourselves to the case
of functions f : V(G) → {0, 1, 2}, then we observe that f generates three sets V0, V1 and V2; where
Vi = {v ∈ V(G) : f (v) = i} for i ∈ {0, 1, 2}. In such a sense, we will write f (V0,V1,V2) to refer to the
function f . Given a set S ⊆ V(G), f (S ) =

∑
v∈S f (v). The weight of f is ω( f ) = f (V(G)) = |V1|+ 2|V2|.

The theory of Roman dominating functions is one of the most studied topics within the theory of
dominating functions in graphs. Roman dominating functions were formally defined by Cockayne et
al. [3] motivated, in part, by a paper of Ian Stewart entitled “Defend the Roman Empire” [4]. A Roman
dominating function (RDF) on a graph G is a function f (V0,V1,V2) such that for every vertex v ∈ V0,
there exists a vertex u ∈ N(v) ∩ V2. The Roman domination number of G, denoted by γR(G), is the
minimum weight ω( f ) =

∑
v∈V(G) f (v) among all RDFs f on G. Some results on Roman domination in

graphs can be found for example, in [3, 5–8].
Moreover, one of the most attractive research approaches within the domination theory in graphs is

the study of domination-related parameters in product graphs. As expected, some of the researches
concerning Roman dominating functions are related to product graphs. In particular, we cite the
following works: lexicographic product graphs [9, 10]; Cartesian and strong product graphs [11, 12],
direct product of paths and cycles [13,14], rooted product graphs [15], and corona product graphs [16].

It is now our goal to continue with the study of this parameter in two of the product graphs
mentioned above. In Section 2 we obtain tight bounds for the Roman domination number of direct
product graphs. In Section 3 we provide closed formulas for the Roman domination number of rooted
product graphs, and characterize the graphs reaching these expressions. We end the present section
with some terminology on invariants related to domination which will be further used.

A natural lower bound for γ(G) is the packing number of G. A set A ⊆ V(G) is called a packing
set (or simply a packing) if any two distinct vertices x, y ∈ A satisfy that N[x] ∩ N[y] = ∅, that is, the
closed neighborhoods of vertices in A have pairwise empty intersections. The cardinality of a largest
packing in G is called the packing number and is denoted by ρ(G). Any packing of cardinality ρ(G) is
called a ρ(G)-set.

Related to packing sets, the notion of an open packing in a graph G comes by using open
neighborhoods instead of closed neighborhoods. That is, a set B is an open packing, if open
neighborhoods centered in vertices of B have pairwise empty intersection. The cardinality of a largest
open packing in G is called the open packing number of G and is denoted by ρo(G). An open packing
of cardinality ρo(G) is simply called a ρo(G)-set.

The open packing number is a natural lower bound for the total domination number γt(G). This is
the minimum cardinality of a set D ⊆ V(G), called a total dominating set, where every vertex of G has
a neighbor in D. A total dominating set of cardinality γt(G) is called a γt(G)-set as usual.

The last invariant we mention here is the total Roman domination number γtR(G). An RDF
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f (V0,V1,V2) is called a total Roman dominating function (TRDF) if G[V1∪V2] has no isolated vertices.
The minimum weight ω( f ) = |V1| + 2|V2| among all TRDFs f (V0,V1,V2) is called the total Roman
domination number γtR(G) on G. Again, we simply call a TRDF f of weight γtR(G) as a γtR(G)-
function.

For some extra information (main results, open problems, etc.) on several domination related
invariants, including the above mentioned ones, we suggest the recent books [17–19].

2. Direct product graphs

Let G and H be two graphs. Their direct product G × H is a graph with vertex set V(G) × V(H)
and two vertices (u, v) and (u′, v′) are adjacent in G × H if uu′ ∈ E(G) and vv′ ∈ E(H). The direct
product belongs to the so-called four standard graph products, and it is the only one whose edges
project to edges to both factors. On the other hand, direct product seems to be quite elusive from many
perspectives. Let us mention connectivity, where it can occur that G × H is disconnected even when
both factors G and H are connected. This happens when both G and H are bipartite as shown in [20],
see also [21].

We start with Roman domination in direct products of complete graphs that yields a palette of sharp
examples for the bounds that follows.

Proposition 2.1. For integers r and t we have

γR(Kr × Kt) =


4; if t ≥ r = 2,
5; if t ≥ r = 3,
6; if t ≥ r > 3.

Proof. Let V(Kr) = {v1, . . . , vr} and V(Kt) = {u1, . . . , ut}. Let first t ≥ r = 2. In this case we have
K2 × Kt � Kt,t − M for a perfect matching M = {(v1, ui)(v2, ui) : i ∈ {1, . . . , t}}. Clearly, for any i ∈
{1, . . . , t}, the function f (V0,V1,V2), defined by V2 = {(v1, ui), (v2, ui)}, V1 = ∅ and V0 = V(K2 × Kt)\V2,
is an RDF on K2 × Kt and so, γR(K2 × Kt) ≤ 4. Suppose that γR(K2 × Kt) < 4, i.e., γR(K2 × Kt) = 3. Let
g(W0,W1,W2) be a γR(K2 × Kt)-function. Then there is either one vertex in W2 and one in W1; or three
vertices in W1 and no in W2. The last option is not possible since K2×Kt contains at least four vertices.
Also, the first possibility leads to a contradiction because there are at least two vertices nonadjacent to
the unique vertex (vi, u j) in W2. Therefore, γR(K2 × Kt) = 4.

Let now t ≥ r = 3. We set V2 = {(v1, u1), (v2, u1)}, V1 = {(v3, u1)} and V0 = V(K3 × Kt) \ (V1 ∪ V2).
It is easy to see that f (V0,V1,V2) is an RDF on K3 × Kt and γR(K3 × Kt) ≤ 5 follows. Suppose that
γR(K3 × Kt) < 5 and let g(W0,W1,W2) be a γR(K3 × Kt)-function. Clearly, W2 , ∅ because there are
at least nine vertices in K3 × Kt. Every vertex is nonadjacent to exactly t + 1 ≥ 4 other vertices, and
therefore |W2| = 2. For any pair of vertices (vi, u j), (vk, u`) there exists at least one vertex nonadjacent
to both. Indeed, if j = `, then (vm, u j) is such for {i, k,m} = {1, 2, 3} and if j , `, then (vi, u`) and (vk, u j)
are such. In both cases we obtain a contradiction, and the equality γR(K3 × Kt) = 5 holds.

Finally, let t ≥ r > 3. It is easy to check that the function f (V0,V1,V2), defined by V2 =

{(v1, u1), (v2, u1), (v1, u2)}, V1 = ∅ and V0 = V(Kr × Kt) \ (V1 ∪ V2), is an RDF on Kr × Kt, and we
have γR(Kr × Kt) ≤ 6. If γR(Kr × Kt) < 6, then there exists an RDF g(W0,W1,W2) with ω(g) ≤ 5 and
|W2| ≤ 2. Clearly, |W2| > 0 since Kr × Kt contains at least 16 vertices. If |W2| = 1, then we obtain
a contradiction because there exist at least six vertices in V(Kr × Kt) being nonadjacent to the unique
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vertex in W2. If W2 = {(vi, u j), (vk, u`)}, then there exist at least two vertices nonadjacent to both. More
detailed, if i = k, then there are at least two more vertices (vi, um), (vi, up) such that |{ j, `,m, p}| = 4.
A symmetrical argument works when j = `. When i , k and j , `, the vertices (vi, u`), (vk, u j) are
not adjacent to vertices in W2, a final contradiction. Hence, the equality γR(Kr × Kt) = 6 holds when
t ≥ r > 3. �

We next describe several lower and upper bounds for γR(G ×H) in terms of different parameters on
the factors of G and H.

Theorem 2.2. For any graphs G and H with no isolated vertex,

max{ρ(G)γR(H), ρ(H)γR(G)} ≤ γR(G × H) ≤ min{2γ(G)γtR(H), 2γ(H)γtR(G)}.

Proof. First, we prove the lower bound. Let f be a γR(G × H)-function and S = {u1, . . . , uρ(G)} a ρ(G)-
set. For any i ∈ {1, . . . , ρ(G)}, we construct a function hi on H as follows. For every v ∈ V(H), let
hi(v) = max{ f (u, v) : u ∈ NG[ui]}. We claim that hi is an RDF on H. Let v ∈ V(H) such that hi(v) = 0.
Notice that every vertex (u, v) ∈ NG[ui]×{v} satisfies that f (u, v) = 0. In particular, for the vertex (ui, v),
there exists (u′i , v

′) ∈ NG×H(ui, v) such that f (u′i , v
′) = 2. So, there exists v′ ∈ NH(v) with hi(v′) = 2.

Consequently, hi is an RDF on H, which implies that γR(H) ≤ ω(hi) ≤ f (NG[ui] × V(H)). Thus,

γR(G × H) ≥
ρ(G)∑
i=1

f (NG[ui] × V(H)) ≥
ρ(G)∑
i=1

γR(H) = ρ(G)γR(H).

By the symmetry of G ×H, it is also satisfied that γR(G ×H) ≥ ρ(H)γR(G), which completes the proof
of the lower bound.

Next, we proceed to the upper bound. Let f ′(V0,V1,V2) be a γtR(G)-function and D a γ(H)-set.
Now, we define W ⊆ V(H) as a total dominating set with minimum cardinality and satisfying that
D ⊆ W. Notice that |W | ≤ 2|D|. We consider a function g(W0, ∅,W2) on G × H as follows. If
(x, y) ∈ (V2 ×W) ∪ (V1 × D), then g(x, y) = 2, and g(x, y) = 0 otherwise. We claim that g is an RDF on
G × H. Let (u, v) ∈ W0 and distinguish the next two cases.
Case 1. u ∈ V0. In this case, NG(u) ∩ V2 , ∅ and also, NH(v) ∩W , ∅ as W is a total dominating set of
H. Hence, NG×H(u, v) ∩W2 , ∅.
Case 2. u ∈ V1 ∪ V2. In this case, NG(u) ∩ (V1 ∪ V2) , ∅ and also, either NH(v) ∩ D , ∅ or v ∈ D. If
NH(v) ∩ D , ∅, then NG×H(uv) ∩W2 , ∅. If v ∈ D, then (u, v) ∈ (V2 ×W) ∪ (V1 × D) = W2.

From the previous cases, we deduce that g is an RDF on G × H, as required. Therefore,

γR(G × H) ≤ ω(g)
= 2|W2|

= 2(|V2||W | + |V1||D|)
≤ 2(2|V2||D| + |V1||D|)
= 2|D|(2|V2| + |V1|)
= 2γ(H)γtR(G).

By the symmetry of G × H, it is also satisfied that γR(G × H) ≤ 2γ(G)γtR(H), which completes the
proof. �
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The upper bound of Theorem 2.2 is sharp for Kr × Kt, t ≥ r > 3 by Proposition 2.1 and since
γ(Kr) = γ(Kt) = 1 and γtR(Kr) = γtR(Kt) = 3. We are not aware of any example that is sharp for the
lower bound of Theorem 2.2. Moreover, in most cases it seems that one could even add a factor two
and the bound is still valid. However this is not true in all cases. In particular, K2 × C5 � C10 and we
have γR(K2 ×C5) = 7 while we get max{ρ(K2)γR(C5), ρ(C5)γR(K2)} = 4.

Theorem 2.3. The following statements hold for any graph H with γt(H) = γ(H).

(i) For any γtR(G)-function f (V0,V1,V2),

γR(G × H) ≤ 2γ(H)(γtR(G) − |V2|).

(ii) If there exists a γtR(G)-function f (V0,V1,V2) such that V2 is a dominating set of G, then

γR(G × H) ≤ 2γ(H)(γtR(G) − γ(G)).

Proof. Let D be a γt(H)-set. So, D is also a γ(H)-set. From f and D, we define g(W0, ∅,W2) on G × H
as follows: W2 = (V1 ∪ V2) × D and W0 = V(G × H) \W2. Observe that g is an RDF on G × H by the
same reasons as in the proof of Theorem 2.2. Hence,

γR(G × H) ≤ ω(g)
= 2|W2|

= 2(|V2||D| + |V1||D|)
= 2|D|(|V2| + |V1|)
= 2γ(H)(γtR(G) − |V2|),

which completes the proof of (i).
Finally, (ii) is an immediate consequence of (i). �

Both bounds of Theorem 2.3 are sharp. One can observe this for the graph P4 × P4. Here γt(P4) =

2 = γ(P4) and γtR(P4) = 4 where there exists a TRDF f (V0,V1,V2) on P4 with |V2| = 2, and by
Theorem 2.3, we get γR(P4 × P4) ≤ 8. The equality follows by [14, Theorem 5].

We continue with another lower and upper bounds on γR(G×H). Before this, we need to give some
well-known results.

Theorem 2.4. The following statements hold for any graphs G and H with no isolated vertex.

(i) [22] γR(G) ≤ γtR(G) ≤ 3γ(G).
(ii) [23] γR(G) ≥ γt(G).

(iii) [24] γtR(G × H) ≤ 2γt(G)γt(H).
(iv) [25] γt(G × H) ≥ min{ρo(G)γt(H), ρo(H)γt(G)}.

Theorem 2.5. For any graphs G and H with no isolated vertex,

min{ρo(G)γt(H), ρo(H)γt(G)} ≤ γR(G × H) ≤ min{2γt(G)γt(H), 6γ(G)γ(H)}.

Proof. By Theorem 2.4 (ii) and (iv) we deduce the lower bound. The upper bound γR(G × H) ≤
2γt(G)γt(H) holds by Theorem 2.4 (i) and (iii). Finally, to complete the proof of the upper bound we
only need to combine Theorems 2.2 and 2.4 (i). �
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All the bounds of Theorem 2.5 are sharp for certain graphs. The lower bound is sharp for the graph
K2 × K2. By Theorem 2.5, we get γR(K2 × K2) ≥ 4, and the equality holds by Proposition 2.1. For the
first upper bound, γR(G × H) ≤ 2γt(G)γt(H) we observe the family P4 × P4k. Here γt(P4k) = 2k, and
we have γR(P4 × P4k) ≤ 8k. The equality follows by [14, Theorem 5]. Finally, the second upper bound
γR(G × H) ≤ 6γ(G)γ(H) is sharp for the family Kr × Kt, t ≥ r > 3, by Proposition 2.1.

We now improve the upper bound γR(G × H) ≤ 2γt(G)γt(H) from Theorem 2.5. For this, let G be
a graph with no isolated vertex and D a γt(G)-set. Let D′ ⊆ D be a dominating set of G of minimum
cardinality. Notice that D′ is not necessarily a γ(G)-set. For instance, in C8 = v1 . . . v8v1 we have a
γt(C8)-set D = {v2, v3, v6, v7} and the only dominating set that is a subset of D is D it self. However, D
is not a γ(C8)-set because γ(C8) = 3.

With the above notation in mind, the set D \ D′ is denoted by KG(D) and is called a kernel of D.
By k(G) we denote the maximum possible cardinality among all kernels KG(D) from all γt(G)-sets D
and their dominating subsets D′. For instance, in P5 = v1v2v3v4v5, there exists a unique γt(P5)-set
D = {v2, v3, v4}. The kernel of D is then KP5(D) = {v3} and k(P5) = 1.

Theorem 2.6. For any graphs G and H with no isolated vertex,

γR(G × H) ≤ 2γt(G)γt(H) − 2k(G)k(H).

Proof. Let DG be a γt(G)-set together with D′G for which KG(DG) has maximum cardinality k(G) and
let DH be a γt(H)-set together with D′H for which KH(DH) has cardinality k(H). Let V2 = (DG ×

DH) \ (KG(DG) × KH(DH)) and V0 = V(G × H) \ V2. We will show that f (V0, ∅,V2) is an RDF on
G × H. Notice that every vertex (u, v) has a neighbor in DG × DH because DG and DH are total
dominating sets of G and H, respectively. If (u, v) is adjacent to (u′, v′) ∈ KG(DG) × KH(DH), then
either (u, v) ∈ (D′G × D′H) or (u, v) is adjacent to a vertex (u0, v0) ∈ (D′G × D′H). Hence, (u, v) ∈ V2 or
(u, v) is adjacent to a vertex (u0, v0) from V2, as desired. Therefore, f is an RDF on G × H of weight
ω( f ) = 2|V2| = 2γt(G)γt(H) − 2k(G)k(H), and the upper bound follows. �

The upper bound of Theorem 2.6 is sharp because already first upper bound from Theorem 2.5 was
sharp. But we have a big family of graphs where it is better.

Proposition 2.7. For any graphs G and H with universal vertices on at least four vertices,

γR(G × H) = 6.

Proof. Let u and v be universal vertices of G and H, respectively. For every u′ ∈ V(G) \ {u} and
every v′ ∈ V(H) \ {v} we have DG = {u, u′}, D′G = {u}, DH{v, v′}, D′H = {v} and γR(G × H) ≤ 6
follows by Theorem 2.6. The bound γR(G × H) ≥ 6 follows by the same reasons as the lower bound in
Proposition 2.1 for t ≥ r > 3. Therefore, the proof is complete. �

The following result gives a new upper bound on γR(G × H).

Theorem 2.8. For any graphs G and H with no isolated vertex,

γR(G × H) ≤ min{γ(G)(n(H) + γt(H)), γ(H)(n(G) + γt(G))}.
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Proof. Let D be a γ(G)-set and let W be a γt(H)-set. We consider the function f (V0,V1,V2) such that
V2 = D×W, V1 = D× (V(H) \W) and V0 = V(G×H) \ (V1∪V2). It is readily seen that f is an RDF on
G × H. Since ω( f ) = γ(G)(n(H) + γt(H)), and by using a symmetrical argument, we deduce the upper
bound. �

The bound above is tight for instance if we consider the family of direct product graphs P3×Kn with
n ≥ 3. By Theorem 2.8 we get γR(P3 × Kn) ≤ 5. The equality is obtained by the same arguments as in
the proof of Proposition 2.1 for γR(K3×Kn). Other sharp examples are γR(K3×Kn) = 5, by Proposition
2.1, and γR(P4 × P3k) = 6k, by [14, Theorem 5].

3. Rooted product graphs

Given a nontrivial graph G and a nontrivial graph H with root v ∈ V(H), the rooted product graph
G ◦v H is defined as the graph obtained from G and H by taking one copy of G and n(G) copies of H
and identifying the ith-vertex of G with the vertex v in the ith-copy of H for every i ∈ {1, . . . , n(G)} [26].
Figure 1 shows an example of a rooted product graph.

v

w

H P5 ◦v H

Figure 1. The graph P5 ◦v H.

For every vertex x ∈ V(G), Hx will denote the copy of H in G ◦v H containing x. The restriction
of any function f : V(G ◦v H) → {0, 1, 2} to the set V(Hx) will be denoted by fx. Hence, if f is a
γR(G ◦v H)-function, then as V(G ◦v H) = ∪x∈V(G)V(Hx), we obtain that

γR(G ◦v H) = ω( f ) =
∑

x∈V(G)

ω( fx).

We recall two results given by Kuziak et al. [15], which will be useful later.

Lemma 3.1. [15] Let H be a nontrivial graph. For any v ∈ V(H),

γR(H − v) ≥ γR(H) − 1.

Theorem 3.2. [15] Let G and H be nontrivial graphs. If v ∈ V(H) is the root of H, then

γ(G) + n(G)(γR(H) − 1) ≤ γR(G ◦v H) ≤ n(G)γR(H).

We continue this section with a useful lemma.

Lemma 3.3. Let f (V0,V1,V2) be a γR(G ◦v H)-function. The following statements hold for any vertex
x ∈ V(G):
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(i) ω( fx) ≥ γR(H) − 1, and
(ii) if ω( fx) = γR(H) − 1, then f (x) = 0 and f (S ) ≤ 1 for S = NG◦vH(x) ∩ V(Hx).

Proof. Let x ∈ V(G). First, we observe that every vertex in V0 ∩ (V(Hx) \ {x}) is adjacent to some
vertex in V2 ∩ V(Hx). Thus, the function g, defined by g(x) = max{ f (x), 1} and g(u) = f (u) whenever
u ∈ V(Hx) \ {x}, is an RDF on Hx and with that also on H. Hence ω( fx) ≥ γR(H) − 1 and the proof of
(i) is completed.

For (ii) assume that ω( fx) = γR(H)− 1 and let S = NG◦vH(x)∩V(Hx). If f (x) > 0, then fx is an RDF
on Hx, which implies that γR(H) − 1 = ω( fx) ≥ γR(Hx) ≥ γR(H), a contradiction. Hence, f (x) = 0.
Now, suppose that f (S ) > 1. If there exists a vertex y ∈ N(x) ∩ V(Hx) ∩ V2, then fx is an RDF on Hx

and, as above, we obtain a contradiction. So, N(x)∩V(Hx)∩V2 = ∅. Therefore |N(x)∩V(Hx)∩V1| ≥ 2,
which implies that the function g′, defined by g′(x) = 2, g′(u) = 0 whenever u ∈ N(x) ∩ V(Hx) ∩ V1

and g′(u) = f (u) otherwise, is an RDF on Hx of weight at most ω( fx) = γR(H) − 1, a contradiction.
Therefore, f (S ) ≤ 1, which completes the proof. �

From Lemma 3.3 (i) we deduce that any γR(G ◦v H)-function f defines two subsets A f and B f of
V(G) as follows.

A f ={x ∈ V(G) : ω( fx) ≥ γR(H)},
B f ={x ∈ V(G) : ω( fx) = γR(H) − 1}.

Lemma 3.4. Let f be a γR(G ◦v H)-function. If B f , ∅, then the following statements hold:

(i) γR(H − v) = γR(H) − 1, and
(ii) γR(G ◦v H) ≤ γR(G) + n(G)(γR(H) − 1).

Proof. For (i) let x ∈ B f . By Lemma 3.3 (ii) we obtain that f (x) = 0. This implies that the function fx

restricted to V(Hx) \ {x} is an RDF on Hx − x. So γR(H − v) = γR(Hx − x) ≤ ω( fx) − f (x) = γR(H) − 1.
Lemma 3.1 leads to γR(H − v) = γR(H) − 1, which completes the proof of (i).

For (ii) observe that from any γR(G)-function and any γR(H − v)-function we can construct an RDF
on G ◦v H of weight γR(G) + n(G)γR(H − v). By the equality given in (i), it follows that γR(G ◦v H) ≤
γR(G) + n(G)γR(H − v) = γR(G) + n(G)(γR(H) − 1), which completes the proof. �

Next, we state the three possible values that γR(G ◦v H) can reach. We might recall that graphs G
and H with γR(G ◦v H) equal to each of these three values were already given in [15], although there
was not proved that these are the only possible values γR(G ◦v H) can reach. In this sense, with the next
results we completely settle the problem of the Roman domination in rooted product graphs, already
initiated in [15].

Theorem 3.5. Let G be a graph without isolated vertices and let H be a nontrivial graph. If v ∈ V(H)
is the root, then

γR(G ◦v H) ∈ {n(G)γR(H), γR(G) + n(G)(γR(H) − 1), γ(G) + n(G)(γR(H) − 1)}.

Proof. Let f (V0,V1,V2) be a γR(G ◦v H)-function. Now, we consider the subsets A f ,B f ⊆ V(G)
associated to f and differentiate the following cases.
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Case 1. B f = ∅. In this case, for any x ∈ V(G) it follows that ω( fx) ≥ γR(H). This implies that
γR(G ◦v H) = ω( f ) =

∑
x∈V(G) ω( fx) ≥ n(G)γR(H), and by Theorem 3.2, we deduce that γR(G ◦v H) =

n(G)γR(H).

Case 2. B f , ∅. By Theorem 3.2 we have that γR(G ◦v H) ≥ γ(G) + n(G)(γR(H)− 1). Now, we assume
that γR(G ◦v H) > γ(G) + n(G)(γR(H) − 1). Let z ∈ B f and S = NG◦vH[z] ∩ V(Hz) such that f (S ) is
maximum among all vertices in B f . By Lemma 3.3 (ii) we obtain that f (z) = 0 and f (S ) ≤ 1. We
analyze the next two subcases.

Subcase 2.1. f (S ) = 1. In this subcase there exists a vertex y ∈ S ∩V1. On the way to a contradiction
we define a function h on Hz as follows: h(z) = 2, h(y) = 0 and h(u) = fz(u) whenever u ∈ V(Hz)\{z, y}.
It is easy to see that h is an RDF on Hz of weight ω(h) = γR(Hz), i.e., h is a γR(Hz)-function. Next, from
h, fz and any γ(G)-set D, we define a function f ′ on G ◦v H as follows. For every x ∈ D, the restriction
of f ′ to V(Hx) is induced from h. Moreover, if x ∈ V(G) \ D, then the restriction of f ′ to V(Hx) is
induced from fz. Note that f ′ is an RDF on G◦v H of weightω( f ′) ≤ |D|γR(Hz)+|V(G)\D|(γR(Hz)−1) =

γ(G) + n(G)(γR(H) − 1), which is a contradiction.

Subcase 2.2. f (S ) = 0. In this subcase, we first proceed to show that if y ∈ A f ∩ V2, then
ω( fy) > γR(H). Suppose that there exists a vertex y′ ∈ A f ∩ V2 such that ω( fy′) = γR(H). Proceeding
analogously as in the Subcase 2.1, from fy′ , fz and any γ(G)-set D we can construct an RDF on G ◦v H
of weight γ(G) + n(G)(γR(H) − 1), which is a contradiction. Hence, for every y ∈ A f ∩ V2, it follows
that ω( fy) > γR(H), as required.

We now observe that, as f (S ) = 0, every vertex x ∈ B f satisfies that f (NG◦vH[x] ∩ V(Hx)) = 0,
which implies that NG◦vH(x) ∩A f ∩ V2 , ∅. Thus,A f ∩ V2 dominates B f .

Next, we define a function h on G as follows. If x ∈ B f , then h(x) = 0; if x ∈ A f ∩V2, then h(x) = 2;
and finally, if x ∈ A f \ V2, then h(x) = 1. Note that h is an RDF on G of weight 2|A f ∩ V2| + |A f \ V2|.
Therefore,

γR(G ◦v H) =
∑

x∈A f∩V2

ω( fx) +
∑

x∈A f \V2

ω( fx) +
∑
x∈B f

ω( fx)

≥
∑

x∈A f∩V2

(γR(H) + 1) +
∑

x∈A f \V2

γR(H) +
∑
x∈B f

(γR(H) − 1)

= 2|A f ∩ V2| + |A f \ V2| +
∑

x∈V(G)

(γR(H) − 1)

≥ γR(G) + n(G)(γR(H) − 1).

Finally, by Lemma 3.4 (ii) we deduce that γoiR(G ◦v H) = γR(G) + n(G)(γR(H) − 1) and the proof is
complete. �

In [15], the authors provided some sufficient conditions under which the three possible values of
Roman domination number of rooted product graphs are achieved. In addition, we next give two
examples in which we can observe that these expressions of γR(G ◦v H) are realizable.

• If G is a graph with no isolated vertex and H is the graph shown in Figure 1, then

– γR(G ◦v H) = γ(G) + n(G)(γR(H) − 1) = γ(G) + 3n(G).
– γR(G ◦w H) = n(G)γR(H) = 4n(G).
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• If G is a graph with no isolated vertex and H is the path P4 (where the root v ∈ V(P4) is a vertex
of degree one), then γR(G ◦v H) = γR(G) + n(G)(γR(H) − 1) = γR(G) + 2n(G).

We next proceed to characterize the graphs G ◦v H with γR(G ◦v H) = γ(G) + n(G)(γR(H) − 1).

Theorem 3.6. Let G be a graph with no isolated vertex and H any nontrivial graph with root v ∈ V(H).
The following statements are equivalent.

(i) γR(G ◦v H) = γ(G) + n(G)(γR(H) − 1).
(ii) γR(H − v) = γR(H) − 1 and there exists a γR(H)-function g such that g(v) = 2.

Proof. First, we assume that (i) holds, i.e., γR(G ◦v H) = γ(G) + n(G)(γR(H) − 1). Let f (V0,V1,V2)
be a γR(G ◦v H)-function. Since γ(G) < n(G), it follows that B f , ∅. So, (i) of Lemma 3.4 leads
to γR(H − v) = γR(H) − 1. By (ii) of Lemma 3.3 we deduce B f ⊆ V0, and also, if x ∈ B f , then as
f (NG◦vH(x) ∩ V(Hx)) ≤ 1, there exists a vertex y ∈ NG◦vH(x) ∩ A f ∩ V2. Thus, A f is a dominating set
of G. Hence,

γ(G) + n(G)(γR(H) − 1) = ω( f )

=
∑
x∈A f

ω( fx) +
∑
x∈B f

ω( fx)

≥
∑
x∈A f

γR(H) +
∑
x∈B f

(γR(H) − 1)

≥ |A f | + n(G)(γR(H) − 1)
≥ γ(G) + n(G)(γR(H) − 1)

So, we have equalities in the inequality chain above, and as a consequence, we deduce that every vertex
y ∈ A f ∩ V2 satisfies that ω( fx) = γR(H). Thus, as Hx � H, there exists a γR(H)-function g such that
g(v) = 2.

On the other hand, we assume that γR(H − v) = γR(H) − 1 and that there exists a γR(H)-function g
such that g(v) = 2. Let D be a γ(G)-set and g′ be a γR(H − v)-function. From D, g′ and g, we define a
function h on G◦vH as follows. For every x ∈ D, the restriction of h to V(Hx) is induced by g. Moreover,
if x ∈ V(G)\D, then h(x) = 0 and the restriction of h to V(Hx− x) is induced by g′. Observe that h is an
RDF on G◦v H, and so γR(G◦v H) ≤ ω(h) = |D|γR(H)+ |V(G)\D|(γR(H)−1) = γ(G)+n(G)(γR(H)−1).
Therefore, Theorem 3.5 leads to γR(G ◦v H) = γ(G) + n(G)(γR(H)− 1), which completes the proof. �

Now, we characterize the graphs G and H (and the root v ∈ V(H)) that satisfy the equality γR(G ◦v

H) = γR(G) + n(G)(γR(H) − 1).

Theorem 3.7. Let G � ∪K2 be a graph with no isolated vertex and H any nontrivial graph with root
v ∈ V(H). The following statements are equivalent.

(i) γR(G ◦v H) = γR(G) + n(G)(γR(H) − 1).
(ii) γR(H − v) = γR(H) − 1 and g(v) ≤ 1 for every γR(H)-function g.

Proof. First, we assume that (i) holds, i.e., γR(G ◦v H) = γR(G) + n(G)(γR(H) − 1). Let f (V0,V1,V2)
be a γR(G ◦v H)-function. Since γR(G) < n(G), it follows that B f , ∅. So, Lemma 3.4 (i) leads to
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γR(H − v) = γR(H) − 1. Moreover, since γ(G) < γR(G), Theorem 3.6 leads to g(v) ≤ 1 for every
γR(H)-function g. Hence, (ii) holds.

On the other hand, assume that (ii) holds. As in the previous proof, from any γR(G)-function and
any γR(H − v)-function we can construct an RDF on G ◦v H of weight γR(G) + n(G)γR(H − v). Since
γR(H − v) = γR(H)− 1, it follows that γR(G ◦v H) ≤ γR(G) + n(G)γR(H − v) = γR(G) + n(G)(γR(H)− 1).
Hence, Theorem 3.5 leads to γR(G◦v H) ∈ {γR(G)+n(G)(γR(H)−1), γ(G)+n(G)(γR(H)−1)}. Finally, as
g(v) ≤ 1 for every γR(H)-function g, by Theorem 3.6 we deduce that γR(G◦v H) = γR(G)+n(G)(γR(H)−
1), which completes the proof. �

Finally, we characterize the graphs (and the root) reaching the equality γR(G ◦v H) = n(G)γR(H).
Observe that, as shown in Theorem 3.5, there are three possible expressions for the Roman domination
number of G ◦v H. Thus, for the case of the equality γR(G ◦v H) = n(G)γR(H), the corresponding
characterization can be derived by eliminating the previous results (Theorems 3.6 and 3.7) from the
family of all graphs G without isolated vertices and all nontrivial graphs H with root v ∈ V(H).

Theorem 3.8. Let G � ∪K2 be a graph with no isolated vertex and H any nontrivial graph with root
v ∈ V(H). Then γR(G ◦v H) = n(G)γR(H) if and only if γR(H − v) ≥ γR(H).

Proof. First, we assume that γR(G◦v H) = n(G)γR(H). By Lemma 3.1 we have that γR(H−v) ≥ γR(H)−
1. If γR(H − v) = γR(H) − 1, then by Theorems 3.6 and 3.7 we deduce that n(G)γR(H) = γR(G ◦v H) ≤
γR(G) + n(G)(γR(H) − 1), which is a contradiction as γR(G) < n(G). Therefore, γR(H − v) ≥ γR(H), as
desired.

On the other hand, we assume that γR(H − v) ≥ γR(H). Hence, Theorems 3.6 and 3.7 lead to
γR(G ◦v H) < {γ(G) + n(G)(γR(H) − 1), γR(G) + n(G)(γR(H) − 1)}, which implies that γR(G ◦v H) =

n(G)γR(H) by Theorem 3.5. Therefore, the proof is complete. �

4. Conclusions and open questions

Clearly, one might recall that the characterizations from Section 3 rely on the following fact.
It is necessary to know the relationship between γR(H − v) and γR(H) in the graphs H used in the
rooted product, as well as, the existence of γR(H)-functions with labels 1 or 2 in their roots. Thus, an
interesting open problem that it is then of interest is as follows.

Open question: For a given graph H and a vertex v ∈ V(H), which is the relationship that exists
between γR(H − v) and γR(H)?

On the other hand, as mentioned before, studies on Roman domination in Cartesian product graphs
were published in [11, 12]; and studies on the rooted product graphs were initiated in [15], and
continued here in our work. In consequence, it would be of interest to continue these studies by
considering the hierarchical product of graphs (see [27]), which is a subgraph of the Cartesian product
as well as a “supergraph” of the rooted product.
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14. A. Klobučar, I. Puljić, Roman domination number on cardinal product of paths and cycles, Croat.
Oper. Res. Rev., 6 (2015), 71–78.

AIMS Mathematics Volume 6, Issue 10, 11084–11096.



11096

15. D. Kuziak, M. Lemańska, I. G. Yero, Domination-related parameters in rooted product graphs,
Bull. Malays. Math. Sci. Soc., 39 (2019), 199–217.

16. I. G. Yero, D. Kuziak, A. Rondón Aguilar, Coloring, location and domination of corona graphs,
Aequationes Math., 86 (2013), 1–21.

17. T. W. Haynes, S. T. Hedetniemi, M. A. Henning (Eds.), Topics in Domination in Graphs,
Developments in Mathematics, Springer International Publishing AG, 2020.

18. T. W. Haynes, S. T. Hedetniemi, M. A. Henning (Eds.), Structures of Domination in Graphs,
Developments in Mathematics, Springer International Publishing AG, 2020.

19. M. A. Henning, A. Yeo, Total domination in graphs, New York, Springer, 2013.

20. P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc., 13 (1962), 47–52.
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