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Abstract: Let {Yn, n ≥ 1} be sequence of random variables with EYn = 0 and supn E|Yn|
p < ∞ for

each p > 2 satisfying Rosenthal type inequality. In this paper, the law of the iterated logarithm for a
class of random variable sequence with non-identical distributions is established by the Rosenthal type
inequality and Berry-Esseen bounds. The results extend the known ones from i.i.d and NA cases to a
class of random variable satisfying Rosenthal type inequality.
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1. Introduction and main results

We first introduce the definition of the Rosenthal type maximal inequality, which is one of the most
interesting inequalities in probability theory and mathematical statistics. Suppose that {Yn, n ≥ 1} is a
sequence of random variables satisfying E|Yi|

r < ∞ for r ≥ 2, then there exists a positive constant C(r)
depending only on r such that

E max
1≤ j≤n

|

j∑
k=1

(Yk − EYk)|r

≤ C(r)[
n∑

k=1

E|Yk − EYk|
r + (

n∑
k=1

E|Yk − EYk|
2)r/2]

≤ 2C(r)nr/2 sup
n

E|Yn − EYn|
r. (1.1)

(1.1) can be satisfied by many dependent or mixing sequences. Peligrad [1], Zhou [2], Wang and
Lu [3], Utev and Peligrad [4] established the above inequality for ρ−mixing sequence, ϕ−mixing
sequence, ρ−−mixing sequence and ρ̃−mixing sequence, respectively. We also refer to Shao [5],
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Stoica [6], Shen [7], Yuan and An [8], Shen et al. [9] and Merlevéde and Peligrad [10] for negatively
associated sequence (NA), martingale difference sequence, extend negatively dependent sequence
(END), asymptotically almost negatively associated random sequence (AANA), negatively
superadditive dependent (NSD), stationary processes, respectively.

The law of iterated logarithm (LIL, for short) is an important aspect in probability theory because it
can describe the precise convergence rates. Petrov [11] established the following LIL for independent
random variables.

Theorem A. Let {Xn, n ≥ 1} be independent random variables sequences with EXn = 0, σ2
n = EX2

n <

∞, B′n =
∑n

k=1 σ
2
k , S n =

∑n
k=1 Xk. If the following assumptions are satisfied:

(i) B′n → ∞, when n→ ∞,
(ii) B′n+1/B′n → 1, when n→ ∞,
(iii) ∆n = supx |P(S n < x

√
B′n) − Φ(x)| = O[(log B′n)−1−δ], δ > 0, here and in the sequel Φ(·) is a

standard normal distribution function, hold.
Then

lim sup
n→∞

S n

(2B′n log log B′n)1/2 = 1 a.s.

Later on, Cai and Wu [12] established the following LIL for NA random variables.
Theorem B. Let {Xn, n ≥ 1} be NA random variables sequence with EXn = 0 and

supn EX2
n(log |Xn|)1+δ < ∞ for some δ > 0. Let S n =

∑n
k=1 Xk, Bn = Var(S n) > 0, B′n =

∑n
k=1 EX2

k .
∆n = supx |P(S n < x

√
B′n) − Φ(x)|. If

(i) Bn = O(n),
(ii) Bn+1/Bn → 1, when n→ ∞,
(iii) ∆n = O[(log Bn)−1],
(iv) Bn/B′n → 1, when n→ ∞,

hold, then

lim sup
n→∞

S n

(2Bn log log Bn)1/2 = 1 a.s.

In this paper, the main purpose is to establish the law of the iterated logarithm for a class of random
variables satisfying Rosenthal type maximal inequality with non-identical distributions. The following
is the main result.

Theorem 1.1. Let {Yn, n ≥ 1} be a sequence of random variables with EYn = 0 and supn E|Yn|
p < ∞

for each p > 2 satisfying (1.1), denote S n =
∑n

k=1 Yk, Bn = Var(S n) > 0. If
(i) Bn = O(n), Bn+1/Bn → 1, when n→ ∞,
(ii) ∆n,m = supx |P(S n+m − S m < x

√
Bn+m − Bm) − Φ(x)| = O[(log(Bn+m − Bm))−1−δ] for some δ > 0

and any m ≥ 0, n ≥ 1, where S 0 = 0, B0 = 0,
hold, then

lim sup
n→∞

S n

(2Bn log log Bn)1/2 = 1 a.s. (1.2)

Corollary 1.2. Let {Yn, n ≥ 1} be a strictly stationary sequence of random variables with EY1 = 0 and
E|Y1|

p < ∞ for each p > 2 satisfying (1.1), denote S n =
∑n

k=1 Yk, Bn = Var(S n) > 0. If
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(i) 0 < σ2 =: EY2
1 +
∑∞

k=1 EY1Y1+k < ∞,
(ii) ∆n = supx |P(S n < x

√
Bn) − Φ(x)| = O[(log Bn)−1−δ] for some δ > 0,

hold, then

lim sup
n→∞

S n

(2nσ2 log log n)1/2 = 1 a.s. (1.3)

Remark 1.3. The assumption (ii) in Theorem 1.1, that is the Berry-Esseen bounds, can be satisfied by
many sequence, such as independent sequence, NA sequence with convergence rate n−α, 0 < α ≤ 1/2.

Throughout the sequel, C represents a positive constant although its value may change from one
appearance to the next, I{A} denotes the indicator function of the set A, [x] denotes the integer part of
x, log x = ln max{e, x}.

2. Proof

Some lemmas which will be useful to prove the main results are given firstly.

Lemma 2.1. (Wittmann [13]) Let {an} be a sequence of strictly positive real numbers with limn→∞ an =

∞. Then for any M > 1, there exists a subsequence {nk, k ≥ 1} ∈ N = {1, 2, · · · }, such that

Mank ≤ ank+1 ≤ M3ank+1.

Lemma 2.2. Under the assumptions of Theorem 1.1, let {g(n)} be a nondecreasing sequence of positive
numbers and {nk} be a nondecreasing sequence of positive integers such that

∑∞
k=1

1
(log nk)1+δ < ∞. Then

the following statements are equivalent
(A)
∑∞

k=1 P(S nk > g(nk)
√

Bnk) < ∞,
(B)
∑∞

k=1
1

g(nk) exp{−1
2g2(nk)} < ∞.

Proof. Noting Bn = O(n),

∞∑
k=1

∆nk ,0 ≤

∞∑
k=1

C
(log Bnk)1+δ

≤

∞∑
k=1

C
(log nk)1+δ

< ∞. (2.1)

Thanks to (2.1), condition (A) is equivalent to

∞∑
k=1

(1 − Φ(g(nk))) < ∞.

If g(nk) 9 ∞, it is easy to see that conditions (A) and (B) can not be satisfied. So we can assume
that g(nk)→ ∞, then noting that 1

xϕ(x) ∼ 1−Φ(x) for x large enough, where ϕ(x) is the density function
of the standard normal, one gets

∞∑
k=1

(1 − Φ(g(nk))) < ∞ ⇐⇒
∞∑

k=1

1
√

2πg(nk)
exp{−

1
2

g2(nk)} < ∞.

Thus, the proof of this lemma is completed. �
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Lemma 2.3. Under the conditions of Theorem 1.1, one gets

lim sup
n→∞

|S n|

(2Bn log log Bn)1/2 ≤ 1 a.s. (2.2)

Proof. For any 0 < ε < 1/3, let nk = [ekα], k ≥ 1 with max{ 1
(1+ε)2 ,

1
1+δ
} < α < 1 and g(nk) =

(1 + ε)(2 log log Bnk)
1/2. Noting that Bn = O(n), one can get

∞∑
k=1

∆nk ,0 ≤

∞∑
k=1

C
(log nk)1+δ

≤

∞∑
k=1

C
kα(1+δ) < ∞,

and
∞∑

k=1

1
g(nk)

exp{−
1
2

g(nk)}

=

∞∑
k=1

1
(1 + ε)(2 log log Bnk)1/2 exp{−

1
2

(1 + ε)2(2 log log Bnk)}

≤

∞∑
k=1

C
(log Bnk)(1+ε)2(log log Bnk)1/2

≤

∞∑
k=1

C
kα(1+ε)2(log kα)1/2

< ∞.

Then by Lemma 2.2, one can obtain

∞∑
k=1

P(S nk > (1 + ε)(2Bnk log log Bnk)
1/2) < ∞.

By Broel-Cantelli lemma and the arbitrariness of ε, we have

lim sup
k→∞

|S nk |

(2Bnk log log Bnk)1/2 = lim
ε↘0

lim sup
k→∞

|S nk |

(2Bnk log log Bnk)1/2 ≤ 1 a.s. (2.3)

For given α, choose p > 2 such that p(1 − α) > 2, then by (1.1), Bn = O(n) and supn E|Yn|
p < ∞,

we get

∞∑
k=1

P( max
nk≤n<nk+1

|S n − S nk | > ε(2Bnk log log Bnk)
1/2)

≤

∞∑
k=1

E maxnk≤n<nk+1 |S n − S nk |
p

(ε)p(2Bnk log log Bnk)p/2

≤

∞∑
k=1

C
(nk+1 − nk)p/2

(nk log log nk)p/2

≤

∞∑
k=1

C
1

kp(1−α)/2(log kα)p/2 < ∞
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Thus by Broel-Cantelli lemma and the arbitrariness of ε, one has

lim sup
k→∞

maxnk≤n<nk+1 |S n − S nk |

(2Bnk log log Bnk)1/2 = 0 a.s. (2.4)

Thanks to (2.3) and (2.4) and Bnk+1/Bnk → 1, we have

lim sup
n→∞

|S n|

(2Bn log log Bn)1/2 ≤ lim sup
k→∞

maxnk≤n<nk+1 |S n|

(2Bnk log log Bnk)1/2

≤ lim sup
k→∞

|S nk |

(2Bnk log log Bnk)1/2 + lim sup
k→∞

maxnk≤n<nk+1 |S n − S nk |

(2Bnk log log Bnk)1/2

≤ 1,

thus, the proof of Lemma 2.3 is completed. �

Lemma 2.4. Under the conditions of Theorem 1.1, one gets

lim sup
n→∞

|S n|

(2Bn log log Bn)1/2 ≥ 1 a.s. (2.5)

Proof. Noting that Bn = O(n), Bn+1/Bn → 1, by Lemma 2.1, for any τ > 0, there exists a nondecreasing
sequence of positive integers {n′k, k ≥ 1}, such that for k → ∞, we have

n′k → ∞, and Bn′k−1
≤ (1 + τ)k < Bn′k

, k = 1, 2, · · · (2.6)

Let

χ(n′k) = (2Bn′k
log log Bn′k

)1/2 and ψ(n′k) = (2(Bn′k
− Bn′k−1

) log log(Bn′k
− Bn′k−1

))1/2.

From (2.6), it is easy to check that

(1 − θ)ψ(n′k) − 2χ(n′k−1) ∼ [(1 − θ)τ1/2(1 + τ)−1/2 − 2(1 + τ)−1/2]χ(n′k), k → ∞, (2.7)

For given 0 < ε < 1, one can choose 0 < θ < 1 and τ > 0, such that

(1 − θ)τ1/2(1 + τ)−1/2 − 2(1 + τ)−1/2 > 1 − ε.

Let g(n′k) = (1 + ε)(2 log log Bn′k
)1/2. Noting that Bn = O(n), one can get

∞∑
k=1

∆n′k ,0 ≤

∞∑
k=1

C
(log n′k)

1+δ
≤

∞∑
k=1

C
k1+δ

< ∞,

and

∞∑
k=1

1
g(n′k)

exp{−
1
2

g(n′k)}
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=

∞∑
k=1

1
(1 + ε)(2 log log Bn′k

)1/2 exp{−
1
2

(1 + ε)2(2 log log Bn′k
)}

≤

∞∑
k=1

C
(log Bn′k

)(1+ε)2(log log Bn′k
)1/2

≤

∞∑
k=1

C
k(1+ε)2(log k)1/2

< ∞.

Then by Lemma 2.2, one can obtain

∞∑
k=1

P(S n′k
> (1 + ε)(2Bn′k

log log Bn′k
)1/2) < ∞.

By Broel-Cantelli lemma and 0 < ε < 1, we have

|S n′k−1
| ≤ 2(2Bn′k−1

log log Bn′k−1
)1/2 = 2χ(n′k−1) a.s. (2.8)

In order to prove (2.5), it is sufficient to show that

lim sup
k→∞

|S n′k
|

(2Bn′k
log log Bn′k

)1/2 ≥ 1 a.s. (2.9)

Noting (1− θ)τ1/2(1 +τ)−1/2−2(1 +τ)−1/2 > 1−ε, then by (2.6) and (2.8) and P(AB) ≥ P(A)−P(B),
it is easy to prove

P(S n′k
> (1 − ε)χ(n′k) i.o.) ≥ P(S n′k

> (1 − θ)ψ(n′k) − 2χ(n′k−1) i.o.)
≥ P(S n′k

− S n′k−1
> (1 − θ)ψ(n′k) i.o.) − P(|S n′k−1

| ≥ 2χ(n′k−1) i.o.)
= P(S n′k

− S n′k−1
> (1 − θ)ψ(n′k) i.o.). (2.10)

Thus by (2.10), in order to prove (2.9), it suffices to prove

P(S n′k
− S n′k−1

> (1 − θ)ψ(n′k) i.o.) = 1. (2.11)

Noting ∆n,m = supx |P(S n+m − S m < x
√

Bn+m − Bm) − Φ(x)| = O[(log(Bn+m − Bm))−1−δ] and 1
xϕ(x) ≤

1 − Φ(x) for x ≥ 1, where ϕ(x) is the density function of the standard normal random variables, recall
ψ(n′k) = (2(Bn′k

− Bn′k−1
) log log(Bn′k

− Bn′k−1
))1/2 and Bn′k

∼ (1 + τ)k, one can deduce

∞∑
k=1

P(S n′k
− S n′k−1

> (1 − θ)ψ(n′k))

≥

∞∑
k=1

[1 − Φ((1 − θ)(2 log log(Bn′k
− Bn′k−1

))1/2) − ∆n′k−n′k−1,n
′
k−1)]

≥

∞∑
k=1

[
1

√
2π(1 − θ)(2 log log(Bn′k

− Bn′k−1
))1/2

· e−
(1−θ)2(2 log log(Bn′k

−Bn′k−1
))

2 −
C

(log(Bn′k
− Bn′k−1

))1+δ
]
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≥

∞∑
k=1

C
(log(Bn′k

− Bn′k−1
))(1−θ)2(log log(Bn′k

− Bn′k−1
))1/2

≥

∞∑
k=1

C
k(1−θ)2(log k)1/2

= ∞. (2.12)

Hence, by the generalized Borel-Cantelli lemma (see, e.g., Kochen and Stone [14]), (2.12) yields
(2.11), the proof is completed. �

Proof of Theorem 1.1. Theorem 1.1 can be obtained by combining Lemma 2.3 with Lemma 2.4
directly.

Proof of Corollary 1.2. By the strictly stationary and 0 < σ2 =: EY2
1 +
∑∞

k=1 EY1Y1+k < ∞, it is
easy to see

lim
n→∞

Bn

n
= lim

n→∞

Var(S n)
n

= σ2.

Then Corollary 1.2 follows from Theorem 1.1.

3. Conclusions

In this paper, using the Rosenthal type maximal inequality and Berry-Esseen bounds, the law of the
iterated logarithm for a class of random variables is established, this extends the results of Cai and Wu
[12] from NA case to general case, because that END and NSD random variables are much weaker
than independent random variables and NA random variables thanking to Shen [7] and Shen et al. [9]
for details.
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